首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Infections with the rickettsial microorganism Wolbachia are cytoplasmically inherited and occur in a wide range of insect species and several other arthropods. Wolbachia infection often results in unidirectional cytoplasmic incompatibility (CI): crosses between infected males and uninfected females are incompatible and show a reduction of progeny or complete inviability. Unidirectional CI can also occur when males harbouring two incompatible Wolbachia strains are crossed with females infected with only one of the two strains. In the flour beetle Tribolium confusum, Wolbachia infections are of particular interest because of the severity of incompatibility. Typically, no progeny results from the incompatible cross, whereas only partial incompatibility is observed in most other hosts. Werren et al. (1995a) reported that Wolbachia infections in T. confusum consist of two bacterial strains belonging to distinct phylogenic groups, based on PCR amplification and sequence analysis of the bacterial cell division gene ftsZ. However, Fialho & Stevens (1996) showed that eight strains of T. confusum were infected with a single and common incompatibility type. Here we report analysis of the ftsZ gene by specific PCR amplification. Diagnostic restriction enzyme assays revealed no evidence of double infections in 11 geographic strains of T. confusum, including the strain examined by Werren et al. (1995a). Further, sequence analysis of the Wolbachia ftsZ gene and an internal transcribed spacer (ITS) region in two of these strains displayed no nucleotide variation or evidence of polymorphisms. Results suggest that T. confusum is infected with B-group Wolbachia only.  相似文献   

2.
SYNOPSIS. Nine new isolates of Crypthecodinium-like dinoflagellates from diverse geographic locations, together with 3 established strains from Woods Hole and Puerto Rico, were analyzed for sexual compatibility by means of a complementation test using motility mutants. The results indicate that 5 of the 12 are mutually compatible and thereby represent one species. Five others are clearly reproductively isolated from this group and from each other and therefore may belong to separate species. The position of 2 other isolates remains uncertain. Only one, MC-5, is markedly distinct morphologically from all the others. It is also sympatric with one of the others, strain G, and its separation from Crypthecodinium cohnii seems therefore more fully justified than that of the other sexually isolated strains. G and MC-5 would be considered "good" species by an evolutionary biologist. The others are from widely separate geographic origins and. though still poorly characterized, all superficially resemble C. cohnii . Comparison of many characters (DNA profile, radiation response, drug sensitivity, macroalgal association, etc.) of the incompatible strains show significant disparities which are discussed in considering speciation.  相似文献   

3.
L. Stevens  M. J. Wade 《Genetics》1990,124(2):367-372
This paper reports on the effects of a cytoplasmically inherited reproductive incompatibility in different genetic strains of the flour beetle, Tribolium confusum. We measured the rate of spread and the effect of host population size using different initial frequencies of infection with a cytoplasmic factor that mediates reproductive incompatibility. There were two experiments, in one the infected and uninfected lines were from the same genetic strain, b-Yugoslavia. In the other, the infected line was from the "high cannibalism" bIV strain and the uninfected line from the "low cannibalism" bI strain. We estimate that the fitness ratio of infected to uninfected in b-Yugoslavia is 0.63 and the observed rate of spread for this strain corresponds to a model of cytoplasmic inheritance that takes into account the productivity differences between the infected and cured lines. In the bI-bIV experiment, because the uninfected and infected lines are from different genetic strains, we cannot partition the effects of the cytoplasmic factor from other factors. The rate of spread in the bI-bIV experiment is faster in males and slower in females than predicted from a model of cytoplasmic inheritance. In both experiments, productivity varies with initial infection frequency; however, the relationship is not explained by a simple model that predicts lower population size at intermediate infection frequencies.  相似文献   

