首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Autoradiographic techniques coupled with computerized microdensitometry and comparison with 125I standards were used to characterize and quantitate receptors for neuropeptides in rat brain and adrenal and pituitary glands. These techniques are rapidly performed, anatomically precise, and more sensitive than membrane binding techniques. They permit the determination of complete saturation curves and Scatchard analysis in discrete nuclei of the rat brain and in single rat pituitary and adrenal glands. Angiotensin II (AII) receptors were quantitated after incubation of 16-micron tissue sections with the AII agonist 125I-[Sar1]-AII. High-affinity, high-density AII receptors were present in the organon subfornicalis, organon vasculosum laminae terminalis and nuclei triangularis septalis, suprachiasmatis, and paraventricularis of the rat and in rat adrenal capsule-zona glomerulosa area, adrenal medulla, and anterior pituitary. These techniques could be used for precise localization and quantitation of other neuropeptide receptors in single rat brain nuclei, after optimizing the assay conditions and provided that suitable 125I ligands are available.  相似文献   

2.
We investigated the binding and pharmacologic properties of peptides encoded by complementary mRNA derived from the human and rat angiotensinogen gene (human and rat IIA, respectively). Human IIA (identical with AII in 4 amino acids) inhibited binding of [125I]AII to rat adrenal glomerulosa particles (Ki = 0.62 +/- 0.09 microM) and competitively blocked, with similar potency, the ability of three AII receptor agonists to contract rabbit aorta. Rat IIA affected neither [125I]AII binding to glomerulosa particles nor the contractile response of AII. We conclude that rat IIA does not interact with AII or its receptors and that human IIA acts as a competitive inhibitor of AII at the receptor level.  相似文献   

3.
W Kloas  W Hanke 《Peptides》1992,13(2):349-354
Angiotensin II (AII) binding sites were localized and quantified in kidney and adrenal of the frog Rana temporaria by quantitative in vitro autoradiography. AII binding was present in kidney glomeruli and in interrenal tissue of the outer zone of the adrenal gland. Saturation experiments showed that [125I]-[Val5]AII binds to a single class of binding sites with a dissociation constant (Kd) of 548 +/- 125 pM in glomeruli and 593 +/- 185 pM in interrenal tissue (n = 8). The corresponding maximal binding capacities (Bmax) were 2.48 +/- 0.71 and 3.05 +/- 1.02 fmol/mm2, respectively. AII binding was displaced by unlabeled angiotensin analogues in the rank order: [Sar1]AII greater than human AII greater than [125I]-[Val5]AII = [Val5]AII = human AIII much greater than human AI. The AII binding sites in glomeruli and interrenal tissue suggest an influence of AII on glomerular filtration rate and adrenal steroid secretion to take part in osmomineral regulation of the frog.  相似文献   

