首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects of segmental reflexes on descending intersegmental reflexes to stimulation of forelimb afferents were studied in anesthetized cats by recording postsynaptic responses from single motoneurons. Interaction between these influences was found to be reciprocal in character for groups of neurons with primary connections with afferents of the superficial and deep branches of the peroneal nerve and afferents of the nerve to the gastrocnemius muscle. Excitatory postsynaptic responses arising in groups of motoneurons of the peroneal nerve to stimulation of forelimb afferents underwent profound and prolonged inhibition during conditioning stimulation of afferents in the deep and superficial peroneal nerves. Activation of segmental afferents during conditioning stimulation of the gastrocnemius nerve was accompanied by inhibition of excitatory intersegmental responses and deinhibition of inhibitory responses in motoneurons of the gastrocnemius muscle. Segmental inhibition of intersegmental descending impulse activity appeared in the interneuron system of the segmental reflex centers connecting the descending propriospinal tracts with the motoneurons of these centers.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 4, No. 2, pp. 16872-175, March–April, 1972.  相似文献   

2.
We studied neuronal pathways from low-threshold muscle (group I, II) and cutaneous afferents (group A(alpha)beta) innervating the tail to motoneurons innervating trunk muscles (m. iliocostalis lumborum and m. obliquus externus abdominus) in 18 spinalized cats. Stimulation of group I muscle afferents produced excitatory postsynaptic potentials or excitatory postsynaptic potentials followed by inhibitory postsynaptic potentials in all motoneurons innervating the m. iliocostalis lumborum which showed effects (32%), and predominantly inhibitory postsynaptic potentials in motoneurons innervating the m. obliquus externus abdominus (47%). Stimulation of group I+II afferents produced significant increases of the incidence of motoneurons showing postsynaptic potentials (the notoneurons innervating the m. iliocostalis lumborum, 87%; the motoneurons innervating the m. obliquus externus abdominus, 82%). The effects of low threshold cutaneous afferents were bilateral, predominantly producing inhibitory postsynaptic potentials in motoneurons innervating both muscles. These results suggest that neuronal pathways from muscle afferents to back muscle motoneurons mainly increase the stiffness of the trunk to maintain its stability, while those to abdominal muscles help to extend the dorsal column by decreasing their activities. The results also indicate that neuronal pathways from cutaneous afferents to trunk motoneurons functionallY disconnect the tail from the trunk.  相似文献   

3.
Experiments were performed in precollicular decerebrate cats to investigate whether proprioceptive volleys originating from Golgi tendon organs and muscle spindles may activate supraspinal descending inhibitory mechanisms. Conditioning stimulation of the distal stump of ventral root filaments of L7 or S1 leading to isometric contraction of the gastrocnemius-soleus (GS) muscle inhibited the monosynaptic reflex elicited by stimulation of the ipsilateral plantaris-flexor digitorum and hallucis longus (Pl-FDHL) nerve. The amount and the time course of this Golgi inhibition were greatly increased by direct cross-excitation of the intramuscular branches of the group Ia afferents due to ephaptic stimulation of the sensory fibers, which occurred when a large number of a fibers had been synchronously activated. The postsynaptic and the presynaptic nature of these inhibitory effects, as well as their segmental origin, have been discussed. In no instance, however, did the stimulation of Golgi tendon organs elicit any late inhibition of the test monosynaptic reflex, which could be attributed to a spino-bulbo-spinal (SBS) reflex. Conditioning stimulation of both primary and secondary endings of muscle spindles, induced by dynamic stretch of the lateral gastrocnemius-soleus (LGS) muscle, was unable to elicit any late inhibition of the medial gastrocnemius (MG) monosynaptic reflex. The only changes observed in this experimental condition were a facilitation of the test reflex during the dynamic stretch of the LGS, followed at the end of the stimulus by a prolonged depression. These effects however were due to segmental interactions, since they persisted after postbrachial section of the spinal cord. Intravenous injection of an anticholinesterase, at a dose which greatly potentiated the SBS reflex inhibition produced by conditioning stimulation of the dorsal root L6, did not alter the changes in time course of the test reflex induced either by muscle contraction or by dynamic muscle stretch. Conditioning stimulation of a muscle nerve activated the supraspinal descending mechanism responsible for the inhibitory phase of the SBS reflex only when the high threshold group III muscle afferents (innervating pressure-pain receptors) had been recruited by the electric stimulus. This finding contrasts with the great availability of the system to the low threshold cutaneous afferents. The proprioceptive afferent volleys originating from Golgi tendon organs as well as from both primary and secondary endings of muscle spindles, contrary to the cutaneous and the high threshold muscle afferent volleys, were apparently unable to elicit not only a SBS reflex inhibition, but also any delayed facilitation of monosynaptic extensor reflexes attributable to inhibition of the cerebellar Purkinje cells.  相似文献   