4.
Developmental success on 47 species of plant and reproductive compatibility were studied for four strains of the European red mite,Panonychus ulmi (Koch), collected from dwarf bamboo, elm and apple trees. The host range was variable in those strains and there was no plant species on which all four strains were able to reach maturity.Intra-populational crosses in the dwarf-bamboo strain and the two apple strains of mites, as well as crosses between the two apple strains, gave both female and male progeny. Inter-populational crosses between the dwarf-bamboo and apple strains produced only male progeny, as in the case where females of each strain were kept virgin, indicating that these two were reproductively incompatible and had an arrhenotokous reproductive system. When females of the elm strain were crossed with males of the elm, dwarf-bamboo or apple strain, no males were produced, as in the case for virgin females of the elm strain which had a thelytokous reproductive system. It is thus concluded that the strains derived from different host species were reproductively incompatible with one another.  相似文献   

5.
R. Shine 《Oecologia》1987,71(4):608-612
Summary Why are viviparous squamate reptiles more common in cold climates, and oviparous ones in warmer areas? The usual explanation is that (1) oviparous squamates cannot reproduce successfully in cold areas because soil temperatures are too low for embryonic development; and (2) viviparous squamates experience lower survivorship or reproductive success than oviparous taxa in warmer areas. These hypotheses suggest that the boundaries of geographic distributions of congeneric oviparous and viviparous squamates should be predictable from data on thermal tolerances of embryos, and estimated temperatures of soils and gravid female reptiles throughout the potential geographic range of the taxon. In large venomous Australian snakes of the genus Pseudechis, distributional boundaries of oviparous and viviparous taxa can be accurately predicted from such data. This predictive ability, if substantiated by studies of other reproductively biomodal squamate taxa, would support the putative role of reproductive mode as a direct determinant of reptilian geographic distributions.  相似文献   

6.
Symbionts are widespread and might have a substantial effect on the outcome of interactions between species, such as in host-parasitoid systems. Here, we studied the effects of symbionts on the outcome of host-parasitoid interactions in a four-partner system, consisting of the parasitoid wasp Leptopilina boulardi, its two hosts Drosophila melanogaster and D. simulans, the wasp virus LbFV, and the endosymbiotic bacterium Wolbachia. The virus is known to manipulate the superparasitism behavior of the parasitoid whereas some Wolbachia strains can reproductively manipulate and/or confer pathogen protection to Drosophila hosts. We used two nuclear backgrounds for both Drosophila species, infected with or cured of their respective Wolbachia strains, and offered them to L. boulardi of one nuclear background, either infected or uninfected by the virus. The main defence mechanism against parasitoids, i.e. encapsulation, and other important traits of the interaction were measured. The results showed that virus-infected parasitoids are less frequently encapsulated than uninfected ones. Further experiments showed that this viral effect involved both a direct protective effect against encapsulation and an indirect effect of superparasitism. Additionally, the Wolbachia strain wAu affected the encapsulation ability of its Drosophila host but the direction of this effect was strongly dependent on the presence/absence of LbFV. Our results confirmed the importance of heritable symbionts in the outcome of antagonistic interactions.  相似文献   

7.
The endosymbiotic bacterium Wolbachia pipientis manipulates host reproduction by rendering infected males reproductively incompatible with uninfected females (cytoplasmic incompatibility; CI). CI is believed to occur as a result of Wolbachia-induced modifications to sperm during maturation, which prevent infected sperm from initiating successful zygote development when fertilizing uninfected females' eggs. However, the mechanism by which CI occurs has been little studied outside the genus Drosophila. Here, we show that in the sperm heteromorphic Mediterranean flour moth, Ephestia kuehniella, infected males transfer fewer fertile sperm at mating than uninfected males. In contrast, non-fertile apyrene sperm are not affected. This indicates that Wolbachia may only affect fertile sperm production and highlights the potential of the Lepidoptera as a model for examining the mechanism by which Wolbachia induces CI in insects.  相似文献   

