首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Contraceptive steroids alter the steady-state kinetics of bile acids   总被引:2,自引:0,他引:2  
Contraceptive steroids increase the ratio of cholic acid to chenodeoxycholic acid in bile. This alteration may contribute to the development of cholesterol gallstones. The objective of this study was to measure the effects of contraceptive steroids on bile acid kinetics and to relate them to changes in cholesterol metabolism. Steady-state kinetics of bile acids were measured in 15 healthy women, on and off contraceptive steroids. Cholic acid synthesis increased 30.3% (P less than 0.025) and its pool increased by 37.4% (P less than 0.025). Chenodeoxycholic acid synthesis decreased 6.4% (P = 0.08) and its pool decreased by 11.8% (P less than 0.05) during use of contraceptive steroids. The fractional turnover rates of both primary bile acids did not change. The changes in kinetics of the primary bile acids were related to alterations in biliary lipid and cholesterol metabolism, separately reported. (J. Lipid Res. 1987. 28: 828-839). During use of contraceptive steroids, total bile acid pool and total bile acid synthesis correlated directly with cholesterol synthesis, assayed in mononuclear leukocytes (r = 0.50 and r = 0.54, respectively) but not with the plasma clearance of chylomicron remnants, measured with retinyl palmitate. The data indicate that contraceptive steroids directly alter the hepatic synthesis of bile acids and suggest that newly synthesized cholesterol may be a preferred substrate for bile acid synthesis during use of contraceptive steroids.  相似文献   

2.
The contribution of the low density lipoprotein (LDL) receptor to the removal of chylomicron remnants was determined in vitro and in vivo by using interventions that up- or down-regulate the LDL receptor but not the LDL receptor-related protein (LRP). In vitro, chylomicron remnants and beta-very low density lipoprotein (VLDL) bind to the LDL receptor on endosomal membranes; their binding can be competed by LDL and beta-VLDL and the binding capacity is greatly augmented in membranes from estradiol-treated rats. Likewise, estradiol treatment almost doubled the removal of chylomicron remnants during a single pass through perfused rat livers. However, in vivo the removal of chylomicron remnants and beta-VLDL was very rapid even in untreated rats so that the effect of the stimulation by estradiol was barely detectable when trace amounts of lipoproteins were injected. Yet, when saturating doses of either lipoprotein were injected, the effect of estradiol treatment on the removal of chylomicron remnants and beta-VLDL was readily disclosed. In rats fed a diet containing lard, cholesterol, and bile acids, removal of chylomicron remnants or beta-VLDL was significantly retarded. Likewise, perfused livers from diet-fed rats removed only a mean of 16% of chylomicron remnants during a single passage as compared to 29% in livers from control animals. Also, when large doses of beta-VLDL had been infused into rats for 4 h, in subsequent perfusions of the livers the removal of chylomicron remnants was decreased to 11%. From these results it is concluded that the LDL receptor mediates the hepatic removal of a major fraction of chylomicron remnants and beta-VLDL.  相似文献   

3.
4.
Human chylomicrons were isolated from plasma from a subject with familial hypertriglyceridemia and converted to chylomicron remnants by incubation with postheparin plasma. The interaction of these apolipoprotein E-containing, cholesterol-rich human chylomicron remnants with cultured skin fibroblasts was studied. Chylomicron remnants were internalized by skin fibroblasts as a unit, mainly via the low density lipoprotein (LDL)-receptor pathway, resulting in increased cell cholesterol content. After entering the fibroblast, chylomicron remnants stimulated cholesterol esterification, suppressed 3-hydroxy-3-methylglutaryl coenzyme A reductase activity, and down-regulated LDL receptor activity similar to the action of LDL. As a function of increasing lipolysis, remnant particles were progressively more effectively taken up by skin fibroblasts, despite a decrease in the apolipoprotein E content per lipoprotein particle. Remnant particles produced after hydrolysis of 70 to 80% of chylomicron triglyceride increased cell cholesterol content to an amount nearly identical to that observed with LDL when the two lipoproteins were incubated at an equal cholesterol concentration. However, when incubated on the basis of equal particle number, chylomicron remnants were 2 to 3 times more effective than LDL in delivering cholesterol to the cells. These results suggest that chylomicron remnants play a role in the regulation of postabsorptive cholesterol homeostasis in nonhepatic cells, and possibly in the pathogenesis of atherosclerosis.  相似文献   