4.
BICUCULLINE has been shown to have an action essentially similar to Picrotoxin in antagonizing both synaptically evoked postsynaptic inhibition and the depressant action of γ-amino-butyric acid (GABA) on cuneate neurones1. This supports the hypothesis that GABA is the postsynaptic inhibitory transmitter in the cuneate2. However, evidence3 indicates that GABA has a dual action in the cuneate, not only depressing the excitability of postsynaptic neurones, but also increasing the excitability of primary afferent terminals in a manner which might be expected of a presynaptic inhibitory transmitter. The experiments reported here show that the alkaloids bicuculline and picrotoxin block presynaptic inhibition and that this action is consistent with them exerting a GABA-antagonist action at primary afferent terminals.  相似文献   

5.
Using the method of microelectrode (intracellular and extracellular) recording, the mechanism of inhibition following reflex discharge in interneurons of the lumbosacral section of the spinal cord of cats on activation of cutaneous and high-threshold muscle afferents was studied. It was shown that the postdischarge depression of the reflex responses 10–20 msec after the moment of activation of the neuron is due to afterprocesses in the same neuron and presynaptic pathways. The depression of spike potentials from the 20th to the 100th msec is produced by inhibitory postsynaptic potentials (IPSP). During the development of IPSP the inhibition of spike potentials can be due to both a decrease of the depolarization of the postsynaptic membrane below the critical threshold and a decrease of sensitivity of the cell membrane to the depolarizing action of the excitatory postsynaptic potential (EPSP). At intervals between the stimuli of 30–100 msec the duration of EPSP after the first stimulus does not differ from that after the second stimulus. Hence, it is suggested that the presynaptic mechanisms do not play an essential part in this type of inhibition of interneurons. The inhibition following the excitation favors the formation of a discrete message to the neurons of higher orders.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 2, No. 1, pp. 3–9, January–February, 1970.  相似文献   

6.
Electrical activity of flexor and extensor alpha-motoneurons of the lumbar segments of cat's spinal cord as recorded intracellularly during electric stimulation of afferents of the contralateral posterior limb. Contralateral postsynaptic potentials (PSP) were shown to be evoked by activation of cutaneous and high-threshold muscle afferents. The high-threshold afferents of various muscle nerves participate to varying degrees in the generation of contralateral PSP. Contralateral inhibitory postsynaptic potentials (IPSP) were recorded in both flexor and extensor motoneurons along with contralateral excitatory postsynaptic potentials (EPSP). There are no fundamental differences in their distribution between flexor and extensor neurons. Inhibitory influences as a rule are predominant in both during the first 20 msec, and EPSP are predominant in the interval between 20 and 100 msec. The balance of excitatory and inhibitory pathway activity was found to be not as stable as that of the homolateral pathways.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 3, No. 4, pp. 418–425, July–August, 1971.  相似文献   