8.
Studies on the morphology, reproductive compatibility, life cycle and molecular phylogeny of the euryhaline red alga Caloglossa provide insights into the speciation events and biogeographic patterns. The C. leprieurii complex is separated into three morphotypes based on the number of cell rows at nodes and the blade width. The three morphotypes are reproductively incompatible with each other, and furthermore many mating groups are recognized within the morphotypes. Incomplete reproductive isolation is occasionally seen between geographically distant mating groups, whereas no sexual compatibility occurs between sympatrically or parapatrically distributed mating groups. In the molecular phylogenetic analyses, the C. leprieurii complex is resolved as two clusters that phenotypically correspond to the single and multiple cell row types, respectively. The strains belonging to the same mating group are closely related to each other, without exception, while the mating groups showing incomplete reproductive reactions do not always make a clade. The genetic distance is generally not correlative to the geographic distance, and this is also suggested by the morphological data and crossability. These results indicate that allopatric speciation has frequently occurred in this species complex, although there is some evidence of long-distance dispersal.M. Kamiya is the recipient of the Botanical Society Award for Young Scientist, 2002.  相似文献   

9.
Wolbachia are maternally transmitted endocellular bacteria causing a reproductive incompatibility called cytoplasmic incompatibility (CI) in several arthropod species, including Drosophila. CI results in embryonic mortality in incompatible crosses. The only bacterial strain known to infect Drosophila melanogaster (wDm) was transferred from a D. melanogaster isofemale line into uninfected D. simulans isofemale lines by embryo microinjections. Males from the resulting transinfected lines induce >98% embryonic mortality when crossed with uninfected D. simulans females. In contrast, males from the donor D. melanogaster line induce only 18-32% CI on average when crossed with uninfected D. melanogaster females. Transinfected D. simulans lines do not differ from the D. melanogaster donor line in the Wolbachia load found in the embryo or in the total bacterial load of young males. However, >80% of cysts are infected by Wolbachia in the testes of young transinfected males, whereas only 8% of cysts are infected in young males from the D. melanogaster donor isofemale line. This difference might be caused by physiological differences between hosts, but it might also involve tissue-specific control of Wolbachia density by D. melanogaster. The wDm-transinfected D. simulans lines are unidirectionally incompatible with strains infected by the non-CI expressor Wolbachia strains wKi, wMau, or wAu, and they are bidirectionally incompatible with strains infected by the CI-expressor Wolbachia strains wHa or wNo. However, wDm-infected males do not induce CI toward females infected by the CI-expressor strain wRi, which is found in D. simulans continental populations, while wRi-infected males induce partial CI toward wDm-infected females. This peculiar asymmetrical pattern could reflect an ongoing divergence between the CI mechanisms of wRi and wDm. It would also confirm other results indicating that the factor responsible for CI induction in males is distinct from the factor responsible for CI rescue in females.  相似文献   

10.
Entomopathogens tend to have a slow speed of kill when used for targeting agricultural insect pests. Relating temperature as a driver of this speed is important to predict pest mortality, and extending this to a degree-day infection model has rarely been studied. Many species of wireworms (Coleoptera: Elateridae), the larvae of click beetles, are subterranean and generalist agricultural pests that can be difficult to control with pesticides. Targeting adult beetles, however, may be an effective method to reduce larval recruitment. Metarhizium brunneum Petch (Hypocreales), an entomopathogenic fungus, kills click beetles but the mortality rate and speed of kill are expected to vary according to temperature. Using a thermal gradient plate to simulate daily oscillating temperatures in Agassiz, British Columbia, Canada, for April, May, and June, the effectiveness of M. brunneum strains LRC112 and F52 in causing mortality to Agriotes obscurus (L.) and Agriotes lineatus (L.) click beetles was studied in the laboratory. Mortality was fastest in beetles exposed to June temperatures and slowest in those exposed to April temperatures, with differences among beetle species × M. brunneum strain combinations. Higher temperatures resulted in more rapid mycelial outgrowth and conidiation in beetle cadavers, with only A. obscurus infected with M. brunneum LRC112 attaining near 100% conidiation. The number of degree days required to kill 50% of the beetles (LDD50) was least for A. obscurus infected with M. brunneum LRC112 (176) followed by A. obscurus × M. brunneum F52 (212), A. lineatus × M. brunneum LRC112 (215), and A. lineatus × M. brunneum F52 (292). Hypothetical calculations showed that M. brunneum exposure earlier in the season resulted in a longer time to kill 50% of the beetles (LT50) but the earliest LT50 calendar date. Later M. brunneum exposure dates resulted in lower LT50's, but later LT50 dates. This conceptual work demonstrates that daily temperature oscillations, seasonality, and degree days must be considered to predict the efficacy and speed of kill of different fungal entomopathogen strains when targeting different click beetle species.  相似文献   

