首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The vacuolar-type H+ -ATPase (V-ATPase) is a multimeric enzyme with diverse functions in plants such as nutrient transport, flowering, stress tolerance, guard cell movement and development. A partial sequence of V-ATPase proteolipid was identified among the expressed sequence tags (ESTs) generated from Acanthus ebracteatus, and selected for full-length sequencing. The 876-nucleotide cDNA consists of an open reading frame of 165 amino acids. The deduced amino acid sequence displays high similarity (81%) with its homologs from Arabidopsis thaliana, Avecinnia marina and Gossypium hirsutum with the four transmembrane domains characteristics of the 16 kDa proteolipid subunit c of V-ATPase well conserved in this protein. Southern analysis revealed the existence of several members of proteolipid subunit c of V-ATPase in A. ebracteatus. The mRNA of this gene was detected in leaf, floral, stem and root tissues, however, the expression level was lower in stem and root tissues.  相似文献   

2.
Several ubiquitin-like proteins recently discovered have been confirmed to modify proteins akin to ubiquitinization for fine-regulation of intracellular proteins. In the present study, we report a novel ubiquitin-like protein from human dendritic cells (DC), named as dendritic cell-derived ubiquitin-like protein (DC-UbP). The full-length of DC-UbP cDNA is 565bp and encodes 106 amino acids. Ubiquitin domain (UBQ) in DC-UbP shares 28.6% identity and 55% similarity to ubiquitin, but does not possess the conserved C-terminus Gly-Gly of ubiquitin required for ubiquitinization. DC-UbP localized in cytoplasm, especially in mitochondrion, indicating that it may play a role in mitochondrial biology. DC-UbP mRNA was expressed in various tumor cells, but not in adult human normal tissues, suggesting that DC-UbP might be related to tumor genesis. In addition, DC-UbP mRNA expression decreased in the HL60 cells undergoing apoptosis after being stimulated with TRAIL and in the differentiated HL60 cells induced by ARTA. Taken together, DC-UbP might be downregulated during cellular differentiation and apoptosis.  相似文献   

3.
4.
A novel full-length cDNA was cloned from human dendritic cells (DC) by subtractive cloning and RACE. The deduced protein is a type II lectin-like membrane protein that contains an ITIM proximal to N terminal and is designated as lectin-like immunoreceptor (LLIR). The gene of LLIR is located in a region of chromosomal 12p13 and shows highest homologous with ASGPR. Two alternatively spliced transmembraneless variants of LLIR were identified by RT-PCR and named as LLIRv1 and LLIRv2. RT-PCR and immunoblotting analysis revealed that LLIR was expressed with much higher level in immature DC than in mature DC. The ITIM in LLIR was demonstrated to bind SHP-1 in HL-60 cell after the tyrosine had been phosphorylated. In addition, the mRNA expression level of LLIRv2 was raised when leukemia cells were induced to differentiate by PMA.  相似文献   

5.
A novel membrane receptor of immunoglobulin gene superfamily (IgSF) has been identified from mouse dendritic cells (DC) and designated as DC-derived Ig-like receptor 1 (DIgR1). It encodes a 228-amino-acid (aa) residue polypeptide with a 21-aa signal peptide, a 20-aa transmembrane region, a 189-aa extracellular region, and a 19 aa intracellular region. Its extracellular region contains a single V domain of Ig. So it is a novel type I transmembrane glycoprotein of IgSF. DIgR1 shows significant homologies to human CMRF-35 antigens and polymeric immunoglobulin receptors (pIgR). The mRNA expression of DIgR1 was highly abundant in mouse spleen. The preferential expression of DIgR1 mRNA is observed in the known antigen-presenting cells (APC) including DC, monocytes/macrophages, and B lymphocytes. A 40 kDa of protein in NIH/3T3 cells transfected with the DIgR1 cDNA was detected by Western blot analysis using anti-DIgR1 polyclonal antibodies. The expression of DIgR1 protein on DC is not regulated by LPS stimulation. Further study should be conducted to investigate what were biological functions of DIgR1 in the immunobiology of APC.  相似文献   

