首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Variants of the thermolabile neutral protease (Npr) of B. subtilis (Npr-sub) and the thermostable neutral protease of B. stearothermophilus (Npr-ste) were produced by means of site-directed mutagenesis and the effects of the mutations on thermostability were determined. Mutations were designed to alter the interaction between the middle and C-terminal subdomain of these enzymes. In all Nprs a cluster of hydrophobic contacts centered around residue 315 contributes to this interaction. In thermostable Nprs (like Npr-ste) a 10 residue beta-hairpin, covering the domain interface, makes an additional contribution. The hydrophobic residue at position 315 was replaced by smaller amino acids. In addition, the beta-hairpin was deleted from Npr-ste and inserted into Npr-sub. The changes in thermostability observed after these mutations confirmed the importance of the hydrophobic cluster and of the beta-hairpin for the structural integrity of Nprs. Combined mutants showed that the effects of individual mutations affecting the interaction between the subdomains were not additive. The effects on thermostability decreased as the strength of the subdomain interaction increased. The results show that once the subdomain interface is sufficiently stabilized, additional stabilizing mutations at the same interface do not further increase thermostability. The results are interpreted on the basis of a model for the thermal inactivation of neutral proteases, in which it is assumed that inactivation results from the occurrence of local unfolding processes that render these enzymes susceptible to autolysis.  相似文献   

2.
The hydrolysis of a series of depsipeptides demonstrates that the zinc neutral endopeptidases of bacteria are active esterases. Esters such as BzGly-OPhe-Ala, BzGly-OLeu-Ala, and FA-Gly-OLeu-NH2 are hydrolyzed at rates three- to eightfold slower than are their exact peptide analogues, when hydrolyzed by thermolysin, Bacillus subtilis neutral protease and the neutral protease from Aeromonas proteolytica. Ester hydrolysis by zinc neutral proteases follows the characteristic preference for hydrophobic amino acids adjacent to the site of cleavage, discerned from the hydrolysis of peptide substrates. Removal of zinc from thermolysin abolishes the esterase activity of the native enzyme. Among the metals examined, only Co2+ and Zn2+ restore esterase activity to any significant extent, Co2+ restoring 50% and Zn2+ 100% of the native thermolysin activity. The hydrolysis of esters and peptides by thermolysin does not differ with respect to either the binding or catalytic steps. Substrate specificity, pH-rate profiles, inhibitor, and deuterium isotope effects are identical for both types of substrates.  相似文献   

3.
Protein evolution has occurred by successive fixation of individual mutations. The probability of fixation depends on the fitness of the mutation, and the arising variant can be deleterious, neutral, or beneficial. Despite its relevance, only few studies have estimated the distribution of fitness effects caused by random single mutations on protein function. The human immunodeficiency virus type 1 (HIV-1) protease was chosen as a model protein to quantify protein's tolerability to random single mutations. After determining the enzymatic activity of 107 single random mutants, we found that 86% of single mutations were deleterious for the enzyme catalytic efficiency and 54% lethal. Only 2% of the mutations significantly increased the catalytic efficiency of the enzyme. These data demonstrate the vulnerability of HIV-1 protease to single random mutations. When a second random mutagenesis library was constructed from an HIV-1 protease carrying a highly deleterious single mutation (D30N), a higher proportion of mutations with neutral or beneficial effect were found, 26% and 9%, respectively. Importantly, antagonist epistasis was observed between deleterious mutations. In particular, the mutation N88D, lethal for the wild-type protease, restored the wild-type catalytic efficiency when combined with the highly deleterious mutation D30N. The low tolerability to single random substitutions shown here for the wild-type HIV-1 protease contrasts with its in vivo ability to generate an adaptive variation. Thus, the antagonist epistasis between deleterious or lethal mutations may be responsible for increasing the protein mutational robustness and evolvability.  相似文献   

4.
The role of the C-terminal Leu300 in maintaining thermal stability of the neutral protease of Bacillus subtilis was investigated. From model building studies based on the three-dimensional structure of thermolysin, the neutral protease of B. thermoproteolyticus, it was concluded that this residue is located in a hydrophobic pocket composed of residues located in the C-terminal and the middle domain. To test the hypothesis that Leu300, by contributing to a stabilizing interaction between these domains, is important for enzyme stability, several neutral protease mutants were constructed and characterized. The thermostability of the enzyme was lowered by deleting Leu300 or by replacing this residue by a smaller (Ala), a polar (Asn) or a sterically unfavourable (Ile) amino acid. Thermostability was increased upon replacing Leu300 by Phe. These results are in agreement with model-building studies. The effects on thermostability observed after mutating the corresponding Val318 in the thermostable neutral protease of B.stearothermophilus were less pronounced.  相似文献   

