首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stress reduces fertility in ruminants. Various experimental models, such as insulin-induced hypoglycaemia, have been used to investigate the mechanisms involved, and have revealed abnormal LH profiles (both pulse and surge secretion). This disruption affects follicular function and it is proposed there may be negative consequences on subsequent oocyte morphology. Insulin (5 iu/kg), administered to ewes in the late follicular phase, induced hypoglycemia for 10 h, decreased estradiol concentrations for 8-12 h and delayed the LH surge by 15 h. Although the diameters of dominant follicles just before ovulation were not affected, granulosa cells had fewer pycnotic nuclei, less apoptosis and increased proliferation 16-17 h after the LH surge. Nevertheless, we did not observe gross ultra-structural differences in nuclear, cytoplasmic or cumulus maturity between oocytes from insulin-treated and control animals. This suggests that reduced LH pulsatility and a delay in the LH surge may only produce very subtle changes in gross oocyte morphology, imperceptible by electron microscopy.  相似文献   

2.
The structure of oocytes aspirated from the dominant and its subordinate follicles was investigated from the achievement of follicular dominance to ovulation. Ovulation was induced in 18 heifers and 5 cows by injection of cloprostenol at days 8–14 (day 0 = day of ovulation), and follicular development was monitored by ultrasonography. The animals were slaughtered at days 3–11, but animals slaughtered on days 8–11 were given a second injection of cloprostenol at day 7 to allow ovulation of the dominant follicle of the first follicular wave. Oocytes were aspirated from the dominant (largest) and two largest subordinat efollicles and processed for transmission electron microscopy, whereas the follicular fluids were analyzed for concentrations of estradiol-17β (E2) and progesterone (P4). Dominant follicular growth was associated with increase in the concentration of E2 and P4 in the follicular fluid, which was E2-dominated. From days 3–7, the dominant oocytes had pronounced junctional contacts with the cumulus cells and a nonundulating nuclear envelope but showed an increase in the number of lipid droplets and a decrease in the size of Golgi complexes, the size of cortical granule clusters, and the number of microvilli stacks. After cloprostenol injection on day 7, but before the anticipated LH surge, the dominant oocytes showed a reduced oocyte cumulus contact, vacuolization of the nucleolus, undulation of the nuclear envelope, and dispersal of the mitochondrial clusters. The morphological alterations occurring in the dominant oocytes before the anticipated LH surge are suggested to be a prerequisite for the oocyte to achieve the competence to undergo final maturation. Subordinate follicles ceased growing at about days 3–4 and their follicular fluid had low E2:P4 ratio or was P4-dominated. Subordinate oocytes displayed degenerative features in their cumulus investment and nuclear activation and maturation especially after day 5. The structural changes associated with oocyte degeneration showed similarities with the processes seen before and during final maturation of the dominant oocytes. © 1994 Wiley-Liss, Inc.  相似文献   

3.
Summary The mammalian oocyte becomes arrested at the diplotene stage of the first meiotic division during prenatal or early postnatal life. It remains arrested in meiosis until shortly before ovulation when the surge of gonadotropin induces resumption and completion of meiosis to the metaphase II stage. When oocytes are harvested from medium-sized or large follicles of pig and other species and cultured, they resume meiosis spontaneously indicating that the follicles exert an inhibitory influence on meiosis. To analyze the control of meiosis by follicular components, culture of isolated pig oocytes in the presence of follicular cells or follicular fluid (FF1) has been used as a model in this laboratory. An oocyte maturation inhibitor (OMI) has been isolated and partially purified by ultrafiltration and gel chromatography of FF1 and shown to be a polypetide with a molecular weight in the order of 2000 daltons. Physiological characterization has shown that the effect of OMI in vitro is reversible and that it can be overcome by luteinizing hormone (LH). The action of OMI requires the presence of cumulus cells surrounding the oocyte since it was found that denuded oocytes, stripped of cumulus cells, do not respond to OMI. Furthermore, when cumulus-enclosed oocytes were cultured, OMI inhibited the differentiation of the cumulus cells in terms of morphology and progesterone secretion in a dose-related manner. The inhibition of cumulus differentiation by OMI was reversible and could be overcome by LH. The results indicate that the effect of partially purified OMI upon meiosis may be mediated by the cumulus cells. Presented in the formal symposium on Sexual Differentiation in Vitro and in Vivo at the 29th Annual Meeting of the Tissue Culture Association, Denver, Colorado, June 4–8, 1978. This study was supported by Grants 760–0530 from the Ford Foundation (to C.P.C.), and Grant B78-14F-5158-01 from the Swedish Medical Research Council (to T.H.).  相似文献   