4.
Characterization of angiotensin II receptors in the rat fetus   总被引:2,自引:0,他引:2  
The presence of AII receptors during early and late embryonic development was studied by binding of 125I[Sar1, Ile8] AII to whole mouse blastocysts and membrane-rich fractions from rat conceptuses, 7 to 21 days in gestation. In early mouse embryos there was no detectable binding under a variety of experimental conditions. However, in late gestation rat fetuses, specific and high affinity binding was observed, with a concentration of sites similar in membranes from whole and eviscerated fetuses. Using less than 100 micrograms of membrane protein, binding was time and temperature dependent, maintaining equilibrium from 30 to 120 min at 23 degrees C and it was enhanced by addition of Mg+2 up to 5 mM, EGTA 2 mM and dithiothreitol up to 2.5 mM. Scatchard analysis of the binding data indicated Kd values ranging between 0.7 and 0.9 nM. Binding was first detectable at day 10 (14.3 +/- 2.3 fmol/mg), increasing to 104 +/- 16, 2,625 +/- 168, 5,993 +/- 152 and 5,902 +/- 92 by days 12, 15, 18, and 21 of gestational age, respectively. Since the functional significance of these binding sites depends on the availability of the agonist ligand, acid extracts from eviscerated 10-day-old fetuses were analyzed for the presence of AII. Measurement of AII by radioimmunoassay revealed immunoreactive AII-like material (845 pg/g of tissue), with an elution pattern identical to that of AII standard in a Sephadex G-50 column. This material was bioactive, as demonstrated by its ability to displace 125I[Sar1, Ile8]AII from adrenal glomerulosa membranes, an effect which was abolished by pretreatment of the extract with AII antibody.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Specific receptor sites for angiotensin II (AII) were analyzed in the adrenal cortex and other target tissues including liver, anterior pituitary gland, and smooth muscle, after covalent labeling with the radioactive photoaffinity analog 125I-[Sar1,(4-N3)Phe8]-AII. The photoreactive AII derivative retained high affinity for adrenal receptors and full steroidogenic activity in adrenal glomerulosa cells. In bovine adrenal cortex, covalent labeling of AII receptors by the photoreactive analog was specifically inhibited by [Sar1]AII with an IC50 of about 5 nM. The Mr of the covalent AII-receptor complex during polyacrylamide gel electrophoresis of the labeled protein under reducing conditions was 58,000. Under non-reducing conditions, a minor band with Mr of 105,000 was also observed. Two labeled species were also found during gel permeation chromatography of the detergent-solubilized complex, with Mrs of 64,000 and 86,000. The pl of the solubilized photolabeled complex was absorbed to wheat germ lectin Sepharose 6MB and could be eluted by N-acetylglucosamine. The Mrs of specific AII-binding sites in several target tissues, determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, showed target tissues, determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, showed significant differences within and between species. The most striking differences were between rat adrenal cortex (79,000) and both rat liver (60,000) and bovine adrenal cortex (58,000). After enzymatic deglycosylation, the Mr of the major component present in the bovine and rat adrenal cortex decreased by 40% and 55% to 35,000 and 34,000, respectively, suggesting that variations in carbohydrate content contribute to the physical heterogeneity of AII receptors in individual target tissues.  相似文献   

6.
Angiotensin-converting enzyme (ACE) is found in the adrenal gland, but the role of adrenal ACE in the formation of angiotensin II (AII) and subsequent stimulation of aldosterone is unclear. We examined the effect of adrenal ACE activity on aldosterone secretion by superfusing rat adrenal capsules with angiotensin I (AI) in the presence and absence of the ACE inhibitor, lisinopril. Angiotensin I (10 microM) stimulated aldosterone secretion from 914 +/- 41 to 1465 +/- 118 pg/min/capsule (P less than 0.05). Simultaneous superfusion of AI plus lisinopril (100 microM) inhibited the stimulation of aldosterone by 73% (P less than 0.05). Perfusion of the capsules with angiotensin II (1 microM) stimulated aldosterone from 893 +/- 180 to 1466 +/- 181 pg/min/capsule (P less than 0.01). In contrast, simultaneous superfusion of AII plus lisinopril (100 microM) did not inhibit the AII stimulation of aldosterone. The failure of lisinopril to inhibit AII stimulation of aldosterone argues against a toxic or nonspecific action of lisinopril. The inhibition of AI stimulation of aldosterone release by lisinopril is mostly due to lisinopril inhibition of ACE and resulting decreased conversion of AI to AII. These results demonstrate that adrenal ACE may generate AII from AI in the adrenal gland, and this locally produce AII stimulates aldosterone.  相似文献   

7.
This study compared the metabolism of [125I]angiotensin II (AII), [125I]angiotensin III (AIII), and [125I]Sar1,Ile8-AII (SI-AII) in the vascular and cerebroventricular compartments. Using HPLC methods to monitor degradation the following t1/2 values were established in the vascular compartment: AII, 12.7 +/- 1.4 s; AIII, 16.3 +/- 0.7 s; and SI-AII, 100.7 +/- 7.3 s. HPLC analysis also revealed that [125I]AII is converted in an obligatory manner to [125I]AIII during its degradation sequence. Cerebrospinal fluid contained no degradative capacity for [125I]AII but exhibited a significant capacity to degrade [125I]AIII. A technique that combined the intra-cerebroventricular injection of [125I]angiotensins followed by focused microwave fixation to stop all peptidase activity was used to determine the half-life of [125I]angiotensins in the ventricular space. Results indicated very rapid metabolism of angiotensins with the following t1/2 values: AII, 23.0 s; and AIII, 7.7 s. This extremely rapid, differential, and sequential metabolism of AII and AIII in two relevant body fluid compartments underscores the need for caution when interpreting data derived from intravascular and intracerebroventricular application of angiotensins. In addition the faster metabolism of AIII than AII in the ventricular space indicates that the actual potency of AIII at central angiotensin receptors is being underestimated.  相似文献   

