首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phosphatidylserine (PS), which is normally localized in the cytoplasmic leaflet of the membrane, undergoes externalization during aging or trauma of red blood cells (RBCs). A fraction of this PS is shed into the extracellular milieu. Both PS externalization and shedding are modulated by the oxidative state of the cells. In the present study we investigated the effect of calcium (Ca) flux on oxidative stress-induced membrane distribution of PS and its shedding and on the membrane composition and functions. Normal human RBCs were treated with the oxidant t-butyl hydroperoxide, and thalassemic RBCs, which are under oxidative stress, were treated with the antioxidant vitamin C or N-acetylcystein. The intracellular Ca content was modulated by the Ca ionophore A23187 and by varying the Ca concentration in the medium. Ca flux was measured by Fluo-3, PS externalization and shedding were measured by quantitative flow cytometry and membrane composition was measured by 1H-NMR analysis of the cholesterol and phospholipids. The results indicated that increasing the inward Ca flux induced PS externalization and shedding, which in turn increased the membrane cholesterol/phospholipid ratio and thereby increased the RBC osmotic resistance. In addition, these processes modulated the susceptibility of RBCs to undergo phagocytosis by macrophages; while PS externalization increased phagocytosis, the shed PS prevented it. These results indicate that PS redistribution and shedding from RBCs, which are mediated by increased calcium, have profound effects on the membrane composition and properties and, thus, may control the fate of RBCs under physiological and pathological conditions.  相似文献   

2.
Maturation and aging of erythroid cells are accompanied by extensive remodeling of the membrane and a marked decrease in cell size, processes that are mediated by externalization and shedding of phosphatidylserine (PS). In the present study, we investigated the redistribution of PS in the plasma membrane of erythroid precursors during their maturation and of mature RBCs during senescence, and the involvement of changes in calcium (Ca)-flux in these processes. Maturation was studied by analyzing normal human bone marrow cells as well as cultured human normal erythroid precursors induced by erythropoietin and murine erythroleukemia cells induced by hexamethylene-bisacetamide. Senescence was studied in normal human peripheral RBCs following density fractionation. PS and Ca were determined by flow cytometry using annexin-V and Flu-3, respectively. The outer, inner and shed PS were quantified by a novel two-step binding inhibitory assay. The results indicate a bi-phasic modulation of intracellular Ca and PS externalization/shedding; both of which decreased during maturation and increased during aging. The role of intracellular Ca in PS externalization/shedding was demonstrated by modulating intracellular Ca: Ca was decreased by incubating the cells with an ion chelator (EDTA) or with decreasing concentrations of Ca, whereas treatment with the ionophore A23187 elevated intracellular Ca. The results showed that low Ca resulted in decreased outer and shed PS, whereas high Ca had the opposite effect. The results suggest that PS externalization and shedding are mediated by increased cellular Ca-flux, and that they play an important role in erythroid maturation and RBC senescence.  相似文献   

3.
Phosphatidylserine (PS) in quiescent cells is predominantly confined to the inner leaflet of the plasma membrane. Externalization of PS is a marker of apoptosis, exocytosis, and some nonapoptotic activation events. It has been proposed that PS externalization is regulated by the activity of PLSCR1 (phospholipid scramblase 1), a Ca(2+)-dependent endofacial plasma membrane protein, which is tyrosine-phosphorylated in activated cells. It is, however, unclear how the phosphorylation of PLSCR1 is related to its membrane topography, PS externalization, and exocytosis. Using rat basophilic leukemia cells as a model, we show that nonapoptotic PS externalization induced through the high affinity IgE receptor (FcepsilonRI) or the glycosylphosphatidylinositol-anchored protein Thy-1 does not correlate with enhanced tyrosine phosphorylation of PLSCR1. In addition, PS externalization in FcepsilonRI- or Thy-1-activated cells is not associated with alterations of PLSCR1 fine topography as detected by electron microscopy on isolated plasma membrane sheets. In contrast, activation by calcium ionophore A23187 induces changes in the cellular distribution of PLSCR1. We also show for the first time that in pervanadate-activated cells, exocytosis occurs even in the absence of PS externalization. Finally, we document here that tyrosine-phosphorylated PLSCR1 is preferentially located in detergent-insoluble membranes, suggesting its involvement in the formation of membrane-bound signaling assemblies. The combined data indicate that changes in the topography of PLSCR1 and its tyrosine phosphorylation, PS externalization, and exocytosis are independent phenomena that could be distinguished by employing specific conditions of activation.  相似文献   