6.
The vacuolar (H(+))-ATPase (V-ATPase) is crucial for multiple processes within the eukaryotic cell, including membrane transport and neurotransmitter secretion. How the V-ATPase is regulated, e.g. by an accessory subunit, remains elusive. Here we explored the role of the neuroendocrine V-ATPase accessory subunit Ac45 via its transgenic expression specifically in the Xenopus intermediate pituitary melanotrope cell model. The Ac45-transgene product did not affect the levels of the prohormone proopiomelanocortin nor of V-ATPase subunits, but rather caused an accumulation of the V-ATPase at the plasma membrane. Furthermore, a higher abundance of secretory granules, protrusions of the plasma membrane and an increased Ca(2+)-dependent secretion efficiency were observed in the Ac45-transgenic cells. We conclude that in neuroendocrine cells Ac45 guides the V-ATPase through the secretory pathway, thereby regulating the V-ATPase-mediated process of Ca(2+)-dependent peptide secretion.  相似文献   

7.
Vacuolar H(+)-ATPase (V-ATPase), an electrogenic proton pump, is highly expressed in Plasmodium falciparum, the human malaria parasite. Although V-ATPase-driven proton transport is involved in various physiological processes in the parasite, the overall features of the V-ATPase of P. falciparum, including the gene organization and biogenesis, are far less known. Here, we report cDNA cloning of proteolipid subunit c of P. falciparum, the smallest and most highly hydrophobic subunit of V-ATPase. RT-PCR analysis as well as Northern blotting indicated expression of the proteolipid gene in the parasite cells. cDNA, which encodes a complete reading frame comprising 165 amino acids, was obtained, and its deduced amino acid sequence exhibits 52 and 57% similarity to the yeast and human counterparts, respectively. Southern blot analysis suggested the presence of a single copy of the proteolipid gene, with 5 exons and 4 introns. Upon transfection of the cDNA into a yeast null mutant, the cells became able to grow at neutral pH, accompanied by vesicular accumulation of quinacrine. In contrast, a mutated proteolipid with replacement of glutamate residue 138 with glutamine did not lead to recovery of the growth ability or vesicular accumulation of quinacrine. These results indicated that the cDNA actually encodes the proteolipid of P. falciparum and that the proteolipid is functional in yeast.  相似文献   

8.
A novel member of mitochondrial carrier superfamily has been identified from human bone marrow stromal cells (BMSC) and designated as human BMSC-derived mitochondrial carrier protein (HuBMSC-MCP). It encodes a 321 amino-acid protein with three tandem related domains of about 100 amino acids. Each domain contains two hydrophobic stretches, which are thought to span the membrane as alpha-helices. Distant relationship analysis indicates that the protein is highly conserved between species from Caenorhabditis elegans to human. HuBMSC-MCP gene is mapped to chromosome 11p11. HuBMSC-MCP mRNA expression is detectable in various human tissues and cell lines. By confocal imaging, HuBMSC-MCP is localized to mitochondria and also detected in the pseudopodial protrusion of human breast adenocarcinoma MCF-7 cells. When transfected into dendritic cells (DC), HuBMSC-MCP could enhance DCs endocytotic capacity. Thus, HuBMSC-MCP is a phylogenetically conserved and widely expressed mitochondrial carrier protein which perhaps associates with mitochondrial oxidative phosphorylation.  相似文献   

9.
Vacuolar proton-translocating ATPases (V-ATPase) are multisubunit enzyme complexes located in the membranes of eukaryotic cells regulating cytoplasmic pH. So far, nothing is known about the genomic organization and chromosomal location of the various subunit genes in higher eukaryotes. Here we describe the isolation and analysis of a cDNA coding for the 54- and 56-kDa porcine V-ATPase subunit alpha and beta isoforms. We have determined the genomic structure of the V-ATPase subunit gene spanning at least 62 kb on Chromosome (Chr) 4q14-q16. It consists of 14 exons with sizes ranging from 54 bp to 346 bp, with a non-coding first exon and an alternatively spliced seventh exon leading to two isoforms. The 5′ end of the V-ATPase cDNA was isolated by RACE-PCR. The V-ATPase alpha isoform mRNA, lacking the seventh exon, has an open reading frame of 1395 nucleotides encoding a hydrophilic protein of 465 amino acids with a calculated molecular mass of 54.2 kDa and a pI of 7.8, whereas the beta isoform has a length of 1449 nucleotides encoding a protein of 483 amino acids with a calculated molecular mass of 55.8 kDa. Amino acid and DNA sequence comparison revealed that the porcine V-ATPase subunit exhibits a significant homology to the VMA13 subunit of Saccharomyces cerevisiae V-ATPase complex and V-ATPase subunit of Caenorhabditis elegans. Received: 14 May 1998 / Accepted: 20 October 1998  相似文献   