5.
[背景]前期工作中,从北大仓白酒大曲分离到一株真菌,经形态学和分子生物学方法,将其鉴定为尖孢镰刀菌(Fusarium oxysporim) M1,研究发现该菌能产中性蛋白酶.中性蛋白酶是应用于工业化生产的重要酶制剂.由于其作用条件温和、催化速率较高,被广泛应用于食品、医药、皮革、饲料、化工和废弃物处理行业.[目的]为了...  相似文献   

6.
Site-directed mutagenesis has been used to produce two mutant forms of yeast phosphoglycerate kinase in which the interdomain residue Phe194 has been replaced by a leucine or tryptophan residue. Using 1H-NMR spectroscopy, it was found that the mutations at position 194 induce both local and long-range conformational changes in the protein. It was also found that 3-phosphoglycerate binding to the mutant proteins induces somewhat different conformational effects to those observed for wild-type phosphoglycerate kinase. The affinity of mutant Phe194----Trp for 3-phosphoglycerate was found by NMR studies to be unaffected, while the affinity of Phe194----Leu mutant is reduced by about threefold relative to the wild-type enzyme. The binding of ATP at the electrostatic site of the mutant proteins is also seen to be about three times weaker for the Phe194----Leu mutant when compared to wild-type or Phe194----Leu mutant. These results are discussed in the light of the kinetic studies on the mutants which show that for Phe194----Leu mutant the Km values for both 3-phosphoglycerate and ATP, as well as the Vmax, are decreased relative to the wild-type enzyme, while for mutant Phe194----Trp, the Km values for 3-phosphoglycerate and ATP are unaffected and the Vmax is decreased when compared to wild-type enzyme. Kinetic studies in the presence of sulphate reveal that the anion activation is greater for mutant Phe194----Trp and less for mutant Phe194----Leu, relative to that observed for wild-type phosphoglycerate kinase. The NMR data, taken together with the kinetic data, are consistent with the on and off rates of 3-phosphoglycerate being affected by the mutations at position 194. It is suggested that Phe194 is important for the mobility of the interdomain region and the relative movement of the 3-phosphoglycerate binding site which allows the optimum conformation for catalysis to be attained. Apparently Trp194 reduces the mobility of the interdomain region of the protein, while Leu194 increases it.  相似文献   

7.
An endogenous inhibitor of calcium-activated neutral protease was purified to homogeneity from rabbit skeletal muscle using ion-exchange chromatography on DEAE-cellulose and QAE-Sephadex A-50 columns, chromatofocusing, and hydrophobic interaction chromatography on a phenyl-Sepharose CL-4B column. The purified inhibitor was shown to be a dimer of identical subunits and each subunit has a molecular weight of about 34,000. This inhibitor was remarkably thermo- and acid-stable. It was specific for calcium-activated neutral protease and had no effect on any other protease examined (trypsin, papain, alpha-chymotrypsin, bromelain, etc.). It is demonstrated that the inhibition is due to the formation of stoichiometric complex between two enzyme molecules and one inhibitor molecule.  相似文献   

8.
Critical ionizing groups in Aeromonas neutral protease   总被引:2,自引:0,他引:2  
Aeromonas neutral protease possesses two residues critical to its activity. One has a pKa of 5.5 in both the free enzyme and the enzyme-substrate complex and must be deprotonated for maximal activity. The other, which ionizes at pH 7.1 in the free enzyme and at pH 7.4 in the enzyme-substrate complex, must be protonated for optimal enzyme action. The protease is reversibly inhibited by aminoacyl hydroxamates, peptides containing a phenylalanyl residue, phosphoryl-L-phenylalanylglycylglycine, and by beta-phenylpropionyl-L-phenylalanine. The pH dependence of inhibition by the latter revealed that a residue with a pKa of 5.6 influences inhibitor binding. Compounds containing both a hydroxamido group and a chloroacetyl group are particularly effective in inactivating the enzyme, and inhibition is enhanced by hydrophobic residues. Thus, a 33-fold molar excess of chloroacetyl-N-hydroxy-L-phenylalanyl-L-alanyl-L-alanine amide rapidly inactivated Aeromonas neutral protease. Carbethoxylation experiments resulted in a 90% loss in activity which was fully reversible by hydroxylamine; spectral analysis indicated the involvement of a single histidine residue. Protection against both esterification and carbethoxylation was furnished by the presence of beta-phenylproprionyl-L-phenylalanine. Inactivation experiments suggest that a glutamic or aspartic acid and a histidine residue are responsible for the pKa values revealed by pH dependence studies.  相似文献   