4.
In hair cells of the inner ear, phosphatidylserine (PS), detected with fluorescent annexin V labeling, was rapidly exposed on the external leaflet of apical plasma membranes upon dissection of the organ of Corti. PS externalization was unchanged by caspase inhibition, suggesting that externalization did not portend apoptosis or necrosis. Consistent with that conclusion, mitochondrial membrane potential and hair-cell nuclear structure remained normal during externalization. PS externalization was triggered by forskolin, which raises cAMP, and blocked by inhibitors of adenylyl cyclase. Blocking Na+ influx by inhibiting the mechanoelectrical transduction channels and P2X ATP channels also inhibited external PS externalization. Diminished PS externalization was also seen in cells exposed to LY 294002, which blocks membrane recycling in hair cells by inhibiting phosphatidylinositol 3-kinase. These results indicate that PS exposure on the external leaflet, presumably requiring vesicular transport, results from elevation of intracellular cAMP, which can be triggered by Na+ entry into hair cells.  相似文献   

5.
In hair cells of the inner ear, phosphatidylserine (PS), detected with fluorescent annexin V labeling, was rapidly exposed on the external leaflet of apical plasma membranes upon dissection of the organ of Corti. PS externalization was unchanged by caspase inhibition, suggesting that externalization did not portend apoptosis or necrosis. Consistent with that conclusion, mitochondrial membrane potential and hair-cell nuclear structure remained normal during externalization. PS externalization was triggered by forskolin, which raises cAMP, and blocked by inhibitors of adenylyl cyclase. Blocking Na(+) influx by inhibiting the mechanoelectrical transduction channels and P2X ATP channels also inhibited external PS externalization. Diminished PS externalization was also seen in cells exposed to LY 294002, which blocks membrane recycling in hair cells by inhibiting phosphatidylinositol 3-kinase. These results indicate that PS exposure on the external leaflet, presumably requiring vesicular transport, results from elevation of intracellular cAMP, which can be triggered by Na(+) entry into hair cells.  相似文献   

6.
In lymphocytes, an asymmetric distribution of phospholipids across the plasma membrane is maintained by an ATP-dependent translocase which specifically transports aminophospholipids from the outer to the inner leaflet of the bilayer. During apoptosis, this enzyme is down-regulated and a lipid flipsite, termed the scramblase, is activated. Together, these events lead to the appearance of phosphatidylserine (PS) on the cell surface. In DO11.10 T lymphocyte hybridoma cells undergoing apoptosis, the kinetics of PS externalization are paralleled by the development of PS-sensitive phagocytosis by macrophages. This parallel is also observed when PS externalization is effected directly by application of a Ca2+ ionophore, suggesting that PS externalization is not only necessary, but sufficient, to generate a recognition signal. The broad spectrum aspartate-directed cysteine protease (caspase) inhibitor zVAD-fmk blocks externalization of PS and terminal cell lysis after induction of apoptosis by anti-CD3 antibody, but is ineffective when apoptosis is induced in the same cells by treatment with glucocorticoid. These results suggest that apoptosis induced by glucocorticoid does not require the same zVAD-sensitive caspase steps which are required for Fas/FasL-dependent death induced by anti-CD3 antibody, and that the action of these proteases is also not required for PS externalization. Extracellular Ca2+ is required to complete the later stages of apoptosis in DO11.10 cells, and its removal restores normal transport of PS, suggesting that down-regulation of the aminophospholipid translocase and up-regulation of the scramblase are not effected by irreversible protease cleavage.  相似文献   