10.
The vacuolar-type H+ -ATPase (V-ATPase) translocates protons across membranes. Here, we have identified a mouse cDNA coding for a fourth isoform (a4) of the membrane sector subunit a of V-ATPase. This isoform was specifically expressed in kidney, but not in the heart, brain, spleen, lung, liver, muscle, or testis. Immunoprecipitation experiments, together with sequence similarities for other isoforms (a1, a2, and a3), indicate that the a4 isoform is a component of V-ATPase. Moreover, histochemical studies show that a4 is localized in the apical and basolateral plasma membranes of cortical alpha- and beta-intercalated cells, respectively. These results suggest that the V-ATPase, with the a4 isoform, is important for renal acid/base homeostasis.  相似文献   

11.
The multi-subunit vacuolar ATPase pump uses ATP hydrolysis to move protons into membrane bound compartments. The pump is involved in a variety of cellular functions, including regulation of cytosolic pH, vesicular transport, endocytosis, secretion, and apoptosis. Here, we describe the cDNA cloning and chromosomal mapping of subunit D of murine V-ATPase. The mouse gene, designated Atp6m, maps to Chromosome 12, in a region of high homology with human chromosome 14q24. Evolutionary analysis of subunit D orthologs in a variety of other species reveals that this is a highly conserved protein that has been under remarkably strong negative selection during evolution, most likely reflecting its critical role in multiple cellular processes.  相似文献   

12.
Ji YJ  Choi KY  Song HO  Park BJ  Yu JR  Kagawa H  Song WK  Ahnn J 《FEBS letters》2006,580(13):3161-3166
Vacuolar H+-ATPase (V-ATPase) is an ATP-dependent proton pump, which transports protons across the membrane. It is a multi-protein complex which is composed of at least 13 subunits. The Caenorhabditis elegans vha-8 encodes the E subunit of V-ATPase which is expressed in the hypodermis, intestine and H-shaped excretory cells. VHA-8 is necessary for proper intestinal function likely through its role in cellular acidification of intestinal cells. The null mutants of vha-8 show a larval lethal phenotype indicating that vha-8 is an essential gene for larval development in C. elegans. Interestingly, characteristics of necrotic cell death were observed in the hypodermis and intestine of the arrested larvae suggesting that pH homeostasis via the E subunit of V-ATPase is required for the cell survival in C. elegans.  相似文献   

13.
14.
15.
We have identified a novel member of the calcium-dependent (C-type) lectin family. This molecule, designated DCIR (for dendritic cell (DC) immunoreceptor), is a type II membrane glycoprotein of 237 aa with a single carbohydrate recognition domain (CRD), closest in homology to those of the macrophage lectin and hepatic asialoglycoprotein receptors. The intracellular domain of DCIR contains a consensus immunoreceptor tyrosine-based inhibitory motif. A mouse cDNA, encoding a homologous protein has been identified. Northern blot analysis showed DCIR mRNA to be predominantly transcribed in hematopoietic tissues. The gene encoding human DCIR was localized to chromosome 12p13, in a region close to the NK gene complex. Unlike members of this complex, DCIR displays a typical lectin CRD rather than an NK cell type extracellular domain, and was expressed on DC, monocytes, macrophages, B lymphocytes, and granulocytes, but not detected on NK and T cells. DCIR was strongly expressed by DC derived from blood monocytes cultured with GM-CSF and IL-4. DCIR was mostly expressed by monocyte-related rather than Langerhans cell related DC obtained from CD34+ progenitor cells. Finally, DCIR expression was down-regulated by signals inducing DC maturation such as CD40 ligand, LPS, or TNF-alpha. Thus, DCIR is differentially expressed on DC depending on their origin and stage of maturation/activation. DCIR represents a novel surface molecule expressed by Ag presenting cells, and of potential importance in regulation of DC function.  相似文献   