9.
Citrullinemia is an autosomal recessive disease caused by deficiency of argininosuccinate synthetase. In order to characterize mutations, RNA was isolated from cultured fibroblasts from 13 unrelated patients with neonatal citrullinemia. Ten mutations were identified by sequencing of amplified cDNA. Seven single base missense mutations were identified: Gly14----Ser, Ser180----Asn, Arg157----His, Arg304----Trp, Gly324----Ser, Arg363----Trp, and Gly390----Arg. Six of these missense mutations involved conversion of a CpG dinucleotide in the sense strand to TpG or CpA, and six of the seven mutations alter a restriction enzyme site in the cDNA. Two mutations were observed in which the sequences encoded by a single exon (exon 7 or 13) were absent from the cDNA. One mutation is a G----C substitution in the last position of intron 15 resulting in splicing to a cryptic splice site within exon 16. There is extreme heterogeneity of mutations causing citrulinemia. This heterogeneity may prove typical for less common autosomal recessive human genetic diseases.  相似文献   

10.
Hydrophobic residues outside the active site of HIV-1 protease frequently mutate in patients undergoing protease inhibitor therapy; however, the mechanism by which these mutations confer drug resistance is not understood. From analysis of molecular dynamics simulations, 19 core hydrophobic residues appear to facilitate the conformational changes that occur in HIV-1 protease. The hydrophobic core residues slide by each other, exchanging one hydrophobic van der Waal contact for another, with little energy penalty, while maintaining many structurally important hydrogen bonds. Such hydrophobic sliding may represent a general mechanism by which proteins undergo conformational changes. Mutation of these residues in HIV-1 protease would alter the packing of the hydrophobic core, affecting the conformational flexibility of the protease. Therefore these residues impact the dynamic balance between processing substrates and binding inhibitors, and thus contribute to drug resistance.  相似文献   

11.
Serine protease inhibitors (serpins) are metastable in their native state. This strain, which is released upon binding to target proteases, is essential for the inhibitory activity of serpins. To understand the structural basis of the native strain, we previously characterized stabilizing mutations of alpha(1)-antitrypsin, a prototypical inhibitory serpin, in regions such as the hydrophobic core. The present study evaluates the effects of single point mutations throughout the molecule on stability and protease inhibitory activity. We identified stabilizing mutations in most secondary structures, suggesting that the native strain is distributed throughout the molecule. Examination of the substitution patterns and the structures of the mutation sites revealed surface hydrophobic pockets as a component of the native strain in alpha(1)-antitrypsin, in addition to the previously identified unusual interactions such as side chain overpacking and cavities. Interestingly, many of the stabilizing substitutions did not affect the inhibitory activity significantly. Those that affected the activity were confined in the regions that are mobilized during the complex formation with a target enzyme. The results of our study should be useful for designing proteins with strain and for regulating the stability and functions of serpins.  相似文献   

12.
Two mutants (NT02 and NT17), each producing a thermosensitive neutral protease, were isolated from Bacillus subtilis NP58, a transformant which acquired the property of hyperproduction of neutral protease from Bacillus natto IAM 1212. The neutral proteases produced by these two mutants were partially purified and enzymologically characterized. The two mutant neutral proteases displayed increased thermosensitivity as well as altered pH optima compared with those of the NP58 enzyme. In addition, the hydrolytic activity of the thermosensitive neutral proteases on synthetic peptide substrates was found to be extremely different. These results strongly suggest that the site of mutation in each of the temperature-sensitive strains is located within the structural gene for neutral protease (nprE). Previous studies indicated the existence of a specific regulator gene (nprR) in addition to the structural gene for neutral protease. Phage PBS1-mediated transduction and deoxyribonucleic acid-mediated transformation studies with the parental and mutant strains suggest that the chromosomal order of these genes is recA-pyrA-nprR-nprE-fruB-metC. Moreover, the results of these genetic analyses imply that the mutations to thermosensitivity are located proximate to each other within the nprE gene.  相似文献   