7.
During endochondral ossification, growth plate chondrocytes release plasma membrane (PM) derived matrix vesicles (MV), which are the site of initial hydroxyapatite crystal formation. MV constituents which facilitate the mineralization process include the integral membrane ectoenzymes alkaline phosphatase (ALPase) and nucleotide pyrophosphatase phosphodiesterase (NPP1/PC-1), along with a phosphatidylserine- (PS-) rich membrane surface that binds annexins and calcium, resulting in enhanced calcium entry into MV. In this study, we determined that chick growth plate MV were highly enriched in membrane raft microdomains containing high levels of cholesterol, glycophosphatidylinositol- (GPI-) anchored ALPase, and phosphatidylserine (PS) localized to the external leaflet of the bilayer. To determine how such membrane microdomains arise during chondrocyte maturation, we explored the role of PM cholesterol-dependent lipid assemblies in regulating the activities of lipid translocators involved in the externalization of PS. We first isolated and determined the composition of detergent-resistant membranes (DRMs) from chondrocyte PM. DRMs isolated from chondrocyte PM were enhanced in ganglioside 1 (GM1) and cholesterol as well as GPI-anchored ALPase. Furthermore, these membrane domains were enriched in PS (localized to the external leaflet of the bilayer) and had significantly higher ALPase activity than non-cholesterol-enriched domains. To understand the role of cholesterol-dependent lipid assemblies in the externalization of PS, we measured the activities of two lipid transporters involved in PS externalization, aminophospholipid translocase (APLT) and phospholipid scramblase (PLSCR1), during maturation of a murine chondrocytic cell line, N1511. In this report, we provide the first evidence that maturing chondrocytes express PLSCR1 and have scramblase activity. We propose that redistribution of PS is dependent on an increase in phospholipid scramblase activity and a decrease in APLT activity. Lastly, we show that translocator activity is most likely to be modulated by membrane cholesterol levels through a membrane raft microdomain.  相似文献   

8.
1. The influence of insulin on rat liver membrane lipid composition, fluidity, some enzyme activities and asymmetry of microsomal phospholipids were investigated. 2. The total phospholipids and cholesterol were increased in microsomes and reduced in plasma membranes from insulin-treated rats. 3. Of all the investigated enzymes participating in the lipid metabolism, only the neutral sphingomyelinase activity was observed to be enhanced, whereas the ceramide-phosphatidylethanolamine (PE) synthetase and phospholipase A2 activities remained unchanged. 4. Insulin administration caused translocation of phosphatidylserine (PS) and PE to the outer leaflet and of phosphatidylinositol (PI) to the inner leaflet of microsomal membranes.  相似文献   

9.
The investigation focuses on the phospholipid composition of the sarcolemma of cultured neonatal rat heart cells and on the distribution of the phospholipid classes between the two monolayers of the sarcolemma. The plasma membranes are isolated by 'gas-dissection' technique and 38% of total cellular phospholipid is present in the sarcolemma with the composition: phosphatidylethanolamine (PE) 24.9%, phosphatidylcholine (PC) 52.0%, phosphatidylserine/phosphatidylinositol (PS/PI) 7.2%, sphingomyelin 13.5%. The cholesterol/phospholipid ratio of the sarcolemma is 0.5. The distribution of the phospholipids between inner and outer monolayer is defined with the use of two phospholipases A2, sphingomyelinase C or trinitrobenzene sulfonic acid as lipid membrane probes in whole cells. The probes have access to the entire sarcolemmal surface and do not produce detectable cell lysis. The phospholipid classes are asymmetrically distributed: (1) the negatively charged phospholipids, PS/PI are located exclusively in the inner or cytoplasmic leaflet; (2) 75% of PE is in the inner leaflet; (3) 93% of sphingomyelin is in the outer leaflet; (4) 43% of PC is in the outer leaflet. The predominance of PS/PI and PE at the cytoplasmic sarcolemmal surface is discussed with respect to phospholipid-ionic binding relations between phospholipids and exchange and transport of ions, and the response of the cardiac cell on ischemia-reperfusion.  相似文献   

10.
K562 erythroleukemia cells undergo apoptosis when induced to differentiate along the erythroid lineage with hemin. This event, characterized by DNA fragmentation, correlated with downregulation of the survival protein, BCL-xL, and decrease in mitochondrial transmembrane potential (deltapsi[m]) that ultimately resulted in cell death. Reorientation of phosphatidylserine (PS) from the cells inner-to-outer plasma membrane leaflet and inhibition of the aminophospholipid translocase was observed upon hemin-treatment. Constitutive expression of BCL-2 did not inhibit hemin-induced alterations in lipid asymmetry or decrease in deltapsi[m], and only moderately prevented DNA fragmentation. BCL-2, on the other hand, effectively inhibited actinomycin D-induced DNA fragmentation, the appearance of PS at the cells outer leaflet and the decrease in deltapsi[m]. The caspase inhibitor, z.VAD.fmk, blocked DNA fragmentation by both hemin and actinomycin D, but inhibited PS externalization only in the actinomycin D-treated cells. These results suggest that, unlike pharmacologically-induced apoptosis, PS externalization triggered by differentiation-induced apoptosis occurs by a mechanism that is associated with a decrease in deltapsi[m], but independent of BCL-2 and caspases.  相似文献   