11.
Drosophila simulans females from a strain collected at Watsonville, CA produce very few offspring when mated with males from a strain collected at Riverside 510 km away. This incompatibility does not exist in the reciprocal cross. In the incompatible cross, mating and oviposition are normal, but eggs fail to hatch. A survey of other California populations indicates that unidirectional incompatibility is widespread. The incompatibility is maternally inherited over one generation. Using older Riverside males or rearing the strains at 28°C suppresses incompatibility. Culturing the strains on medium with tetracycline restores compatibility, suggesting the involvement of a microorganism.  相似文献   

12.
A cytoplasmically inherited microorganism associated with male killing in the two-spot ladybird beetle, Adalia bipunctata, is shown to be closely related to bacteria in the genus Rickettsia. Sequencing of a PCR-amplified product of the 16S genes coding for rRNA (16S rDNA) shows the organism associated with male killing in ladybirds to share a common ancestry with the Rickettsias relative to other genera (e.g., Anaplasma, Ehrlichia, and Cowdria). The rickettsial 16S rDNA product is found in four strains of ladybird beetle showing male embryo lethality and is absent from two uninfected strains and an antibiotic-cured strain. In addition, a revertant strain that had naturally lost the male-killing trait failed to amplify the rickettsial 16S rDNA product. Use of PCR primers for a 17-kDa protein antigen which is found only in rickettsias also resulted in an amplified product from infected strains. Uninfected, cured, and revertant strains and insect species infected with related bacteria (cytoplasmic-incompatibility bacteria from Nasonia wasps) failed to amplify the product. Discovery of a close relative of rickettsias associated with sex ratio distortion in insects has implications for the evolution and population dynamics of this bacterial genus.  相似文献   

13.
Wolbachia endosymbionts are widespread among insects and other arthropods, often causing cytoplasmic incompatibility and other reproductive phenotypes in their hosts. Recently, possibilities of Wolbachia-mediated pest control and management have been proposed, and the bean beetles of the subfamily Bruchinae are known as serious pests of harvested and stored beans worldwide. Here we investigated Wolbachia infections in bean beetles from the world, representing seven genera, 20 species and 87 populations. Of 20 species examined, Wolbachia infections were detected in four species, Megabruchidius sophorae, Callosobruchus analis, C. latealbus and C. chinensis. Infection frequencies were partial in M. sophorae but perfect in the other species. In addition to C. chinensis described in the previous studies, C. latealbus was infected with two distinct Wolbachia strains. These Wolbachia strains from the bean beetles were phylogenetically not closely related to each other. Among world populations of C. chinensis, some Taiwanese populations on a wild leguminous plant, Rhynchosia minima, exhibited a peculiar Wolbachia infection pattern, suggesting the possibility that these populations comprise a distinct host race or a cryptic species.  相似文献   

14.
The possible existence of endemism among microorganisms resulting from and preserved by geographic isolation is one of the most controversial topics in microbial ecology. We isolated 31 strains of "Spumella-like" flagellates from remote sampling sites from all continents, including Antarctica. These and another 23 isolates from a former study were characterized morphologically and by small-subunit rRNA gene sequence analysis and tested for the maximum temperature tolerance. Only a minority of the Spumella morpho- and phylotypes from the geographically isolated Antarctic continent follow the worldwide trend of a linear correlation between ambient (air) temperature during strain isolation and heat tolerance of the isolates. A high percentage of the Antarctic isolates, but none of the isolates from locations on all other continents, were obligate psychrophilic, although some of the latter were isolated at low ambient temperatures. The drastic deviation of Antarctic representatives of Spumella from the global trend of temperature adaptation of this morphospecies provides strong evidence for geographic transport restriction of a microorganism; i.e., Antarctic protistan communities are less influenced by transport of protists to and from the Antarctic continent than by local adaptation, a subtle form of endemism.  相似文献   