13.
The neutral protease of Bacillus polymyxa had a broad pH optimum (6.0 to 7.2) for activity at 37 C. The enzyme was most stable at pH 5.6 to 5.8. The protease had an optimum temperature of 37 C and was quite thermostable up to 35 C, but at higher temperatures the stability decreased rapidly. The substrate specificity of the protease was similar to that of the neutral proteases of other members of the genus Bacillus. The enzyme was shown to be a zinc metalloprotease. However, manganous ions had a greater activating and stabilizing influence on the activity of this enzyme than zinc. Replacement of zinc in the native enzyme by manganese resulted in a 50% increase in activity. In addition, the prepared manganese metalloprotease had higher temperature and more alkaline pH optima than the native enzyme.  相似文献   

14.
Large amounts of a highly purified, extracellular elastolytic protease of Vibrio vulnificus were obtained by sequential ammonium sulphate precipitation and hydrophobic interaction chromatography with phenyl-Sepharose CL-4B. The protease had an Mr of about 50,500 (estimated by SDS-PAGE), a pI of 5.7, and a temperature optimum range of 55 to 60 degrees C. The pH optimum and the results of inactivation studies suggested that the enzyme was a neutral metalloprotease. The protease had about 429 amino acid residues, and the first 20 amino-terminal amino acid residues were Ala-Gln-Ala-Asn-Gly-Thr-Gly-Pro-Gly-Gly-Asn-Ser-Lys-Thr-Gly-Arg-Tyr-Glu- Phe-Gly . The purified protease was toxic for mice (about 1.5 mg kg-1 and 4.5 mg kg-1, intraperitoneal and intravenous LD50 values, respectively), and subcutaneous injection of the enzyme elicited rapid and extensive dermonecrosis.  相似文献   

15.
Conformational changes play important roles in the regulation of many enzymatic reactions. Specific motions of side chains, secondary structures, or entire protein domains facilitate the precise control of substrate selection, binding, and catalysis. Likewise, the engineering of allostery into proteins is envisioned to enable unprecedented control of chemical reactions and molecular assembly processes. We here study the structural effects of engineered ionizable residues in the core of the glutathione‐S‐transferase to convert this protein into a pH‐dependent allosteric protein. The underlying rational of these substitutions is that in the neutral state, an uncharged residue is compatible with the hydrophobic environment. In the charged state, however, the residue will invoke unfavorable interactions, which are likely to induce conformational changes that will affect the function of the enzyme. To test this hypothesis, we have engineered a single aspartate, cysteine, or histidine residue at a distance from the active site into the protein. All of the mutations exhibit a dramatic effect on the protein's affinity to bind glutathione. Whereas the aspartate or histidine mutations result in permanently nonbinding or binding versions of the protein, respectively, mutant GST50C exhibits distinct pH‐dependent GSH‐binding affinity. The crystal structures of the mutant protein GST50C under ionizing and nonionizing conditions reveal the recruitment of water molecules into the hydrophobic core to produce conformational changes that influence the protein's active site. The methodology described here to create and characterize engineered allosteric proteins through affinity chromatography may lead to a general approach to engineer effector‐specific allostery into a protein structure.  相似文献   

16.
Bacillus stearothermophilus MK232, which produced a highly thermostable neutral protease, was isolated from a natural environment. By several steps of mutagenesis, a hyper-producing mutant strain, YG185, was obtained. The enzyme productivity was twice as much as that of the original strain. This extracellular neutral protease was purified and crystallized. The molecular weight of the enzyme was 34,000 by SDS-polyacrylamide gel electrophoresis and gel filtration. The optimum pH and temperature for the enzyme activity were 7.5 and 70°C, respectively, and the enzyme was stable at pH 5–10 and below 70°C. The thermostability and specific activity of the new protease are around 10% and 40% higher than those of thermolysin (the neutral protease from Bacillus thermoproteolyticus), respectively. The enzyme was inactivated by EDTA, but not by phenylmethylsulfonyl fluoride. These results indicate that the enzyme is a highly thermostable neutral-(metallo)protease.  相似文献   