11.
Phospholipids are asymmetrically distributed across the membrane of all cells, including red blood cells (RBCs). Phosphatidylserine (PS) is mainly localized in the cytoplasmic membrane leaflet, but during RBC ageing it flip-flops to the external leaflet—a process that is increased in certain pathological conditions (e.g., β-thalassemia). PS externalization in RBCs mediates their phagocytosis by macrophages and removal from the circulation. PS is usually measured by flow cytometry and is reported as the percentage of cells with external PS. In the current study, we developed a novel two-step flow cytometry procedure to quantitatively measure not only the external PS but also the intracellular and shed PS. In this method, PS is first bound to fluorescent annexin V, and then the residual nonbound annexin is quantified by binding to PS exposed on apoptotic cells. Using this method, we measured 1.1 ± 0.2 and 0.12 ± 0.04 μmol inner and external PS, respectively, per 107 normal RBCs. Thalassemic RBCs demonstrated increased PS externalization (1.7-fold) and shedding (11-fold) that was accompanied by lower intracellular PS (31%). These results suggest that quantitative flow cytometry of PS could have a diagnostic value in evaluating the pathology of RBCs in hemolytic anemias associated with increased PS externalization and shortening of the RBC life span.  相似文献   

12.
Numerous studies investigating the cGMP-gated cation conductance in rod disk membranes have purported to measure efflux of Ca2+ entrapped in rod disk membrane vesicles. We have utilized sonication and osmotic shock as additional tests for sensitivity of cGMP- and A23187-induced Ca2+ release to elimination of the transvesicular Ca2+ gradient. We find that 1) Treatment with sonication or osmotic shock in low Ca2+ medium does not release Ca2+ from either native cGMP/Ca2(+)-loaded vesicles or solubilized, reconstituted "Ca2(+)-loaded" vesicles, 2) 70-100% of the cGMP-induced "flux" and 90-100% of the A23187-induced Ca2+ "flux" is insensitive to elimination of the Ca2+ gradient by sonication or osmotic shock in low Ca2+ medium, and 3) total amount of releasable Ca2+ is related to membrane surface area rather than vesicle entrapment volume. We conclude that 1) A23187 disrupts binding of Ca2+ to proteins and phospholipids as well as releasing entrapped Ca2+ and 2) a large fraction of the cGMP-induced release observed in rod disk vesicles is due to release of bound Ca2+.  相似文献   

13.
Planar bilayer lipid membranes formed from trepang phospholipids possess an intrinsic Ca2(+)-permeability. These phospholipids dissolved in a non-polar solvent can extract 45Ca2+ from the aqueous to the organic phase. The triterpenic glycoside holotoxin A isolated from the trepang Stichopus japonicus inhibits the Ca2+ flux of lipid bilayers from trepang phospholipids as well as the Ca2+ flux induced in phosphatidylcholine bilayers by the calcium ionophore X-537A. Toxin inhibits the Ca2+ ionophore A23187 induced Ca2+ efflux from phosphatidylcholine liposomes and 45Ca2+ transition from the aqueous to the organic phase. Holotoxin A does not inhibit the 45Ca2+ transfer to the non-polar phase induced by holoturia phospholipids and does not affect the phosphatidylcholine hydroperoxide-induced Ca2+ flux of lipid bilayers. Using the fluorescent probe pyrene, it was demonstrated that toxin increases the microviscosity of liposomal membranes and trepang oocyte "ghosts".  相似文献   