15.
Ball rolling in dung beetles is thought to have evolved as a means to escape intense inter- and intra-specific competition at the dung pile. Accordingly, dung beetles typically roll along a straight-line path away from the pile, this being the most effective escape strategy for transporting dung to a suitable burial site. In this study, we investigate how individual diurnal dung beetles, Scarabaeus (Kheper) nigroaeneus, select the compass bearing of their straight-line rolls. In particular, we examine whether roll bearings are constant with respect to geographic cues, celestial cues, or other environmental cues (such as wind direction). Our results reveal that the roll bearings taken by individual beetles are not constant with respect to geographic or celestial references. Environmental cues appear to have some influence over bearing selection, although the relationship is not strong. Furthermore, the variance in roll bearing that we observe is not affected by the presence or absence of other beetles. Thus, rather than being constant for individual beetles, bearing selection varies each time a beetle makes a ball and rolls it away from the dung pile. This strategy allows beetles to make an efficient escape from the dung pile while minimizing the chance of encountering competition.  相似文献   

16.
In this work, the susceptibility to benznidazole of two parental Trypanosoma cruzi strains, Colombian and Berenice-78, was compared to isolates obtained from dogs infected with these strains for several years. In order to evaluate the susceptibility to benznidazole two groups of mice were infected with one of five distinct populations isolated from dogs as well as the two parental strains of T. cruzi. The first group was treated with benznidazole during the acute phase and the second remained untreated controls. The animals were considered cured when parasitological and serological tests remained persistently negative. Mice infected with the Colombian strain and its isolates Colombian (A and B) did not cure after treatment. On the other hand, all animals infected with Berenice-78 were cured by benznidazole treatment. However, 100%, 50% and 70% of cure rates were observed in animals infected with the isolates Berenice-78 B, C and D, respectively. No significant differences were observed in serological profile of infected control groups, with all animals presenting high antibody levels. However, the ELISA test showed differences in serological patterns between mice inoculated with the different T. cruzi isolates and treated with benznidazole. This variability was dependent on the T. cruzi population used and seemed to be associated with the level of resistance to benznidazole.  相似文献   

17.
On the evolution of cytoplasmic incompatibility in haplodiploid species   总被引:1,自引:0,他引:1  
The most enigmatic sexual manipulation by Wolbachia endosymbionts is cytoplasmic incompatibility (CI): infected males are reproductively incompatible with uninfected females. In this paper, we extend the theory on population dynamics and evolution of CI, with emphasis on haplodiploid species. First, we focus on the problem of the threshold to invasion of the Wolbachia infection in a population. Simulations of the dynamics of infection in small populations show that it does not suffice to assume invasion by drift alone (or demographic "accident"). We propose several promising alternatives that may facilitate invasion of Wolbachia in uninfected populations: sex-ratio effects, meta population structure, and other fitness-compensating effects. Including sex-ratio effects of Wolbachia allows invasion whenever infected females produce more infected daughters than uninfected females produce uninfected daughters. Several studies on haplodiploid species suggest the presence of such sex-ratio effects. The simple metapopulation model we analyzed predicts that, given that infecteds are better "invaders," uninfecteds must be better "colonizers" to maintain coexistence of infected and uninfected patches. This condition seems more feasible for species that suffer local extinction due to predation (or parasitization) than for species that suffer local extinction due to overexploiting their resource(s). Finally, we analyze the evolution of CI in haplodiploids once a population has been infected. Evolution does not depend on the type of CI (female mortality or male production), but hinges solely on decreasing the fitness cost and/or increasing the transmission efficiency. Our models offer new perspectives for increasing our understanding of the population and evolutionary dynamics of CI.  相似文献   

