首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mouse myosin light-chain 1A (MLC1A) gene, expressed in the atria of the adult heart, is one of the first muscle genes to be activated when skeletal as well as cardiac muscles form in the embryo. It is also transcribed in skeletal muscle cell lines at the onset of differentiation. Transient transfection assays of mouse skeletal muscle cell lines with DNA constructs containing MLC1A promoter fragments fused to the chloramphenicol acetyltransferase (CAT) gene show that the first 630 bp of the promoter is sufficient to direct expression of the reporter gene during myotube formation. Two E boxes located at bp -76 and -519 are necessary for this regulation. MyoD and myogenin proteins bind to them as heterodimers with E12 protein and, moreover, transactivate them in cotransfection experiments with the MLC1A promoter in nonmuscle cells. Interestingly, the effect of mutating each E box is less striking in primary cultures than in the C2 or Sol8 muscle cell line. A DNA fragment from bp -36 to -597 confers tissue- and stage-specific activity to the herpes simplex virus thymidine kinase promoter in both orientations, showing that the skeletal muscle-specific regulation of the MLC1A gene is under the control of a muscle-specific enhancer which extends into the proximal promoter region. At bp -89 is a diverged CArG box, CC(A/T)6AG, which binds the serum response factor (SRF) in myotube nuclear extracts, as does the wild-type sequence, CC(A/T)6GG. Both types of CArG box also bind a novel myotube-enriched complex which has contact points with the AT-rich part of the CArG box and adjacent 3' nucleotides. Mutations within the CArG box distinguish between the binding of this complex and binding of SRF; only SRF binding is directly involved in the specific regulation of the MLC1A gene in skeletal muscle cell lines.  相似文献   

2.
3.
4.
5.
Expression of alpha-actin in smooth muscle cells (SMCs) is regulated, in part, by an intronic serum response factor (SRF)-binding CArG element. We have identified a conserved nuclear factor of activated T cells (NFAT) binding site that overlaps this CArG box and tested the hypothesis that this site plays a previously unrecognized role in regulating alpha-actin expression. A reporter construct prepared using a 56-bp region of the mouse alpha-actin first intron containing SRF, NFAT, and AP-1 sites (SNAP) acted as an enhancer element in the context of a minimal thymidine kinase promoter. Basal reporter activity following expression in SMCs was robust and sensitive to the calcineurin-NFAT pathway inhibitors cyclosporin A and FK506. Mutating either the NFAT or SRF binding site essentially abolished reporter activity, suggesting that both NFAT and SRF binding are required. Basal activity in non-smooth muscle HEK293 cells was SRF-dependent but NFAT-independent and approximately 8-fold lower than that in SMCs. Activation of NFAT in HEK293 cells induced an approximately 4-fold increase in activity that was dependent on the integrity of both NFAT and SRF binding sites. NFATc3.SRF complex formation, demonstrated by co-immunoprecipitation, was facilitated by the presence of SNAP oligonucleotide. Inhibition of the calcineurin-NFAT pathway decreased alpha-actin expression in cultured SMCs, suggesting that the molecular interaction of NFAT and SRF at SNAP may be physiologically relevant. These data provide the first evidence that NFAT and SRF may interact to cooperatively regulate SMC-specific gene expression and support a role for NFAT in the phenotypic maintenance of smooth muscle.  相似文献   

6.
The cardiac/slow twitch sarcoplasmic reticulum (SR) Ca2+-ATPase gene (SERCA2 ) encodes a calcium transport pump whose expression is regulated in a tissue- and development-specific manner. Previously we have identified two distinct positive regulatory regions (bp -284 to -72 and -1815 to -1105) as important for SERCA2 promoter activity. Here we demonstrate that the SERCA2 distal promoter region functions like an enhancer by activating a heterologous promoter (TK) in a muscle cell-specific manner. Through deletion analysis a core enhancer region was delimited to the -1467 to -1105 bp fragment. We identified the E box/AT-rich element located at -1115 bp as critical for maximal enhancer activity. Gel mobility shift studies revealed that this E box/AT-rich element specifically binds a protein which is induced during Sol8 myogenesis. This region includes two other cis -acting elements, CArG and MCAT, which also bind specific nuclear protein complexes from Sol8 myotubes. Mutagenesis of each of these sites resulted in decreased SERCA/TK-CAT promoter activity. Based on these data, we propose that the E box/AT-rich element may contribute along with CArG and MCAT elements to the overall activation and regulation of the SERCA2 gene promoter.  相似文献   

7.
8.
9.
10.
We have previously reported on the presence of a CArG motif at -100 in the Rous sarcoma virus long terminal repeat which binds an avian nuclear protein termed enhancer factor III (EFIII) (A. Boulden and L. Sealy, Virology 174:204-216, 1990). By all analyses, EFIII protein appears to be the avian homolog of the serum response factor (SRF). In this study, we identify a second CArG motif (EFIIIB) in the Rous sarcoma virus long terminal repeat enhancer at -162 and show only slightly lower binding affinity of the EFIII/SRF protein for this element in comparison with c-fos serum response element (SRE) and EFIII DNAs. Although all three elements bind the SRF with similar affinities, serum induction mediated by the c-fos SRE greatly exceeds that effected by the EFIII or EFIIIB sequence. We postulated that this difference in serum inducibility might result from binding of factors other than the SRF which occurs on the c-fos SRE but not on EFIII and EFIIIB sequences. Upon closer inspection of nuclear proteins which bind the c-fos SRE in chicken embryo fibroblast and NIH 3T3 nuclear extracts, we discovered another binding factor, SRE-binding protein (SRE BP), which fails to recognize EFIII DNA with high affinity. Competition analyses, methylation interference, and site-directed mutagenesis have determined that the SRE BP binding element overlaps and lies immediately 3' to the CArG box of the c-fos SRE. Mutation of the c-fos SRE so that it no longer binds SRE BP reduces serum inducibility to 33% of the wild-type level. Conversely, mutation of the EFIII sequence so that it binds SRE BP with high affinity results in a 400% increase in serum induction, with maximal stimulation equaling that of the c-fos SRE. We conclude that binding of both SRE BP and SRF is required for maximal serum induction. The SRE BP binding site coincides with the recently reported binding site for rNF-IL6 on the c-fos SRE. Nonetheless, we show that SRE BP is distinct from rNF-IL6, and identification of this novel factor is being pursued.  相似文献   