14.
Lipid domain formation induced by annexin was investigated in mixtures of phosphatidylcholine (PC), phosphatidylserine (PS), and cholesterol (Chol), which were selected to mimic the inner leaflet of a eukaryotic plasma membrane. Annexins are ubiquitous and abundant cytoplasmic, peripheral proteins, which bind to membranes containing PS in the presence of calcium ions (Ca2+), but whose function is unknown. Prompted by indications of interplay between the presence of cholesterol in PS/PC mixtures and the binding of annexins, we used Monte Carlo simulations to investigate protein and lipid domain formation in these mixtures. The set of interaction parameters between lipids and proteins was assigned by matching experimental observables to corresponding variables in the calculations. In the case of monounsaturated phospholipids, the PS-PC and PC-Chol interactions are weakly repulsive. The interaction between protein and PS was determined based on experiments of annexin binding to PC/PS mixtures in the presence of Ca2+. Based on the proposal that PS and cholesterol form a complex in model membranes, a favorable PS-Chol interaction was postulated. Finally, protein-protein favorable interactions were also included, which are consistent with observations of large, two-dimensional, regular arrays of annexins on membranes. Those net interactions between pairs of lipids, proteins and lipids, and between proteins are all small, of the order of the average kinetic energy. We found that annexin a5 can induce formation of large PS domains, coincident with protein domains, but only if cholesterol is present.  相似文献   

15.
Effect of cholesterol, divalent ions and pH on spherical bilayer membrane fusion was studied as a function of increasing temperature. Spherical bilayer membranes were composed of natural [phosphatidylcholine (PC) and phosphatidylserine (PS)] as well as synthetic (dipalmitoyl-PC, dimyristoyl-PC and dioleoyl-PC) phospholipids. Incorporation of cholesterol into the membrane (33% by weight) suppressed the fusion temperature and also greatly reduced the percentage of membrane fusion. The presence of 1 mM divalent ions (Ca++, Mg++ or Mn++) on both sides or one side of the PC membrane did not affect appreciably its fusion characteristic with temperature, but the PS membrane fusion with temperature was greatly enhanced by the presence of divalent ions. The variation of pH of the environmental solution in the range of 5.5 approximately 7.0 did not affect the membrane fusion characteristic. However, at pH 8.5, the fusion with respect to temperature was shifted toward the lower temperature by approximately 3degreesC for PC and PS membranes, and at pH 3.0 the opposite situation was observed as the fusion temperature was increased by 6degreesC for PS membranes and by 4degreesC for PC membranes The results seem to indicate that membrane fluidity and structural instability in the bilayer are important for membrane fusion to occur.  相似文献   

16.
To elucidate the role of phospholipid asymmetry in calcium-phosphate-induced fusion of human erythrocytes, we examined the interaction of erythrocyte membranes with asymmetric and symmetric bilayer distributions of phospholipids. Fusion of human erythrocytes was monitored by light microscopy as well as spectrophotometrically by the octadecylrhodamine dequenching assay. Phospholipid translocation and distribution between the inner and the outer leaflet of intact red blood cells were determined with spin-labeled phosphatidylserine (PS), phosphatidylethanolamine (PE), and phosphatidylcholine (PC). Significant fusion of lipid-asymmetric red blood cells where PS and PE are predominantly oriented to the inner leaflet was only observed at Ca2+ concentrations greater than or equal to 10 mM (in the presence of 10 mM phosphate buffer) while fusion of lipid-symmetric erythrocyte membranes was established at greater than or equal to 1.5 mM Ca2+. The Ca2+ threshold of fusion of lipid-asymmetric red blood cells was significantly reduced (i) after exposure of PS to the outer layer but not after redistribution of PE alone, and (ii) upon incorporation of spin-labeled PS into the outer leaflet of red blood cells. Spin-labeled PE or PC did not affect fusion, suggesting that the serine headgroup is an important factor in calcium-phosphate-induced fusion.  相似文献   

17.
A fluorescence-quenching method has been used to assess the potential formation of segregated liquid-ordered domains in lipid bilayers combining cholesterol with mixtures of amino and choline phospholipids like those found in the cytoplasmic leaflet of the mammalian cell plasma membrane. When present in proportions >20-30 mol %, different saturated phospholipids show a strong proclivity to form segregated domains when combined with unsaturated phospholipids and cholesterol, in a manner that is only weakly affected by the nature of the phospholipid headgroups. By contrast, mixtures containing purely unsaturated phospholipids and cholesterol do not exhibit detectable segregation of domains, even in systems whose components differ in headgroup structure, mono- versus polyunsaturation and/or acyl chain heterogeneity. These results indicate that mixtures of phospholipids resembling those found in the inner leaflet of the plasma membrane do not spontaneously form segregated liquid-ordered domains. Instead, our findings suggest that factors extrinsic to the inner-monolayer lipids themselves (e.g., transbilayer penetration of long sphingolipid acyl chains) would be essential to confer a distinctive, more highly ordered organization to the cytoplasmic leaflet of "lipid raft" structures in animal cell membranes.  相似文献   