7.
Prominent monosynaptic and disynaptic reflex discharges characterize ipsilateral reflex transmission in the third sacral segment. Convergence upon the motoneurons from the two sides of the body is inhibitory, that through disynaptic paths excitatory. The relative latencies of excitation and inhibition of reflex responses, of excitatory and inhibitory synaptic potentials, and of various aspects of impulse discharge in motoneurons are considered. It is concluded: (1) that a direct (i.e. monosynaptic) action of primary afferent collaterals upon motoneurons is responsible for inhibition of monosynaptic reflex discharge of antagonist motoneurons within a myotatic unit; (2) that the inhibitory postsynaptic potential as described is not the primary agency for monosynaptic reflex inhibition of monosynaptic reflex discharge; (3) that, however, a common causal agent may be responsible for inhibition of reflex discharge and for generation of an inhibitory postsynaptic potential; and (4) that the inhibitory post-synaptic potential may be linked with, or be the agent for, inhibition of soma response.  相似文献   

8.
The complicated response characteristics of the identified nonspiking interneuron type E4 upon elongation stimuli to the femoral chordotonal organ (fCO) can be obtained by a computer simulation using the neuronal network simulator BioSim, if the following assumptions were introduced: (1) The interneurons receive direct excitatory input from position- and velocity-sensitive fCO afferents but also, in parallel delayed inhibition from the same velocity-sensitive afferents. (2) Position-sensitive afferents in part show adaptation with a rather long time-constant. A subsequent experimental analysis demonstrated that all these assumptions fit the reality: (1) Interneurons of type E4 receive direct excitatory input from fCO afferents. (2) Interneurons of type E4 are affected by velocity dependent delayed inhibitory inputs from the fCO. (3) The fCO does contain adapting position-sensitive sensory neurons, which have not been described before. The described principle of the information processing is also able to generate the response in interneurons of type E6 with less steep amplitude-velocity characteristic due to a different weighting of the direct excitation and delayed inhibition.Abbreviations EPSP excitatory postsynaptic potential - FETi fast extensor tibiae motor neuron - fCO femoral chordotonal organ - FT-control loop femur-tibia control loop - IPSP inhibitory postsynaptic potential - SETi slow extensor tibiae motor neuron  相似文献   

9.
Microinjections of aspartic acid and chlorpromazine into the region of the locus coeruleus, which strengthen spontaneous unit activity in that structure, in decerebellate cats anesthetized with chloralose, led to depression of the inhibitory influence of flexor reflex afferents on extensor discharges, but did not change the facilitatory action of these afferents on flexor monosynaptic discharges and had no effect on recurrent inhibition of extensor discharges or reduced it. Microinjection of noradrenalin into this region, which depresses spontaneous unit activity in the locus coeruleus, or of procaine, which blocks action potential generation in neurons, led to potentiation of the inhibitory action of flexor reflex afferents on extensor discharges and to strengthening of recurrent inhibition, but did not affect the facilitatory action of these afferents on flexor discharges. The role of tonic descending influences of the locus coeruleus in the control of spinal inhibition evoked by flexor reflex afferents is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 13, No. 3, pp. 247–256, May–June, 1981.  相似文献   

10.
Convergence of contralateral somatic afferent synaptic influences on segmental inhibitory neurons was investigated by intracellular recording of postsynaptic potentials of -motoneurons in experiments on cats. Excitatory synaptic influences of afferents of the contralateral flexor reflex were shown to converge on interneurons of both segmental inhibitory systems studied: afferents of flexor reflex and group Ia muscle afferents. Interneurons of inhibitory systems are exposed not only to excitatory but also to inhibitory contralateral influences. Contralateral inhibitory PSPs of montoneurons are produced through ipsilateral inhibitory systems; a leading role is played by inhibitory neurons of the flexor reflex system of afferents. Inhibitory neurons of the Ia system as a rule do not make an important contribution to generation of contralateral IPSPs.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 5, No. 5, pp. 476–484, September–October, 1973.  相似文献   