18.
Duron O  Weill M 《Heredity》2006,96(6):493-500
Wolbachia are maternally inherited endosymbiotic bacteria that infect many arthropod species and have evolved several different ways for manipulating their host, the most frequent being cytoplasmic incompatibility (CI). CI leads to embryo death in crosses between infected males and uninfected females, as well as in crosses between individuals infected by incompatible Wolbachia strains. In the mosquito Culex pipiens, previous studies suggested developmental variation in embryos stemming from different incompatible crosses. We have investigated this variation in different incompatible crosses. Unhatched eggs were separated into three classes based upon the developmental stage reached by the embryos. We found that incompatible crosses involving uninfected females produced only embryos whose development was arrested at a very early stage, irrespective of the Wolbachia variant infecting the male. These results differ from other host species where a developmental gradient that could reach late stages of embryogenesis or even living larvae was observed, and indicate a novel peculiarity of CI mechanism in C. pipiens. By contrast, all incompatible crosses with infected C. pipiens females produced embryos of all three classes. The proportion of embryo classes appeared to be associated with the strains involved, suggesting specific CI properties in different incompatible crosses. In addition, the contribution of parental genome was characterized in embryo classes using molecular markers for each chromosome. Embryo phenotypes appeared linked to the paternal chromosomes' contribution, as described in Drosophila simulans. However, this contribution varied according to maternal infection and independently of male factors.  相似文献   

19.
Abstract. Bruchidius atrolineatus (Pic) is a tropical bruchid developing in Vigna unguiculata (Walp) pods. Adults are in reproductive diapause during the dry season. In conditions of 40:25C or 35:25C, diapause is induced when larvae develop in thermophases longer than 14 h, in thermophases shorter than 10 h and in continuous darkness. Thermophases of 12 h cause a reduction of the proportion of diapausing beetles. This proportion also depends on the thermoperiod temperatures. Development at low temperatures (23: 16C, 12: 12 h) induces a high percentage of diapausing beetles. However, at low temperatures, the developmental times of the beetles are long and show important interindividual variability. When larvae develop in decreasing temperatures, small changes in thermoperiod temperatures (35:25C to 3O:2OC) have a strong effect on diapause induction. When larvae develop at low temperatures (25:15C) and then at high temperatures (40:25C), the proportion of diapausing beetles depends on the duration of development at low temperatures. Whatever the developmental conditions, both sexually active and diapausing beetles always emerge from the seeds. This interindividual variability is important in this species which has a wide geographical distribution in Africa.  相似文献   

20.
Japanese beetle adults, Popillia japonica, can become infected with and disperse the entomopathogenic nematode, Steinernema glaseri, under laboratory and field conditions. After a 24-h exposure to 10 000 infective juveniles/20 adult beetles, 45% of the beetles died within 4 days post-treatment, but only 59% of these were infected with the nematode. Corresponding control mortality was 6.5%. An average of 238 infective juveniles were produced/beetle. Beetles exposed to 4000 and 10 000 infectives/10 adults carried with them an average of 17 and 59 infectives/adult on external body surfaces respectively. When beetles that had been exposed to 4000 infectives/20 adults were transferred to, and held in, cages containing soil for 2 weeks, up to 89% of the adults died, as did 74% of the P. japonica larvae that were subsequently placed in the cages. When adults that had been exposed to 50 000 infectives/250 beetles in moist sand for 16 h were released into screened cages in the field at soil temperatures of over 25 C, the soil beneath 83% of the cages tested positive for the nematode, using Galleria mellonella larvae as bait, 2 weeks after releasing the beetles. No nematodes were detected in control plots. The potential of infected adult P. japonica for dispersing S. glaseri by flight was investigated by exposing adults to 50 000 infectives/250 beetles, marking and releasing them in the field and recapturing them in lure-baited Japanese beetle traps. Less than 1% of the treated beetles were recaptured, but 33% of these had one or more nematodes in their hemocoels. Accordingly, this approach does not appear to be feasible for large-scale augmentation and dispersal of the nematode using currently developed methods of infection. If improvements in mass-inoculation methods can be made that enable a rapid high percentage of infection while still permitting flight, this concept could be employed to establish new foci of infection or for the introduction of other species of nematodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号