5.
The effects of native and oxidized chylomicron remnants on lipid synthesis in normal and oxidatively stressed liver cells were investigated using MET murine hepatocytes (MMH cells), a nontransformed mouse hepatocyte cell line that maintains a highly differentiated hepatic phenotype in culture. Lipid synthesis was determined by measuring the incorporation of [(3)H]oleate into cholesteryl ester, triacylglycerol, and phospholipid by the cells. The formation of cholesteryl ester and phospholipid was decreased by chylomicron remnants in a dose-dependent manner, while triacylglycerol synthesis was increased. Exposure of MMH cells to mild oxidative stress by incubation with CuSO(4) (2.5 microM) for 24 h led to significantly increased incorporation of [(3)H]oleate into triacylglycerol and phospholipid, but not cholesteryl ester, in the absence of chylomicron remnants. In the presence of the lipoproteins, however, similar effects to those found in untreated cells were observed. Oxidatively modified chylomicron remnants prepared by incubation with CuSO(4) (10 microM, 18 h, 37 degrees C) did not influence cholesteryl ester or phospholipid synthesis in MMH cells, but had a similar effect to that found with native remnants on triacylglycerol synthesis. These findings show that hepatic lipid metabolism is altered by exposure to mild oxidative stress and by lipids from the diet delivered to the liver in chylomicron remnants, and these effects may play a role in the development of atherosclerosis.  相似文献   

6.
Chylomicron remnants (Sf greater than 100) were prepared by treating human chylomicrons (Sf greater than 400) with human post heparin plasma. Chylomicron remnants recovered after 70-80% of chylomicron triacylglycerol was hydrolyzed, suppressed LDL-receptor activity and increased cell cholesterol esterification to the same extent as did LDL when added to cultured human arterial smooth muscle cells at an equal cholesterol concentration. Cell cholesterol mass increased 36% after incubation with 25 micrograms LDL cholesterol/ml and 35% with 25 micrograms chylomicron-remnant cholesterol/ml. Addition of 30 microM chloroquine plus LDL or chylomicron remnants further increased cholesterol content of cells (74% and 87%, respectively) and caused a significant rise in cell esterified cholesterol (344% and 369%, respectively). Cholesterol content per unit of apolipoprotein B mass of remnants was 2-3-fold higher than that of LDL. Therefore, if lipoprotein particles were added at equivalent apolipoprotein B mass chylomicron remnants increased cell cholesterol content and cholesterol esterification and suppressed LDL receptor activity significantly more than did LDL. This suggests that an additional determinant, presumably apolipoprotein E, is important for receptor recognition of chylomicron remnants. These results may be relevant to the delivery of chylomicron-derived cholesterol to arterial cells proposed as a feature of atherogenesis.  相似文献   

7.
The fate of cholesterol and triacylglycerol taken up and accumulated by macrophages after exposure to chylomicron remnants was investigated using macrophages derived from the human monocyte cell line THP-1 and chylomicron remnant-like particles containing human apolipoprotein (apo) E (CRLPs) as the experimental model. In THP-1 macrophages lipid loaded with CRLPs and incubated with various cholesterol acceptors for 24 h, the mass of cholesterol and cholesteryl ester found in the cells was not changed by HDL, HDL3 or lipid-free ApoA-I, although it was decreased by 38% by ApoA-I-phosphatidylcholine vesicles (ApoA-I-PC). After loading of the macrophages with [3H]cholesterol-labelled CRLPs, only about 5% of the label was effluxed in 24 h in the absence of cholesterol acceptors, and this increased to about 10% with ApoA-I or PC only, and to about 30% with apoA-I-PC. In similar experiments with [3H]triolein, only about 4% of the labelled triacylglycerol taken up by the cells was released into the medium in 24 h, and a large (>60%) and consistent proportion of the intracellular radioactivity remained associated with the triacylglycerol throughout this period. These results suggest that cholesterol and triacylglycerol derived from chylomicron remnants are not readily cleared from macrophages, and this is likely to contribute to the atherogenicity of the remnant lipoproteins.  相似文献   