11.
Experiments were conducted on anesthetized cats with microelectrode recording to study the synaptic responses that develop in the lumbar motoneurons on stimulation of the afferent fibers of groups II and III in the nerves of the ipsilateral and contralateral forelegs. Stimulation of these afferents evoked predominantly inhibitory postsynaptic potentials (IPSP) in the extensor motoneurons and excitatory postsynaptic potentials (EPSP) in the flexor motoneurons. A basically inhibitory change in the rhythmic background activity developed under the influence of descending impulsation. The duration of the total inhibition of "spontaneous" motoneuron activity corresponded to the duration of the inhibitory influences exerted by the forelimb flexor-reflex afferents (FRA) on the interneurons. The interaction of the descending and segmental PSP resulted in inhibition and facilitation of the segmental responses in the motoneurons. The ultimate result of this interaction was determined by the shifts in the membrane potential of the motoneuron and by the effects created in the interneurons.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 3, No. 1, pp. 58–67, January–February, 1971.  相似文献   

12.
Experimental work in cats has shown that a series of afferent impulses from muscle receptors activated during contractions of an ankle extensor elicit declining inhibitory potentials in homonymous and synergic motoneurones. Inhibitory potentials were ascribed to the action of Ib afferents from Golgi tendon organs that are specific contraction-sensitive mechano-receptors. The decline of inhibition was, at least partly, due to presynaptic inhibition acting as a filter of tendon organ information in the spinal cord. In the present work, a computer model of the simplest spinal pathways from Ib fibres to motoneurones was designed. In order to make the model as realistic as possible, the most pertinent of the known functional properties of the neuronal elements were incorporated. Functions simulating primary afferent depolarizations of Ib terminals, i.e. the electrophysiological correlate of presynaptic inhibition, were introduced in the network. Simulations showed that declining inhibitory potentials were computed in the output stage of the network that represented the motoneurone-like element. These results support the assumption that the filtering out of Ib inputs is to a great extent due to presynaptic inhibition. The model behaved as expected, suggesting that predictions of the behaviour of neural components in the biological network should be possible upon introduction in the model of other, more complex, spinal pathways from Ib fibres to motoneurones.  相似文献   

13.
Propriospinal neurones located in the cervical enlargement and projecting bilaterally to sacral segments of the spinal cord were investigated electrophysiologically in eleven deeply anaesthetized cats. Excitatory or inhibitory postsynaptic potentials from forelimb afferents were recorded following stimulation of deep radial (DR), superficial radial (SR), median (Med) and ulnar (Uln) nerves. 26 cells were recorded from C7, 22 from C8 and 3 from Th1 segments. The majority of the cells were located in the Rexed's laminae VIII and the medial part of the lamina VII. In 10 cases no afferent input from the forelimb afferents was found. In the remaining neurones effects were evoked mostly from DR (88%) and Med (63%), less often from SR (46%) and Uln (46%). Inhibitory actions were more frequent than excitatory. The highest number of IPSPs was evoked from high threshold flexor reflex afferents (FRA)--all connections were polysynaptic. However, inhibitory actions were often evoked from group I or II muscle afferents (polysynaptic or disynaptic) and, less frequently, from cutaneous afferents (mostly polysynaptic). Di- or polysynaptic IPSPs often accompanied monosynaptic EPSPs from group I or II muscle afferents. Disynaptic or polysynaptic EPSPs from muscle and cutaneous afferents were also recorded in many neurones, while polysynaptic EPSPs from FRA were observed only exceptionally. Various patterns of convergence in individual neuronal subpopulations indicate that they integrate different types of the afferent input from various muscle and cutaneous receptors of the distal forelimb. They transmit this information to motor centers controlling hind limb muscles, forming a part of the system contributing to the process of coordination of movements of fore--and hind--limbs.  相似文献   