4.
In this study we assessed the effect of GnRH on the recovery rate, meiotic synchronization and in vitro developmental competence of oocytes recovered close to the expected time of ovulation. Twenty-three heifers were superstimulated with FSH, and luteolysis was induced by PGF(2alpha) injection 48 h after the start of treatment Twelve heifers received 200 microg GnRH at 34 h after PGF(2alpha) treatment, Blood samples were collected between 35 to 47 h after PGF(2alpha) administration to determine the time of the LH surge. Transvaginal follicular aspiration was performed at 60 h after PGF(2alpha), and the recovered oocytes were fertilized or fixed either immediately or after 24 h of maturation in vitro. GnRH-treated heifers showed an LH surge within 3 h after treatment, while only 4 of the 10 heifers in the control group exhibited an LH surge by 47 h after treatment with PGF(2alpha). The average number of large follicles (> 10 mm) was 21.3 +/- 2.3 and 19.3 +/- 2.4 for GnRH-treated and control heifers, respectively. The oocyte recovery rate was 87.7 and 63.1% (P < 0.05), respectively, and most of the cumulus-oocyte-complexes (COC) recovered from the 2 groups had an expanded cumulus (80.4 and 80.5%, respectively). Oocytes with an expanded cumulus from the GnRH group had completed meiotic maturation at higher rate than the controls (97 vs 20%;P < 0.05). In vitro development to the blastocyst stage of cumulus-expanded oocytes fertilized immediately after recovery was higher in GnRH-treated than in control heifers (60.3 vs 40.0%; P < 0.05). No difference was observed when oocytes with compact or expanded cumulus were matured in vitro for 24 h before fertilization. These results indicate that GnRH injections improve the oocyte recovery rate and that oocytes have a higher development competence than those obtained from non-GnRH-treated animals. We propose that this higher in vitro developmental competence may result from a more synchronous or further advanced meiotic maturation. However, due to the small number of oocytes in our study, we must emphasize that our findings on meiotic resumption are of preliminary nature.  相似文献   

5.
W J Murdoch 《Life sciences》1990,46(26):1961-1965
Concentrations of histamine were measured within the follicular wall, follicular fluid and ovarian interstitium throughout the periovulatory period in sheep. Histamine within follicular tissue declined after the onset of the preovulatory surge of luteinizing hormone (LH) and remained low until after ovulation, when levels then increased markedly. Alterations in histamine within the follicular wall were not reflected by corresponding changes within follicular fluid or ovarian interstitium. Release of histamine from tissue during short-term incubation was greatest for follicles obtained after ovulation, which was not influenced by presence of LH in the incubation medium. Luteinizing hormone caused depletion of stores of histamine from the wall of follicles collected before the preovulatory surge of LH. Histamine could act as a paracrine mediator in the follicular mechanisms of ovulation and(or) luteinization.  相似文献   