8.
The influence of chylomicron remnants on lipid accumulation and synthesis and the activity and/or expression of mRNA for some of the key enzymes involved was investigated in the murine macrophage cell line J774. The effects of varying the polyunsaturated fatty acid (PUFA) composition and oxidation state of the remnants were also examined. Chylomicron remnants derived from corn oil (rich in n-6 PUFA) or fish oil (rich in n-3 PUFA) were prepared in vivo and oxidised by incubation with CuSO(4). The native and oxidised remnants caused a marked rise in intracellular triacylglycerol levels, but the rise induced by corn oil remnants (four- to sixfold) was greater than that observed with fish oil remnants (<2-fold). Triacylglycerol synthesis, as measured by the incorporation of [3H]oleate and [3H]glycerol into cellular triacylglycerol, was increased by all four remnant types tested, and corn oil remnants had a significantly greater effect than fish oil remnants. Oxidation of the remnants did not affect the results obtained. Although the incorporation of [3H]oleate into cholesteryl ester by the cells was not significantly changed by any of the four types of remnants tested, the activity and expression of mRNA for acyl Co-enzyme A: cholesterol acyltransferase (ACAT) was increased by corn oil, but not by fish or oxidised corn, remnants. Neutral cholesteryl ester hydrolase (nCEH) activity, however, was also raised by corn oil remnants. These studies indicate that chylomicron remnants induce the accumulation of triacylglycerol in J774 macrophages, and that increased synthesis of triacylglycerol plays a major role in this process. Furthermore, they demonstrate that these effects are enhanced when the remnants are enriched in n-6 PUFA as compared with n-3 PUFA, but not after oxidation of the particles, suggesting that the fatty acid composition of chylomicron remnants may be more important than their oxidation state in their ability to induce foam cell formation.  相似文献   

9.
To gain a detailed understanding of those factors that govern the processing of dietary-derived lipoprotein remnants by macrophages we examined the uptake and degradation of rat triacylglycerol-rich chylomicron remnants and rat cholesterol-rich beta-very low density lipoprotein (beta-VLDL) by J774 cells and primary cultures of mouse peritoneal macrophages. The level of cell associated 125I-labeled beta-VLDL and 125I-labeled chylomicron remnants reached a similar equilibrium level within 2 h of incubation at 37 degrees C. However, the degradation of 125I-labeled beta-VLDL was two to three times greater than the degradation of 125I-labeled chylomicron remnants at each time point examined, with rates of degradation of 161.0 +/- 36.0 and 60.1 +/- 6.6 ng degraded/h per mg cell protein, respectively. At similar extracellular concentrations of protein or cholesterol, the relative rate of cholesteryl ester hydrolysis from [3H]cholesteryl oleate/cholesteryl [14C]oleate-labeled chylomicron remnants was one-third to one-half that of similarly labeled beta-VLDL. The reduction in the relative rate of chylomicron remnant degradation by macrophages occurred in the absence of chylomicron remnant-induced alterations in low density lipoprotein (LDL) receptor recycling or in retroendocytosis of either 125I-labeled lipoprotein. The rate of internalization of 125I-labeled beta-VLDL by J774 cells was greater than that of 125I-labeled chylomicron remnants, with initial rates of internalization of 0.21 ng/min per mg cell protein for 125I-labeled chylomicron remnants and 0.39 ng/min per mg cell protein for 125I-labeled beta-VLDL. The degradation of 125I-labeled chylomicron remnants and 125I-labeled beta-VLDL was dependent on lysosomal enzyme activity: preincubation of macrophages with the lysosomotropic agent monensin reduced the degradation of both lipoproteins by greater than 90%. However, the pH-dependent rate of degradation of 125I-labeled chylomicron remnants by lysosomal enzymes isolated from J774 cells was 50% that of 125I-labeled beta-VLDL. The difference in degradation rates was dependent on the ratio of lipoprotein to lysosomal protein used and was greatest at ratios greater than 50. The degradation of 125I-labeled beta-VLDL by isolated lysosomes was reduced 30-40% by preincubation of beta-VLDL with 25-50 micrograms oleic acid/ml, suggesting that released free fatty acids could cause the slower degradation of chylomicron remnants. Thus, differences in the rate of uptake and degradation of remnant lipoproteins of different compositions by macrophages are determined by at least two factors: 1) differences in the rates of lipoprotein internalization and 2) differences in the rate of lysosomal degradation.  相似文献   