14.
Trigeminal (V) nucleus principalis (PrV) is the requisite brainstem nucleus in the whisker-to-barrel cortex model system that is widely used to reveal mechanisms of map formation and information processing. Yet, little is known of the actual PrV circuitry. In the ventral “barrelette” portion of the adult mouse PrV, relationships between V primary afferent terminals, thalamic-projecting PrV neurons, and gamma-aminobutyric acid (GABA)-ergic terminals were analyzed in the electron microscope. Primary afferents, thalamic-projecting cells, and GABAergic terminals were labeled, respectively, by Neurobiotin injections in the V ganglion, horseradish peroxidase injections in the thalamus, and postembedding immunogold histochemistry. Primary afferent terminals (Neurobiotin- and glutamate-immunoreactive) display asymmetric and multiple synapses predominantly upon the distal dendrites and spines of PrV cells that project to the thalamus. Primary afferents also synapse upon GABAergic terminals. GABAergic terminals display symmetric synapses onto primary afferent terminals, the somata and dendrites (distal, mostly) of thalamic-projecting neurons, and GABAergic dendrites. Thus, primary afferent inputs through the PrV are subject to pre- and postsynaptic GABAergic influences. As such, circuitry exists in PrV “barrelettes” for primary afferents to directly activate thalamic-projecting and inhibitory local circuit cells. The latter are synaptically associated with themselves, the primary afferents, and with the thalamic-projecting neurons. Thus, whisker-related primary afferent inputs through PrV projection neurons are pre- and postsynaptically modulated by local circuits.  相似文献   

15.
We investigated the action of LSD at the putative indoleaminergic lateral inhibitory synapse in the lateral eye of Limulus polyphemus. We recorded extracellular and intracellular voltage responses from eccentric cells while producing inhibition either by light or by antidromic stimulation of the optic nerve in the presence of LSD, serotonin (5-HT), chlorimipramine, or a bathing medium whose high Mg++ and low Ca++ concentrations partially or completely blocked synaptic transmission. We found (a) light-evoked and antidromically stimulated lateral inhibition is enhanced during superfusion of low (1-5 microM) concentrations of LSD and suppressed by higher (5-20 microM) concentrations; (b) these actions of LSD are markedly reduced by bathing the retina in a medium high in Mg++ and low in Ca++; (c) very low concentrations of chlorimipramine, a putative uptake blocker of serotonin, appear to mimic actions of LSD both on eccentric cell firing rate and on lateral inhibition; (d) superfused 5-HT depresses lateral inhibition at all superthreshold concentrations (0.1-25 microM). These results suggest that LSD's action may require an intact inhibitory transmitter release and postsynaptic response mechanism, whereas serotonin exerts a direct postsynaptic effect. We propose that LSD blocks presynaptic uptake of transmitter at the lateral inhibitory synapse. The concentration dependence of LSD's action can be accounted for as follows: low concentrations partially restrict transmitter reuptake, thereby prolonging the lifetime of the transmitter in the synaptic cleft and thus increasing the magnitude and duration of postsynaptic inhibition. Higher concentrations cause more presynaptic uptake sites to be blocked; this causes accumulation of transmitter in the synaptic cleft, which causes a functional blockade of the synapse because of postsynaptic desensitization. As an alternative, we propose a hypothesis based on LSD action at presynaptic autoreceptors. Similar hypotheses can account for many aspects of LSD's action in mammalian brain.  相似文献   

16.
In anesthetized cats in conditions of muscular relaxation we have studied the participation of the interneurons of the lumbar section of the spinal cord in the interaction of the FRA systems of the fore and hind limbs. Using microelectrodes we have made extra- and intracellular recordings of the potentials. It has been shown that from the flexor afferents of the fore limbs both facilitating and inhibitory influences are transmitted. The former are expressed in increased frequency of the background impulse activity of the neurons, in the appearance of evoked responses of the "silent" cells and intensification of the test responses for short time intervals with paired heteronymous stimulation. The inhibitory influences prevail over the facilitating and are manifest in depression of the background activity and evoked segmental responses of the neurons. The maximum inhibition of the segmental responses was noted for intervals of 40–140 msec. The duration of inhibition varied from 100–500 msec and more. Depending on the intensity and duration of the inhibitory influences two groups of interneurons have been isolated. The role of the pre- and postsynaptic mechanisms in the transmission of inhibitory influences from the afferents of the fore limbs on the afferents of the hind limbs is discussed.Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 1, No. 3, pp. 235–242, November–December, 1969.  相似文献   