8.
Angiotensin II (AII) is a major regulator of cardiovascular function and fluid homeostasis. Recently, the cDNA for an AII receptor (AT1) was cloned from rat smooth muscle and bovine adrenal. To search for AII receptor subtypes, we amplified rat adrenal cortex cDNA by PCR using primers based on the AT1 receptor. The product was distinct from the AT1 receptor as indicated by restriction enzyme analysis and DNA sequencing. A full-length cDNA clone (2.2 kilobase pairs) encoding a novel AII receptor (AT3) was obtained by screening an adrenal cortex library. The AT3 cDNA encodes a Mr 40,959 protein with 95% amino acid identity to the rat smooth muscle receptor, but the overall nucleotide similarity is 71% due to low homology in the 5'- (58%) and 3'- (62%) untranslated regions. Expressed AT3 receptors in Xenopus oocytes and COS-7 cells mediate agonist-induced Ca2+ mobilization but are pharmacologically distinct from the AT1 receptors. AT3 mRNA is most abundant in the adrenal cortex and pituitary and differs from AT1 mRNA in its tissue distribution. The structural features of the AT3 receptor, including two additional potential phosphorylation sites for protein kinase C, could be related to the distinctive binding properties of the adrenal and vascular receptors and to their differential regulation during altered sodium intake.  相似文献   

9.
To study cellular mechanisms influencing vascular reactivity, vascular smooth muscle cells (VSMC) were obtained by enzymatic dissociation of the rat mesenteric artery, a highly reactive, resistance-type blood vessel, and established in primary culture. Cellular binding sites for the vasoconstrictor hormone angiotensin II (AII) were identified and characterized using the radioligand 125I-angiotensin II. Freshly isolated VSMC, and VSMC maintained in primary culture for up to 3 wk, exhibited rapid, saturable, and specific 125I-AII binding similar to that seen with homogenates of the intact rat mesenteric artery. In 7-d primary cultures, Scatchard analysis indicated a single class of high-affinity binding sites with an equilibrium dissociation constant (Kd) of 2.8 +/- 0.2 nM and a total binding capacity of 81.5 +/- 5.0 fmol/mg protein (equivalent to 4.5 x 10(4) sites per cell). Angiotensin analogues and antagonists inhibited 125I-AII binding to cultured VSMC in a potency series similar to that observed for the vascular AII receptor in vivo. Nanomolar concentrations of native AII elicited a rapid, reversible, contractile response, in a variable proportion of cells, that was inhibited by pretreatment with the competitive antagonist Sar1,Ile8-AII. Transmission electron microscopy showed an apparent loss of thick (12-18 nm Diam) myofilaments and increased synthetic activity, but these manifestations of phenotypic modulation were not correlated with loss of 125I-AII binding sites or hormonal responsiveness. Primary cultures of enzymatically dissociated rat mesenteric artery VSMC thus may provide a useful in vitro system to study cellular mechanisms involved in receptor activation-response coupling, receptor regulation, and the maintenance of differentiation in vascular smooth muscle.  相似文献   

10.
The nucleotide and amino acid sequences for mouse angiotensin II (AII) type 1A and 1B receptors were deduced from their complementary and genomic DNAs. Evolutionary analyses based on the nucleotide sequences of the coding region of AII type 1 receptor genes indicated that the duplication event of the type 1 gene occurred 24 +/- 2 million years ago before the divergence between the rat and mouse but after the divergence between rodents and the human/artiodactyls couple. This conclusion was consistent with the results of genomic Southern blot analyses, which revealed that the mouse and rat possess 2 similar but separate genes, whereas the bovine and human have only a single class gene.  相似文献   