6.
Elephants express two luteinizing hormone (LH) peaks timed 3 wk apart during the follicular phase. This is in marked contrast with the classic mammalian estrous cycle model with its single, ovulation-inducing LH peak. It is not clear why ovulation and a rise in progesterone only occur after the second LH peak in elephants. However, by combining ovarian ultrasound and hormone measurements in five Asian elephants (Elephas maximus), we have found a novel strategy for dominant follicle selection and luteal tissue accumulation. Two distinct waves of follicles develop during the follicular phase, each of which is terminated by an LH peak. At the first (anovulatory) LH surge, the largest follicles measure between 10 and 19.0 mm. At 7 ± 2.4 days before the second (ovulatory) LH surge, luteinization of these large follicles occurs. Simultaneously with luteinized follicle (LUF) formation, immunoreactive (ir) inhibin concentrations rise and stay elevated for 41.8 ± 5.8 days after ovulation and the subsequent rise in progesterone. We have found a significant relationship between LUF diameter and serum ir-inhibin level (r(2) = 0.82, P < 0.001). The results indicate that circulating ir-inhibin concentrations are derived from the luteinized granulosa cells of LUFs. Therefore, it appears that the development of LUFs is a precondition for inhibin secretion, which in turn impacts the selection of the ovulatory follicle. Only now, a single dominant follicle may deviate from the second follicular wave and ovulate after the second LH peak. Thus, elephants have evolved a different strategy for corpus luteum formation and selection of the ovulatory follicle as compared with other mammals.  相似文献   

7.
The present study was carried out to determine whether the presence of photostimulated sedated male goats could stimulate the LH preovulatory surge and ovulation in seasonal anestrous goats. Sexually experienced male goats were treated with artificial long days (16 hours light per day) from 1 November to 15 January to stimulate their sexual activity in March and April, corresponding to the natural sexual rest. A female group of goats (n = 20) was exposed to non-sedated males who displayed an intense sexual behavior and provided strong odor (non-sedated group). Another female group of goats (n = 20) was exposed to the photo-stimulated male goats, but these males were sedated with Xylazine 2% to prevent the expression of sexual behavior (sedated group). The sedated males also provided a strong odor. Females of both groups had full physical and visual contact with non-sedated or sedated males. In both groups, the males remained with females during 4 days. The LH preovulatory surge of 10 female goats per group was measured by determination of LH plasma concentrations in samples taken every 3 hours. In addition, in all goats, (n = 20 by group), ovulation was determined by measuring plasma concentrations of progesterone. The proportion of female goats showing a preovulatory LH surge was higher in goats exposed to non-sedated (10/10) than in those exposed to sedated bucks (0/10; P < 0.0001). Similarly, most of does in contact with non-sedated males ovulated (19/20), but none of those in contact with sedated males did so (0/20; P < 0.0001). We conclude that the expression of an intense sexual behavior by male goats is necessary to induce LH preovulatory surge and ovulation in seasonally anovulatory goats.  相似文献   

8.
The aim of the present study was to describe the canine oocyte ultrastructural modifications during in vivo maturation, with precise reference to the timing of the LH surge and of ovulation. Twenty-five bitches were ovariectomized at specific stages between the onset of proestrus and the fifth day post-ovulation: 65 oocytes were observed by transmission electron microscopy (TEM), either before the LH surge (n = 10), between the LH surge and ovulation (n = 12) or after ovulation (n = 43). Prior to the LH surge, the oocyte nucleus had already begun its displacement to the vicinity of the oolemma and reticulated nucleoli were infrequent. The cytoplasm showed signs of immaturity (few organelles preferentially located in the cortical zone, "mitochondrial cloud", scarce cortical granules). The LH surge was immediately followed by cumulus expansion but the ovulation occurred 2 days later. Retraction of the transzonal projections and the meiotic resumption occurred after another 3 days (5 days after the LH peak). The ovulation was then followed by gradual cytoplasmic modifications. Nucleoli re-assumed a reticulated aspect around 24 hr post-ovulation. From 48 hr post-ovulation mitochondria and SER were very numerous and evenly distributed. In conclusion canine oocyte maturation began prior to the LH surge and no cytoplasmic or nuclear modifications followed immediately the LH surge and ovulation. This study suggests that two distinct signals are needed for the final in vivo maturation: one prior to the LH surge (to induce maturation) and another one, around 3 days post-ovulation (to induce meiotic resumption).  相似文献   