17.
The role of pre- and postsynaptic inhibitory processes in establishing long-term activity measuring hundreds of milliseconds in neuronal networks was investigated on a simulated (mathematical) model. Additional factors appear in networks with pre- and postsynaptic inhibition which are responsible for terminating this long-term network activity, either owing to depolarization setting in at the neuronal terminals reaching a critical level together with marked suppression of the effects of synaptic excitation, or else due to activation of inhibitory neurons exerting a powerful hyperpolarizing action on other neurons of the network. It is deduced that introducing additional negative feedback circuits in the form of pre- or post-synaptic inhibition renders the workings of this mechanism for terminating activity within the neuronal network more reliable, less subject to disruptive action, and more accurate.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 18, No. 3, pp. 392–402, May–June, 1986.  相似文献   

18.
A computer model is described that simulates many basic aspects of chemical synapse physiology. The model consists of two displays, the first being a pictorial diagram of the anatomical connections between two presynaptic neurons and one postsynaptic neuron. Either or both of the presynaptic cells can be stimulated from a control panel with variable control of the number of pulses and firing rate; the resulting presynaptic action potentials are animated. The second display plots the membrane potential of the postsynaptic cell versus time following presynaptic stimulation. The model accurately simulates temporal and spatial summation when the presynaptic cells are arranged and stimulated in parallel and simulates presynaptic inhibition when they are arranged and stimulated in series. Excitatory and inhibitory postsynaptic potentials can be demonstrated by altering the nature of the ionic conductance change occurring on the postsynaptic cell. The effects on summation of changing length constant or time constant of the postsynaptic cell can also be illustrated. The model is useful for teaching these concepts to medical, graduate, or undergraduate students and can also be used as a self-directed computer laboratory exercise. It is available for free download from the internet.  相似文献   

19.
Nerve fibers which respond to illumination of the sixth abdominal ganglion were isolated by fine dissection from connectives at different levels in the abdominal nerve cord of the crayfish. Only a single photosensitive neuron is found in each connective; its morphological position and pattern of peripheral connections are quite constant from preparation to preparation. These cells are "primary" photoreceptor elements by the following criteria: (1) production of a graded depolarization upon illumination and (2) resetting of the sensory rhythm by interpolated antidromic impulses. They are also secondary interneurons integrating mechanical stimuli which originate from appendages of the tail. Volleys in ipsilateral afferent nerves produce short-latency graded excitatory postsynaptic potentials which initiate discharge of one or two impulses; there is also a higher threshold inhibitory pathway of longer latency and duration. Contralateral afferents mediate only inhibition. Both inhibitory pathways are effective against both spontaneous and evoked discharges. In the dark, spontaneous impulses arise at frequencies between 5 and 15 per second with fairly constant intervals if afferent roots are cut. Since this discharge rhythm is reset by antidromic or orthodromic impulses, it is concluded that an endogenous pacemaker potential is involved. It is postulated that the increase in discharge frequency caused by illumination increases the probability that an inhibitory signal of peripheral origin will be detected.  相似文献   

20.
In experiments on unanaesthetized rabbits, myoelectric activity (contractile activity index) of distal ileum, caecum, and proximal colon in two sites was studied under stress induced by fastening a rabbit to the table in supine position. The stress caused sharp decrease (up to complete disappearance) of the contractile activity in all studied compartments of the ileocaecal intestine with partial or complete restoration after release of the animal. Nonselective blockade of pre- and postsynaptic alpha-adrenoceptor with dihydroergotoxin abolished the initial component of the specified inhibitory response. The latter was caused by "adrenergic inhibition" as a result of action of catecholamines circulating in blood on inhibitory smooth muscle alpha-adrenoceptor. Against the background of muscarinic cholinoceptor blockade, the stressor inhibition of ileocaecal contractile activity observed in control experiments was completely preserved. The periods of supression of ileoceacal contractile activity under stress resistant to blockade of alpha-, beta-adrenoceptor and muscarinic cholinoceptor, are caused by the mechanism of "nonadrenergic noncholinergic inhibition", which is realized at the expence of activation of the enteric inhibitory neurones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号