11.
12.
S C Park  H B Kwon    M C Shih 《Plant physiology》1996,112(4):1563-1571
We report the characterization of cis-acting elements involved in light regulation of the nuclear gene (GapA) that encodes the A subunit of glyceraldehyde 3-phosphate dehydrogenase in Arabidopsis thaliana. Our previous deletion analyses indicate that the -277 to -195 upstream region of GapA is essential for light induction of the beta-glucuronidase reporter gene in transgenic tobacco (Nicotiana tabacum) plants. This region contains three direct repeats with the consensus sequence 5'-CAAATGAA(A/G)A-3' (Gap boxes). Our results show that 2-bp substitutions of the last four nucleotides (AA or GA) of the Gap boxes by CC abolish light induction of the beta-glucuronidase reporter gene in vivo and affect binding of the Gap box binding factor in vitro. We have also identified an additional cis-acting element, AE (Activation Element) box, that is involved in regulation of GapA. A combination of a Gap box trimer and an AE box dimer can confer light responsiveness of the cauliflower mosaic virus 35S promoter containing the -92 to +6 upstream sequence, whereas oligomers of Gap boxes or AE boxes alone cannot confer light responsiveness on the same promoter. These results suggest that Gap boxes and AE boxes function together as the light-responsive element of GapA.  相似文献   

13.
To dissect the molecular mechanisms conferring positional information in skeletal muscles, we characterized the control elements responsible for the positionally restricted expression patterns of a muscle-specific transgene reporter, driven by regulatory sequences from the MLC1/3 locus. These sequences have previously been shown to generate graded transgene expression in the segmented axial muscles and their myotomal precursors, fortuitously marking their positional address. An evolutionarily conserved E box in the MLC enhancer core, not recognized by MyoD, is a target for a nuclear protein complex, present in a variety of tissues, which includes Hox proteins and Zbu1, a DNA-binding member of the SW12/SNF2 gene family. Mutation of this E box in the MLC enhancer has only a modest positive effect on linked CAT gene expression in transfected muscle cells, but when introduced into transgenic mice the same mutation elevates CAT transgene expression in skeletal muscles, specifically releasing the rostral restriction on MLC-CAT transgene expression in the segmented axial musculature. Increased transgene activity resulting from the E box mutation in the MLC enhancer correlates with reduced DNA methylation of the distal transgenic MLC1 promoter as well as in the enhancer itself. These results identify an E box and the proteins that bind to it as a positional sensor responsible for regional differences in axial skeletal muscle gene expression and accessibility.  相似文献   

14.
15.
The murine alpha B-crystallin/small heat shock protein gene is expressed at high levels in the lens and at lower levels in the heart, skeletal muscle, and numerous other tissues. Previously we have found a skeletal-muscle-preferred enhancer at positions -427 to -259 of the alpha B-crystallin gene containing at least four cis-acting regulatory elements (alpha BE-1, alpha BE-2, alpha BE-3, and MRF, which has an E box). Here we show that in transgenic mice, the alpha B-crystallin enhancer directs the chloramphenicol acetyltransferase reporter gene driven by the alpha B-crystallin promoter specifically to myocardiocytes of the heart. The alpha B-crystallin enhancer was active in conjugation with the herpes simplex virus thymidine kinase promoter/human growth hormone reporter gene in transfected rat myocardiocytes. DNase I footprinting and site-specific mutagenesis experiments showed that alpha BE-1, alpha BE-2, alpha BE-3, MRF, and a novel, heart-specific element called alpha BE-4 are required for alpha B-crystallin enhancer activity in transfected myocardiocytes. By contrast, alpha BE-4 is not utilized for enhancer activity in transfected lens or skeletal muscle cell lines. Alpha BE-4 contains an overlapping heat shock sequence and a reverse CArG box [5'-GG(A/T)6CC-3']. Electrophoretic mobility shift assays with an antibody to serum response factor and a CArG-box-competing sequence from the c-fos promoter indicated that a cardiac-specific protein with DNA-binding and antigenic similarities to serum response factor binds to alpha BE-4 via the reverse CArG box; electrophoretic mobility shift assays and antibody experiments with anti-USF antiserum and heart nuclear extract also raised the possibility that the MRF E box utilizes USF or an antigenically related protein. We conclude that the activity of the alpha B-crystallin enhancer in the heart utilizes a reverse CArG box and an E-box-dependent pathway.  相似文献   

16.
17.
We previously described a 110-kDa tyrosine phosphoprotein, Sob 1, that regulates formation of the DNA binding complex Band A at the c-fos serum response element (SRE) during T cell activation. Using competition and mutant oligonucleotide analysis, we have determined that both the core CArG box of the c-fos SRE and the 3' sequences flanking the CArG box are necessary for stable Band A complex formation. Moreover, using transient transfection and reporter assays, we show that mutations affecting Band A complex formation in vitro also impaired serum induction of c-fos gene expression in vivo. Since mutation at this site has no effect on SRF binding, our results suggest that in combination with SRE/SRF, Sob 1-regulated factor(s) bind at the 3' side of SRE to form Band A, and this confers maximal serum induction of c-fos gene expression via the SRE.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号