10.
The study of chylomicron pathway through which it exerts its metabolic effects on biliary cholesterol secretion is crucial for understanding how high dietary cholesterol influences cholelithogenesis. We explored a relationship between cholesterol absorption efficiency and gallstone prevalence in 15 strains of inbred male mice and the metabolic fate of chylomicron and chylomicron remnant cholesterol in gallstone-susceptible C57L and gallstone-resistant AKR mice. Our results show a positive and significant (P<0.0001, r=0.87) correlation between percent cholesterol absorption and gallstone prevalence rates. Compared with AKR mice, C57L mice displayed significantly greater absorption of cholesterol from the small intestine, more rapid plasma clearance of chylomicrons and chylomicron remnants, higher activities of lipoprotein lipase and hepatic lipase, greater hepatic uptake of chylomicron remnants, and faster secretion of chylomicron remnant cholesterol from plasma into bile. All of these increased susceptibility to cholesterol gallstone formation in C57L mice. We conclude that genetic variations in cholesterol absorption efficiency are associated with cholesterol gallstone formation in inbred mice and cholesterol absorbed from the intestine provides an important source for biliary hypersecretion. Differential metabolism of the chylomicron remnant cholesterol between C57L and AKR mice clearly plays a crucial role in the formation of lithogenic bile and gallstones.  相似文献   

11.
The influence of chylomicron remnants enriched in n-3 or n-6 polyunsaturated fatty acids (PUFA) (derived from fish or corn oil, respectively) on the expression of mRNA for four genes involved in the regulation of the synthesis, assembly, and secretion of very-low-density lipoprotein (VLDL) in the liver was investigated in normal rat hepatocytes and after manipulation of the cellular oxidative state by incubation with N-acetyl cysteine (NAC) or CuSO(4). The four genes investigated were those encoding apolipoprotein B (apoB), the microsomal triacylglycerol transfer protein (MTP), and the enzymes acyl coenzyme A:diacylglycerol acyltransferase (DGAT) and acyl coenzyme A:cholesterol acyltransferase 2 (ACAT2), which play a role in the regulation of triacylglycerol and cholesteryl ester synthesis, respectively. mRNA levels for apoB, MTP, and DGAT were unaffected by either fish or corn oil chylomicron remnants, but the amount of ACAT2 mRNA was significantly reduced after incubation of the hepatocytes with fish oil remnants as compared with corn oil remnants or without remnants. These findings indicate that the delivery of dietary n-3 PUFA to hepatocytes in chylomicron remnants downregulates the expression of mRNA for ACAT2, and this may play a role in their inhibition of VLDL secretion. However, when the cells were shifted into a pro-oxidizing or pro-reducing state by pretreatment with CuSO(4) (1 mM) or NAC (5 mM) for 24 hr, levels of mRNA for MTP were increased by about 2- or 4-fold, respectively, by fish oil remnants, whereas corn oil remnants had no significant effect. Fish oil remnants also caused a smaller increase in apoB mRNA in comparison with corn oil remnants in NAC-treated cells (+38%). These changes would be expected to lead to increased VLDL secretion rather than the decrease associated with dietary n-3 PUFA in normal conditions. These findings suggest that relatively minor changes in cellular redox levels can have a major influence on important liver functions such as VLDL synthesis and secretion.  相似文献   