9.
On the basis of structural observations bovine oocytes were grouped into four successive classed: 0, those before the luteinizing hormone (LH) surge; 1, those up to 8 h following the LH peak level; 2, those between 8 and 19 h after the LH peak level; and 3, those between 19 h after the LH peak level and ovulation. Oocytes in class 0 had mitochondria located in a generally peripheral position. Interior to the mitochondria were elements of rough endoplasmic reticulum (RER) and numerous membrane-bound vesicles which bore ribosome-like particles on their outer surface. The first visible changesater the LH peak level as seen in class 1 were the formation of the periviteline space with loss of contact between the cumulus cells and the oocyte, and ruffing of the nuclear envelope. These changes were followed b the resumption of meiosis as defined by germinal-vesicle breakdown (GVBD), the disappearance of RER, and the formation fo clusters of mitochondria in association with lipid droplets and elementrs of smooth endolasmic reticulum (SER). The period between 8 and 19 h following LH peak level (class 2) was characterized by intensive clustering of mitochoncria in association with lipid droplets and elements of SER, conversion of lipid, fusion of vesicles, and the appearance of ribosomes in the cytoplasm. During the final stage (class 3), the polar body was extruded, the mitochondria dispersed, and the majority of the organelles became located toward the center of the cell. The relatively organelle-free cortical region contained cortical granules immediately adjacent to the plasma membrane together with aggregates of tubular SER. The structural changes are discussed in the context of follicular steroidogenesis and oocyte developmental competence.  相似文献   

10.
In the present study, the effect of different protein supplementation on meiotic nuclear configuration, DNA fragmentation (TUNEL assay) and metabolic parameters of dog oocytes cultured in vitro for 72 h was investigated. TCM-199 medium was supplemented either with 0.3% bovine serum albumin (BSA) or with 10% bitch heat inactivated plasma (OBP) collected before the LH peak or with OBP collected between the LH peak and ovulation or OBP collected after ovulation. After culture, more than 70% of the cumulus-oocyte complexes cultured in plasma groups presented extensive cell expansion, while none of those cultured in BSA showed extensive expansion of the cumulus (P < 0.05). Glucose consumption and lactate production was lower (P < 0.05) in the BSA-supplemented medium than in plasma-supplemented groups. In all groups, high amounts of alanine were produced. A higher number of oocytes with DNA fragmentation were observed in the BSA group, while in the plasma-supplemented groups more oocytes presented undistinguishable nuclear material. Only a small percentage of the oocytes (7.4-12.7%) had intact DNA after culture and within these, no differences were observed between groups in number of oocytes at each chromatin configuration stage. No differences in the percentage of oocytes reaching metaphase II (MII) were observed between experimental groups. Still, only 2% of cultured oocytes reached MII, but 85.7% of these had intact DNA. Conversely, all other chromatin configurations presented a high proportion of fragmented DNA (germinal vesicle 79.8%; meiosis resumption 73.3%; unclassified 95.2%). In conclusion, a high percentage of canine oocytes that do not complete meiotic maturation to MII are degenerated, whereas a high proportion of MII oocytes have intact DNA, independently of the protein supplement used.  相似文献   