11.
The binding sites and biochemical effects of angiotensin (A) II were investigated in rat pheochromocytoma (PC12W) cells. Sarcosine1, [125I]-tyrosine4, isoleucine8-AII ([125I]-SI-AII) bound to a saturable population of sites on membranes with an equilibrium dissociation constant (Kd) of 0.4 nM and a binding site maximum of 254 fmol/mg protein. Competitive displacement of [125I]-SI-AII by agonists and antagonists elucidated a rank order of potency of AIII greater than or equal to AII greater than PD 123177 greater than AI greater than [des-Phe]AII [AII(1-7)] much greater than DuP 753. The stable guanine nucleotide analog 5'-guanylyl imidodiphosphate did not alter the binding affinity or slope of the inhibition curves for AI, AII, AIII, or AII(1-7). Treatment of PC12W cells with AII or AIII did not affect the free intracellular calcium concentration, phosphoinositide metabolism, arachidonate release, cyclic GMP, or cyclic AMP concentrations. [125I]-AII binding sites remained on the cell surface and were not internalized after 2 h at 37 degrees C. Angiotensin II did not stimulate tyrosine, serine, or threonine phosphorylation. Northern analysis of PC12W mRNA with an AT1 receptor gene probe failed to produce an RNA:DNA hybrid at low stringency. These data indicate that PC12W cells express a homogeneous population of AT2 binding sites which differ significantly from AT1 receptors in signal transduction and molecular structure. AT2 sites may act via potentially novel, biochemical pathways or, alternatively, be vestigial receptors.  相似文献   

12.
The plasma-membrane receptors, coupling mechanisms, and effector enzymes that mediate target-cell activation by angiotensin II (AII) have been characterized in rat and bovine adrenal glomerulosa cells. The AII holoreceptor is a glycoprotein of Mr approximately 125,000 under non-denaturing conditions. Photoaffinity labeling of AII receptors with azido-AII derivatives has shown size heterogeneity among the AII binding sites between species and target tissues, with Mr values of 55,000 to 79,000. Such variations in molecular size probably reflect differences in carbohydrate content of the individual receptor sites. The adrenal AII receptor, like that in other tissues, is coupled to the inhibitory guanine nucleotide inhibitory protein (Ni). However, studies with pertussis toxin have shown that stimulation of aldosterone production by AII is not mediated by Ni but by a pertussis-insensitive nucleotide regulatory protein of unidentified nature. Although Ni is not involved in the stimulatory action of AII on steroidogenesis, it does mediate the inhibitory effects of high concentrations of AII upon aldosterone production. The actions of AII on adrenal cortical function are thus regulated by at least two guanine nucleotide regulatory proteins that are selectively activated by increasing AII concentrations. The principal effector enzyme in AII action is phospholipase C, which is rapidly stimulated in rat and bovine glomerulosa after AII receptor activation. AII-induced breakdown of phosphatidylinositol bisphosphate (PIP2) and phosphatidylinositol phosphate (PIP) leads to formation of inositol 1,4,5-trisphosphate (IP3) and inositol 1,4-bisphosphate (IP2). These are metabolized predominantly to inositol-4-monophosphate, which serves as a marker of polyphosphoinositide breakdown, whereas inositol-1-phosphate is largely derived from phosphatidylinositol hydrolysis. The AII-stimulated glomerulosa cell also produces inositol 1,3,4-trisphosphate, a biologically inactive IP3 isomer formed from Ins-1,4,5-trisphosphate via inositol tetrakisphosphate (IP4) during ligand activation in several calcium-dependent target cells. The Ins-1,4,5-P3 formed during AII action binds with high affinity to specific intracellular receptors that have been characterized in the bovine adrenal gland and other AII target tissues, and may represent the sites through which IP3 causes calcium mobilization during the initiation of cellular responses.  相似文献   

13.
Significant angiotensin (Ang) (1-7) production occurs in kidney and effects on renal function have been observed. The present study was undertaken to investigate binding characteristics of the heptapeptide to Ang II receptors present in rat renal cortex. [125I]-Ang II binding to rat glomeruli membranes was analyzed in the presence of increasing concentrations of Ang II, Ang-(1-7), DUP 753 and PD 123319. Linearity of the Scatchard plot of the [125I]-Ang II specific binding to rat glomeruli membranes indicated a single population of receptors, with a Kd value of 0.7 +/- 0.1 nM and a Bmax of 198 +/- 0.04 fmol/mg protein. DUP 753, an specific AT1 receptor antagonist, totally displaced the specific binding of [125I]-radiolabelled hormone with a Ki of 15.8 +/- 0.9 nM, while no changes were observed in the presence of the selective AT2 receptor antagonist, PD 123319. The specific [125I]-Ang II binding to rat glomerular membranes was displaced by Ang-(1-7) with high affinity (Ki = 8.0 +/- 3.2 nM). We conclude that radioligand binding assays in the presence of selective Ang II antagonists DUP 753 and PD 123319 suggest the unique presence of AT1, receptors in rat glomeruli and a possible role in the control of the biological renal effects of Ang-(1-7).  相似文献   