12.
13.
Lipid accumulation in macrophages exposed to chylomicron remnant-like particles containing the dietary antioxidant lycopene was investigated. After incubation with THP-1 macrophages (48 h), chylomicron remnant-like particles containing lycopene (lycCRLPs) as compared to those without (CRLPs) caused significantly more lipid accumulation in the cells, and this was due to increases in both the triacylglycerol (+100%) and cholesterol (+62%) content. In addition, expression of mRNA for diacylglycerol acyltransferase (DGAT), a key enzyme in triacylglycerol synthesis, was significantly decreased by lycCRLPs, but not CRLPs. These findings suggest that lycopene from the diet may promote, rather than retard, lipid accumulation in macrophages during its transport in the blood in chylomicron remnants.  相似文献   

14.
Elevated plasma concentration of chylomicron remnants may be causally related to atherosclerosis in obesity. We examined the effect of atorvastatin on chylomicron remnant metabolism in 25 obese men with dyslipidaemia. A remnant-like emulsion labeled with cholesteryl [(13)C]oleate was injected intravenously into patients; the fractional catabolic rate (FCR) of the remnant-like emulsion was determined by measurement of (13)CO(2) in the breath and analyzed using compartmental modelling. Compared with placebo, atorvastatin significantly decreased the plasma concentrations of total cholesterol, triglycerides, LDL cholesterol, apolipoprotein B (apoB), and lathosterol (P < 0.001). ApoB-48 and remnant-like particle-cholesterol (RLP-C) both decreased significantly by 23% (P = 0.002) and 33% (P = 0.045), respectively. The FCR of the remnant-like emulsion increased significantly from 0.054 +/- 0.008 to 0.090 +/- 0.010 pools/h (P = 0.002). The decrease in RLP-C was associated with the decrease in plasma triglycerides (r = 0.750, P = 0.003). Furthermore, the change in FCR of remnant-like emulsions was inversely associated with the change in LDL-C (r = -0.575, P = 0.040), suggesting removal of LDL and chylomicron remnants by similar hepatic receptor pathways. We conclude that in obese subjects, inhibition of cholesterol synthesis with atorvastatin decreases the plasma concentrations of both LDL-C and triglyceride-rich remnants and that this may be partially due to an enhancement in hepatic clearance of these lipoproteins.  相似文献   

15.
Primary cultures of rabbit hepatocytes were used to investigate the effect of purified (B-100 free) chylomicron remnants (CR) on lipid and bile acid metabolism. ApoB-100-containing lipoproteins were removed from the CR-enriched plasma fraction by affinity column chromatography on Sepharose 4B conjugated with anti-apoB-100 monoclonal antibodies. CR were shown to stimulate the accumulation of neutral lipids in hepatocytes in a dose-response manner. After 24-hour preincubation of rabbit hepatocytes with 50 micrograms protein/ml CR the cellular neutral lipid content increased: 1.9-4-fold for triglycerides, 1.5-3.7-fold for free cholesterol and 1.5-2.5-fold for esterified cholesterol. This accumulation was accompanied by a decreasing incorporation of [14C] acetate into cholesterol (80-90%) and triglycerides (70-80%). At the same time the incorporation of [14]oleate into triglycerides increased by 50-65%. The inhibited biosynthesis of fatty acids might account for this effect. No effect of CR on cholesterol esterification by [14C]oleate was observed. CR increased the amount of triglycerides and free cholesterol secreted in very low density lipoproteins (VLDL). The secretion of taurocholic acid was decreased. These data confirm our hypothesis that dietary cholesterol is preferentially secreted by hepatocytes within VLDL but is not accumulated as cholesterol esters or oxidized to bile acids.  相似文献   