16.
Homo sapiens longevity assurance homologue 2 of yeast LAG1 (LASS2), also known as tumor metastasis suppressor gene 1 (TMSG1), is a newly found tumor metastasis suppressor gene in 1999. Preliminary studies showed that it not only suppressed tumor growth but also closely related to tumor metastasis, however, its molecular mechanisms is still unclear. There have been reported that protein encoded by LASS2/TMSG-1 could directly interact with the C subunit of Vacuolar ATPase (V-ATPase), which suggested that LASS2/TMSG1 might inhibit the invasion and metastasis through regulating the function of V-ATPase. Thus, in this study, we explored the effect of small interference RNA (siRNA) targeting LASS2/TMSG1 on the invasion of human prostate carcinoma cell line PC-3M-2B4 and its molecular mechanisms associated with the V-ATPase. Real-time fluorogentic quantitative PCR (RFQ-PCR) and Western blot revealed dramatic reduction of 84.5% and 60% in the levels of LASS2/TMSG1 mRNA and protein after transfection of siRNA in PC-3M-2B4 cells. The V-ATPase activity and extracellular hydrogen ion concentration were significantly increased in 2B4 cells transfected with the LASS2/TMSG1-siRNA compared with the controls. The activity of secreted MMP-2 was up-regulated in LASS2/TMSG1-siRNA treated cells compared with the controls; and the capacity for migration and invasion in LASS2/TMSG1-siRNA treated cells was significantly higher than the controls. Thus, we concluded that silencing of LASS2/TMSG1 may promote invasion of prostate cancer cell in vitro through increase of V-ATPase activity and extracellular hydrogen ion concentration and in turn the activation of secreted MMP-2.  相似文献   

17.
Receptor activator of NF-kappaB (RANK) ligand (RANKL) and osteoprotegerin (OPG) play essential roles in bone metabolism and immune responses. RANKL activates RANK, which is expressed by osteoclasts and dendritic cells (DC), whereas OPG acts as its decoy receptor. The role of RANKL and OPG in thyroid physiology is unclear. Northern analysis revealed pronounced OPG mRNA levels in normal human thyroid. By contrast, RANKL mRNA levels were most abundant in lymph node and appendix, and low in the thyroid. In the human thyroid follicular cell line XTC and in primary human thyroid follicular cells, OPG mRNA levels and protein secretion were upregulated by interleukin (IL)-1beta (33-fold), tumor necrosis factor (TNF)-alpha (eightfold), and thyrotropin (TSH) (threefold). RANKL mRNA was stimulated in XTC by IL-1beta and TNF-alpha, but inhibited by TSH. Conditioned medium harvested from IL-1beta-treated XTC (containing high concentrations of OPG) inhibited RANKL-induced CD40 upregulation and cluster formation of DC. OPG mRNA levels were three times more abundant in surgical thyroid specimens of Graves' disease as compared to other thyroid diseases. Our data suggest that RANKL and OPG are produced in the thyroid gland by thyroid follicular cells, are regulated by cytokines and TSH, and are capable of modulating dendritic cell functions. Thus, these cytokines may represent important local immunoregulatory factors involved in the pathogenesis of autoimmune thyroid diseases.  相似文献   

18.
19.
The class C L-type calcium (Ca(2+)) channels have been implicated in many important physiological processes. Here, we have identified a mouse vacuolar H(+)-ATPase (V-ATPase) G2 subunit protein that bound to the C-terminal domain of the pore-forming alpha(1C) subunit using a yeast two-hybrid screen. Protein-protein interaction between the V-ATPase G subunit and the alpha(1C) subunit was confirmed using in vitro GST pull-down assays and coimmunoprecipitation from intact cells. Moreover, treatment of cells expressing L-type Ca(2+) channels with a specific inhibitor of the V-ATPase blocked proper targeting of the channels to the plasma membrane.  相似文献   

20.
Deletion of the yeast gene PKR1 (YMR123W) results in an inability to grow on iron-limited medium. Pkr1p is localized to the membrane of the endoplasmic reticulum. Cells lacking Pkr1p show reduced levels of the V-ATPase subunit Vph1p due to increased turnover of the protein in mutant cells. Reduced levels of the V-ATPase lead to defective copper loading of Fet3p, a component of the high affinity iron transport system. Levels of Vph1p in cells lacking Pkr1p are similar to cells unable to assemble a functional V-ATPase due to lack of a V0 subunit or an endoplasmic reticulum (ER) assembly factor. However, unlike yeast mutants lacking a V0 subunit or a V-ATPase assembly factor, low levels of Vph1p present in cells lacking Pkr1p are assembled into a V-ATPase complex, which exits the ER and is present on the vacuolar membrane. The V-ATPase assembled in the absence of Pkr1p is fully functional because the mutant cells are able to weakly acidify their vacuoles. Finally, overexpression of the V-ATPase assembly factor Vma21p suppresses the growth and acidification defects of pkr1Delta cells. Our data indicate that Pkr1p functions together with the other V-ATPase assembly factors in the ER to efficiently assemble the V-ATPase membrane sector.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号