17.
Acidolysin an extracellular protease produced by Clostridium acetobutylicum ATCC 824 was purified to homogeneity by anion-exchange chromatography with a recovery of 91%. The enzyme was a monomeric protein with a molecular weight of 44,000 as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and an acidic isoelectric point of 3.3. Acidolysin was very sensitive to metal-chelating agents and phosphoramidon and was unaffected by sulfhydryl reagents. It was shown to be a calcium- and zinc-containing protease. It exhibited optimal activity against Azocoll at pH 5 and 45 degrees C. It was stable at low pH and heat labile above 50 degrees C. It exhibited specificity toward peptide bonds formed by the amino group of hydrophobic amino acids (isoleucine, leucine, and phenylalanine) and its NH2-terminal amino acid sequence showed a high degree of similarity with that of Bacillus subtilis neutral metalloprotease A. Acidolysin is the first phosphoramidon-sensitive, acidic zinc metalloprotease reported.  相似文献   

18.
C Croux  V Paquet  G Goma    P Soucaille 《Applied microbiology》1990,56(12):3634-3642
Acidolysin an extracellular protease produced by Clostridium acetobutylicum ATCC 824 was purified to homogeneity by anion-exchange chromatography with a recovery of 91%. The enzyme was a monomeric protein with a molecular weight of 44,000 as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and an acidic isoelectric point of 3.3. Acidolysin was very sensitive to metal-chelating agents and phosphoramidon and was unaffected by sulfhydryl reagents. It was shown to be a calcium- and zinc-containing protease. It exhibited optimal activity against Azocoll at pH 5 and 45 degrees C. It was stable at low pH and heat labile above 50 degrees C. It exhibited specificity toward peptide bonds formed by the amino group of hydrophobic amino acids (isoleucine, leucine, and phenylalanine) and its NH2-terminal amino acid sequence showed a high degree of similarity with that of Bacillus subtilis neutral metalloprotease A. Acidolysin is the first phosphoramidon-sensitive, acidic zinc metalloprotease reported.  相似文献   

19.
Adipose tissue contains a high level of neutral esterase active against emulsions of cholesteryl oleate. The present studies show that this enzyme can also effectively hydrolyze the cholesterol esters in native rat plasma high density lipoproteins (HDL) and low density lipoproteins (LDL). The hydrolysis of lipoprotein cholesterol esters by a pH 5.2 isoelectric precipitate fraction from the freshly prepared 100,000 X g supernatant of chicken adipose tissue was low, but increased more than 50-fold on activation with cyclic AMP-dependent protein kinase. Rat adipose tissue homogenates were also very active against lipoprotein cholesterol esters, hydrolyzing as much as 60% of the total labeled cholesterol ester in HDL or LDL in 1 h. Activity was optimal at pH 7 and very low at pH 4. No protease activity was detected at pH 7 and, since assays were done in 2 mM EDTA, phospholipase A activity was presumably negligible. The results show that hormone-sensitive cholesterol esterase of adipose tissue has ready access to the neutral lipid core of plasma lipoproteins, either because the enzyme penetrates the polar shell or because the cholesterol ester in the core is exposed, at least intermittently, to allow enzyme-substrate complex formation. Whether or not this enzyme activity plays a role in lipoprotein degradation by adipose tissue remains to be determined.  相似文献   

20.
A neutral serine protease was purified as a homogeneous protein from the culture broth of photosynthetic bacterium T-20 by sequential chromatographies on columns of DEAE-cellulose, Toyopearl HW 55F, hydroxyapatite, and CM-cellulose. The molecular weight was estimated to be approximately 44,000 by SDS-PAGE, while the value of approximately 80,000 was obtained when the Hedrick-Smith method was used; this suggested that the enzyme consists of two identical subunits. The isoelectric point was determined to be 6.3 by isoelectric focusing. The enzyme had a pH optimum at 7.8. Maximal enzyme activity was detected at 50°C, and the activity was stable up to 50°C for 5 min at pH 7.0–7.2. The substrate specificity of the protease was investigated with a series of synthetic peptidyl-p-nitroanilide. The best substrate examined was Suc-Ala-Ala-Pro-Phe-pNA. The protease activity was inhibited by various inhibitors of serine protease such as chymostatin, PMSF, and DFP. EDTA, which is an inhibitor of metal protease, also inhibited the protease activity, whereas inhibitors of thiol and aspartic proteases had no significant effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号