16.
To study the effect of steroid hormones on bile acid synthesis by cultured rat hepatocytes, cells were incubated with various amounts of these compounds during 72 h and conversion of [4-14C]cholesterol into bile acids was measured. Bile acid synthesis was stimulated in a dose-dependent way by glucocorticoids, but not by sex steroid hormones, pregnenolone or the mineralocorticoid aldosterone in concentrations up to 10 microM. Dexamethasone proved to be the most efficacious inducer, giving 3-fold and 7-fold increases in bile acid synthesis during the second and third 24 h incubation periods respectively, at a concentration of 50 nM. Mass production of bile acids as measured by g.l.c. during the second day of culture (28-52 h) was 2.2-fold enhanced by 1 microM-dexamethasone. No change in the ratio of bile acids produced was observed during this period in the presence of dexamethasone. Conversion of [4-14C]7 alpha-hydroxycholesterol, an intermediate of the bile acid pathway, to bile acids was not affected by dexamethasone. Measurement of cholesterol 7 alpha-hydroxylase activity in homogenates of hepatocytes, incubated with 1 microM-dexamethasone, showed 10-fold and 90-fold increases after 48 and 72 h respectively, as compared with control cells. As with bile acid synthesis from [14C]cholesterol, no change in enzyme activity was found in hepatocytes cultured in the presence of 10 microM steroid hormones other than glucocorticoids. Addition of inhibitors of protein and mRNA synthesis lowered bile acid production and cholesterol 7 alpha-hydroxylase activity and prevented the rise of both parameters with dexamethasone, suggesting regulation at the mRNA level. We conclude that glucocorticoids regulate bile acid synthesis in rat hepatocytes by induction of enzyme activity of cholesterol 7 alpha-hydroxylase.  相似文献   

17.
The regulation of lipoprotein assembly and secretion at a molecular level is incompletely understood. To begin to identify the determinants of apoprotein synthesis and distribution among lipoprotein classes, we have examined the effects of chylomicron remnants which deliver triglyceride and cholesterol, and beta very low density lipoprotein (beta VLDL), which deliver primarily cholesterol, on apolipoprotein synthesis and secretion by the human hepatoma Hep G2. Hep G2 cells were incubated with remnants or beta VLDL for 24 h, the medium was changed and the cells then incubated with [35S]methionine. The secreted lipoproteins were separated by gradient ultracentrifugation and the radiolabeled apoproteins were isolated by immunoprecipitation and sodium dodecyl sulfate-polyacrylamide gel electrophoresis and counted. Remnants caused a 14-fold, and beta VLDL a 7-fold, increase in VLDL apoprotein (apo) secretion; the apoB/apoE ratio in this class was unchanged. Preincubation with either of the lipoproteins also stimulated low density lipoprotein apoB secretion. Preincubation with beta VLDL, but not with remnants, significantly increased apoE and apoA-I secreted in high density lipoprotein (HDL). In addition, the apoE/apoA-I ratio precipitated from the HDL of beta VLDL-treated cells by anti-apoE was 2.2-fold higher than that precipitated by anti-apoA-I. There was no difference in the ratios precipitated from control HDL. This was due to the secretion of a lipoprotein, subsequently isolated by immunoaffinity chromatography, that contained predominantly apoE. When Hep G2 cells were preincubated with oleic acid alone, total apoprotein secretion was not altered. However, cholesterol-rich liposomes stimulated secretion of newly synthesized apoE, but not apoB, while apoA-I secretion was variably affected. Cholesterol-poor liposomes had no effect. Thus, lipid supply is a determinant of apoprotein synthesis and secretion, and cholesterol may be of particular importance in initiating apoprotein synthesis.  相似文献   

18.
To further define thyroid hormone effects on bile acid synthesis and biliary lipid secretion, studies were done in chronic bile fistula rats. Euthyroid and methimazole-hypothyroid rats, with and without triiodothyronine (T3) injection, had total bile diversion for timed bile collections. With interrupted enterohepatic circulation, cholesterol absorption is negligible and bile acid secretion equals bile acid synthesis rate. Hypothyroid rats had diminished levels of bile acid synthesis and biliary secretion of cholesterol and phospholipid. Single dose T3 injection produced a 13-fold increase in bile cholesterol secretion and a 3-fold increase in phospholipid secretion, both initiated 12 h after T3. Bile acid synthesis increased by 50%, but the increase did not begin until 24 h after T3. Neither hypothyroidism nor T3 treatment abolished diurnal rhythms of bile acid synthesis and biliary lipid secretion. Inhibition of cholesterol synthesis with lovastatin resulted in a persistent 33% decrease in bile acid synthesis in euthyroid and hypothyroid rats, while bile cholesterol secretion only transiently decreased. Inhibition of cholesterol synthesis did not alter T3-induced bile cholesterol secretion, with a 10-fold increase seen. However, bile acid synthesis was not stimulated by T3 in the presence of lovastatin. We conclude that facilitated bile acid synthesis and biliary cholesterol secretion are early effects of T3 and may account for the hypocholesterolemia of T3. Cholesterol synthesis does not appear to be required for the T3-induced bile cholesterol secretion.  相似文献   