14.
The physical characteristic of the receptors for angiotensin II in dog adrenal cortex and uterus were determined after affinity labeling. 125I-nitro-5-azido-benzoyl-angiotensin II, a photosensitive angiotensin II analogue which retained aldosterone-stimulating activity, was used to couple the octapeptide specifically and irreversibly to its membrane receptors. After solubilization with Triton X-100, the covalent hormone . receptor complex was analyzed by gel filtration and sucrose density gradient centrifugation. Two radioactive species were consistently observed, with calculated Mr values of 126,000 +/- 10,000 and 64,500 +/- 11,000. the elution profiles of solubilized adrenal and uterine particles were almost identical. When the solubilized complexes were subjected to sodium dodecyl sulfate-polyacrylamide slab gel electrophoresis, a single radioactive band was detected upon autoradiography, with Mr - 65,000 +/- 6,000 for adrenal cortex and 68,000 +/- 7,000 for myometrium. These results indicate that the receptors for angiotensin II in adrenal cortex and uterus are composed of two subunits of similar molecular weight, and that the common functional properties of the receptors from both tissues are probably related to their similar physicochemical characteristics.  相似文献   

15.
Angiotensin (AII) is associated with increased vascular smooth muscle growth and we have found increased levels of tissue AII during healing of wounded skin. Here we have determined changes in skin AII receptors during wound healing in adult male Sprague-Dawley rats. An abdominal surgical incision was made under anesthesia and rats were sacrificed at different times after wounding. Specific binding of 125I-AII was significantly decreased at 12, 18 and 24 hours in the wounded tissue compared to control tissue from the same rat. By 3 days the binding had recovered to baseline levels. Receptors were mostly AT1, with a high and a low affinity site in the skin both in control and healing tissue. The Bmax of the high affinity site was significantly decreased in healing tissue but there was no significant change in Kd. Our results demonstrate that adult rat skin contains predominantly AT1 receptors and also that these receptors are downregulated for 12-24 hours after wounding.  相似文献   

16.
In the present study we have investigated the cyclic AMP (cAMP) responses to angiotensin II (AII) in isolated rat adrenal glomerulosa cells and in purified membrane preparations. When cells were incubated with 10 nM AII cAMP cellular content increased 2-fold at 5 min and 3-fold at 10 min, then rapidly declined. The effect of AII was dose-dependent with EC50 of 4 nM and was mediated by AII receptors as shown by the pharmacological characterization with AII analogs and AII receptor antagonists. Since AII inhibited cAMP formation in purified adrenal cortical membrane preparations, the stimulatory effect observed in intact cells could be indirect and mediated by other intracellular events.  相似文献   

17.
DuP 532 is a novel nonpeptide angiotensin II (AII) receptor antagonist under development for the treatment of hypertension. DuP 532 is a more potent antihypertensive agent in renal hypertensive rats (ED30 = 0.042 mg/kg, i.v.) and displays a similar or longer duration of action than the previously described AII antagonist, DuP 753. DuP 532, in contrast to DuP 753, is a noncompetitive antagonist of AII-induced contractions of rabbit aortic strips (KB = 1.1 x 10(-10) M). However, the inhibition of AII binding by DuP 532 in rat adrenal cortex does not correlate with either the aortic contractile response or with the hypotensive response. Assay conditions were evaluated and the presence or absence of BSA was shown to markedly affect the apparent binding affinity of DuP 532 and other 5-carboxylic acid derivatives. DuP 753 and other compounds were much less affected. The IC50 for DuP 532 was 4.7 x 10(-6) M with and 3 x 10(-9) M without BSA. The IC50s for DuP 753 were 1.7 x 10(-8) M with and 5 x -9 M without BSA. Both compounds with or without BSA did not completely inhibit AII binding which is characteristic of AT1 selectivity. BSA also reduced the effect of DuP 532 on the AII-induced contractions of rat main pulmonary artery preparations and the AII-induced Ca2+ mobilization in rat aortic smooth muscle cells. DuP 532 was very specific for AT1 receptors and did not interfere with receptors associated with neurotensin, prazosin, bradykinin, nitrendipine, or vasopressin. It is concluded that DuP 532 represents a new class of specific, but noncompetitive. AII receptor antagonists whose binding characteristics may provide new insight into AII receptor function.  相似文献   