18.
New reagents for phosphatidylserine recognition and detection of apoptosis   总被引:5,自引:0,他引:5  
The phospholipid bilayer surrounding animal cells is made up of four principle phospholipid components, phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), and sphingomyelin (SM). These four phospholipids are distributed between the two monolayers of the membrane in an asymmetrical fashion, with PC and SM largely populating the extracellular leaflet and PE and PS restricted primarily to the inner leaflet. Breakdown in this transmembrane phospholipid asymmetry is a hallmark of the early to middle stages of apoptosis. The consequent appearance of PS on the extracellular membrane leaflet is commonly monitored using dye-labeled Annexin V, a 36 kDa, Ca2+-dependent PS binding protein. Substitutes for Annexin V are described, including small molecules, nanoparticles, cationic liposomes, and other proteins that can recognize PS in a membrane surface. Particular attention is given to the use of these reagents for detecting apoptosis.  相似文献   

19.
Apoptosis is generally accompanied by a late phase of ceramide (Cer) production, the significance of which is unknown. This study describes a previously unrecognized link between Cer accumulation and phosphatidylserine (PS) exposure at the cell surface, a characteristic of the execution phase of apoptosis resulting from a loss of plasma membrane phospholipid asymmetry. Using a fluorescent sphingomyelin (SM) analogue, N-(N-[6-[(7-nitrobenz-2-oxa-1, 3-diazol-4-yl)amino]caproyl]-sphingosylphosphorylcholine (C(6)-NBD-SM), we show that Cer is derived from SM, initially located in the outer leaflet of the plasma membrane, which gains access to a cytosolic SMase by flipping to the inner leaflet in a process of lipid scrambling paralleling PS externalization. Lipid scrambling is both necessary and sufficient for SM conversion: Ca(2+) ionophore induces both PS exposure and SM hydrolysis, whereas scrambling-deficient Raji cells do not show PS exposure or Cer formation. Cer is not required for mitochondrial or nuclear apoptotic features since these are still observed in Raji cells. SM hydrolysis facilitates cholesterol efflux to methyl-beta-cyclodextrin, which is indicative of a loss of tight SM-cholesterol interaction in the plasma membrane. We provide evidence that these biophysical alterations in the lipid bilayer are essential for apoptotic membrane blebbing/vesiculation at the cell surface: Raji cells show aberrant apoptotic morphology, whereas replenishment of hydrolyzed SM by C(6)- NBD-SM inhibits blebbing in Jurkat cells. Thus, SM hydrolysis, during the execution phase of apoptosis, results from a loss of phospholipid asymmetry and contributes to structural changes at the plasma membrane.  相似文献   

20.
Annexin A2 (AnxA2) is a phospholipid binding protein that has been implicated in many membrane-related cellular functions. AnxA2 is able to bind different acidic phospholipids such as phosphatidylserine (PS) and phosphatidylinositol-4,5-bisphosphate (PI2P). This binding is mediated by Ca(2+)-dependent and Ca(2+)-independent mechanisms. The specific functions of annexin A2 related to these two phospholipids and the molecular mechanisms involved in their interaction remain obscure. Herein we studied the influence of lipid composition on the Ca(2+)-dependency of AnxA2-mediated membrane bridging and on membrane fluidity. Membrane models of ten different lipid compositions and detergent-resistant membranes from two cellular sources were investigated. The results show that the AnxA2-mediated membrane bridging requires 3 to 50 times less calcium for PS-membranes than for PI2P-membranes. Membrane fluidity was measured by the ratiometric fluorescence parameter generalized polarization method with two fluorescent probes. Compared to controls containing low phospholipid ligand, AnxA2 was found to reduce the membrane fluidity of PI2P-membranes twice as much as the PS-membranes in the presence of calcium. On the contrary, at mild acidic pH in the absence of calcium AnxA2 reduces the fluidity of the PS-membranes more than the PI2P-membranes. The presence of cholesterol on the bilayer reduced the AnxA2 capacity to reduce membrane fluidity. The presented data shed light on the specific roles of PI2P, PS and cholesterol present on membranes related to the action of annexin A2 as a membrane bridging molecule during exocytosis and endocytosis events and as a plasma membrane domain phospholipid packing regulator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号