19.
High density lipoprotein (HDL) promotes reverse cholesterol transport from peripheral tissues to the liver where its cholesterol is secreted preferentially into bile. The scavenger receptor class B type I (SR-BI) is believed to play a pivotal role in unloading HDL cholesterol and its ester to hepatocytes. Here, using male SR-BI "att" mice with a dysfunctional mutation in the Sr-b1 promoter, we studied whether approximately 50% of normal SR-BI expression influences gallstone susceptibility in these mice fed a lithogenic diet containing 1% cholesterol, 0.5% cholic acid and 15% butterfat. Our results showed that the disruption of SR-BI expression reduced cholesterol secretion by 37% in the chow-fed state and 10% on the lithogenic diet, and while delaying incidence slightly, did not influence cumulative susceptibility to cholesterol gallstones. The lithogenic diet induced marked increases in biliary cholesterol and phospholipid secretion rates but not of bile salts. Basal expression of hepatic SR-BI protein was dissimilar in both wild-type and SR-BI mice, and remained unaltered in response to the lithogenic diet. By two independent dual isotope methods, intestinal cholesterol absorption was unimpaired by attenuation of the SR-BI which also displays low-density expression on small intestinal enterocytes. We conclude that although HDL cholesterol is a principal source of biliary cholesterol in the basal state, uptake of cholesterol from chylomicron remnants appears to be the major contributor to biliary cholesterol hypersecretion during diet-induced cholelithogenesis in the mouse.  相似文献   

20.
Upon injection of chylomicrons into rats, chylomicron remnants are predominantly taken up by parenchymal cells, with a limited contribution (8.6% of the injected dose) by Kupffer cells. In vitro storage of partially processed chylomicron remnants for only 24 h leads, after in vivo injection, to an avid recognition by Kupffer cells (uptake up to 80% of the total liver-associated radioactivity). Lactoferrin greatly reduces the liver uptake of chylomicron remnants, which appears to be the consequence of a specific inhibition of the uptake by parenchymal cells. Kupffer-cell uptake is not influenced by lactoferrin. In vitro studies with isolated parenchymal and Kupffer cells show that both contain a specific recognition site for chylomicron remnants. The Kupffer-cell recognition site differs in several ways from the recognition site on parenchymal cells as follows. (a) The maximum level of binding is 3.7-fold higher/mg cell protein than with parenchymal cells. (b) Binding of chylomicron remnants is partially dependent on the presence of calcium, while binding to parenchymal cells is not. (c) beta-Migrating very-low-density lipoprotein is a less effective competitor for chylomicron-remnant binding to Kupffer cells compared to parenchymal cells. (d) Lactoferrin leaves Kupffer-cell binding uninfluenced, while it greatly reduces binding of chylomicron remnants to parenchymal cells. The properties of chylomicron-remnant recognition by parenchymal cells are consistent with apolipoprotein E being the determinant for recognition. It can be concluded that the chylomicron-remnant recognition site on Kupffer cells possesses properties which are distinct from the recognition site on parenchymal cells. It might be suggested that partially processed chylomicron remnants are specifically sensitive to a modification, which induces an avid interaction with the Kupffer cells. The recognition site for (modified) chylomicron remnants on Kupffer cells might function as a protection system against the occurrence of these potential atherogenic chylomicron-remnant particles in the blood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号