18.
[125I]EXP985 is the first nonpeptide radioligand with high specific activity for the AT1 angiotensin receptor. The biochemical and pharmacological profiles of this ligand were determined using either ligand-receptor binding techniques in rat adrenal cortical microsomes or cellular Ca2+ mobilization in rat smooth muscle cells. Specific binding with 0.1 nM [125I]EXP985 increased slowly with time reaching an equilibrium at 60 min of incubation (22 degrees C). Scatchard analysis of the inhibition/binding data revealed a single class of binding sites having a Kd of 1.49 +/- 0.06 nM and a Bmax of 3.6 +/- 0.1 pmol/mg protein. These sites were saturable and the ligand-receptor complex dissociated with a t1/2 of 58 min. The binding was inhibited by Ang peptides with the following order of potency and IC50 (nM): Ang II (3.7) > Ang III (69) > Ang I (3650), and by the nonpeptide AT1 receptor antagonist, losartan, with an IC50 of 3.2 nM. PD123177, an AT2 selective antagonist, showed minimal inhibitory effect. Specific binding of [125I]EXP985 was found on rat aortic smooth cells. Ang II-induced Ca2+ mobilization in these cells was blocked by EXP985 in a noncompetitive manner. These data show that [125I]EXP985 (or its unlabeled) is a potent and highly specific radioligand or noncompetitive antagonist which represents a novel tool to further our understanding of the biochemistry of AT1 receptors.  相似文献   

19.
[125I]ET-1 binding to vascular smooth muscle cells showed an apparent single class of high affinity recognition sites with a Kd of 2.12 +/- 0.46 nM and a Bmax of 81.2 +/- 5.2 fmol/10(6) cells. The specific binding was equally and totally displaced by ET-1 and ET-2 whereas ET-3 presented a different pattern. We investigated heterologous regulation of ET-1 binding sites by preincubating the cells with angiotensin II (AII), Arg-vasopressin, bradykinin, enkephalins, serotonin, norepinephrine and carbachol, for 18 h at 37 degrees C. Only AII pretreatment resulted in an important and dose-dependent decrease of ET-1 binding capacity. Sar1-Ile8-AII inhibited the regulatory effect of AII. Furthermore, preexposure of the cells with phorbol-12,13 dibutyrate but not with phorbol-12,13 didecanoate also resulted in a concentration-dependent diminution of ET-1 binding sites. These findings suggest that AII may selectively down-regulate ET-1 binding sites in vascular smooth muscle cells by a mechanism involving protein kinase C.  相似文献   

20.
Membrane angiotensin II receptors were measured in trophoblastic tissues using a 2-step procedure. The first step consisted of the relative measurement performed at a fixed 125I[Sar1 Ile8]AII concentration of 0.15 nM in order to determine which tissues had a sufficient number of binding sites for studying the competition curves. The second consisted of determining the maximal binding (Bmax) and the dissociation constant (Kd) for [Sar1 Ile8] AII and the receptor subtypes in these tissues. The relative binding measurement revealed a significant number of occupied sites in rabbit fetal placenta and chorion (159 +/- 17 and 51 +/- 10 fmol/mg proteins) and in guinea pig chorion (132 +/- 12). The mean values of the other trophoblastic tissues were 3-10-fold lower in the 2 species. The competition curves obtained from tissues with high angiotensin II binding receptors showed the predominance of the AT2 subtype in rabbit fetal placenta (AT1/AT2 = 25/75) and of the AT1 receptor in guinea pig chorion (97/3) and in rabbit chorion (90/10). The [SAR1 Ile8] AII affinity (Kd) obtained from Scatchard plot analysis was 1.2 +/- 0.2 nM (n = 5) in fetal placenta and 1.2 (n = 1) in rabbit chorion and 0.5 +/- 0.1 (n = 3) in guinea pig chorion. In these tissues, the respective Bmax values were 1,281 +/- 115 (n = 5), 263 (n = 1) and 1,188 +/- 134 fmol/mg proteins (n = 3). These findings indicate that rabbit fetal placenta and chorion and guinea pig chorion are the most important sites of action for the renin-angiotensin system present in trophoblastic tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号