11.
We previously proposed that an endothelin-angiotensin-atrial natriuretic peptide system may contribute to inducing ovulation of mature bovine follicles by modulating follicular secretion of steroids and prostaglandins (PGs). Thus, this study aimed to determine the real-time changes in the local release of angiotensin II (Ang II), endothelin (ET), atrial natriuretic peptide (ANP), PGF(2alpha), and steroid hormones from bovine mature follicles during the periovulatory period in vivo. Seven cows were treated for superovulation using FSH and PGF(2alpha) injections. Two dialysis capillary membranes per follicle were surgically implanted into the theca layer of mature follicles and connected to a microdialysis system (MDS). Fractions of the perfusate were collected from Day -1 (Day 0 = LH surge) to Day 3. Five out of seven treated cows were normally ovulated, and the newly formed corpora lutea were observed at the end of the experiment. In these five ovulated cows, the release of estradiol, androstenedione, and progesterone in the theca layer increased (P < 0.05) synchronously with the LH surge. Acute increases in PGF(2alpha) and Ang II concentrations in the ovarian venous plasma (OVP) were observed at 24-48 h after the peak of the LH surge, when multiple ovulations were expected to occur. The follicular Ang II release was low during the pre-LH surge period and rose (P < 0.05) at the beginning of the increase in the LH surge. On the other hand, ET-1 release dropped (P < 0.05) when plasma LH started to increase. However, no clear changes in ANP concentration in the MDS perfusate and plasma were observed. The above local changes in Ang II, PGF(2alpha), as well as steroid hormones were not observed in cows (n = 2) that did not show an LH surge and ovulation. The present results demonstrate for the first time the local release of Ang II, ET-1, and ANP from the bovine mature follicle in real-time in vivo and show that Ang II and PGF(2alpha) concentrations in the OVP acutely increase around the time of ovulation. The overall results support the concept of a local functional ET-Ang-ANP system in the bovine mature follicle that may be involved in the ovulatory process.  相似文献   

12.
Preovulatory cow follicles (n = 34) were collected at different times after the onset of oestrus until shortly before ovulation. In-vitro conversion of tritiated pregnenolone in the presence of NAD+ by homogenates of the follicular wall was compared in phases relative to the LH peak. During phase 0 (before the LH surge) a moderate conversion into progesterone occurred, but it was subsidiary to that into 17 alpha-hydroxypregnenolone and other unidentified steroids. During phases 1 (0-6 h after the LH peak), 2A (6-14 h) and 2B (14-20 h) the production of progesterone and 17 alpha-hydroxypregnenolone remained constant; at phase 2B the percentage of remaining pregnenolone was higher than in the preceding phases. In phase 3 (20 h after the LH peak until ovulation) conversion into progesterone had increased about 4-fold to the highest levels observed (97% after 2 h incubation), and production of 17 alpha-hydroxypregnenolone and unidentified steroids was low. In an additional experiment, homogenates of the wall of 3 follicles at phase 3 were also incubated with tritated progesterone in the presence of NADPH. The percentage of remaining progesterone was high, and a moderate conversion into 17 alpha-hydroxyprogesterone occurred. In the main experiments, however, production of this steroid was not observed. The results indicate that steroid synthesis in the preovulatory follicle of the cow changes to the production of progesterone shortly before ovulation.  相似文献   

13.
Concentrations of circulating hormones after Day 14 (Day 0 = ovulation) were determined daily in 87 interovulatory intervals (IOIs) in heifers. The IOIs were grouped into four permutations according to an ipsilateral (Ipsi) or contralateral (Contra) relationship between the CL and the preovulatory follicle and two (2W) or three (3W) follicular waves per IOI. The number of IOIs per group differed (P < 0.005) from equality among the Ipsi-2W (n = 27), Contra-2W (n = 31), Ipsi-3W (n = 9), and Contra-3W (n = 20) groups. A continuous decrease in progesterone (luteolysis) began later (P < 0.05) in the Contra-3W group (Day 18.0 ± 0.4) than in each of the Ipsi-2W (15.4 ± 0.2), Contra-2W (15.6 ± 0.2), and Ipsi-3W (16.2 ± 0.5) groups. Concentrations of LH and estradiol began to increase near the beginning of luteolysis in each group. A minor FSH surge that did not stimulate a major follicular wave developed in about 50% of the IOIs in each group, except that none were detected in the Ipsi-3W group. The minor FSH surge reached a peak about 4 days before ovulation and several days after wave 3 had emerged. The hypothesis that luteolysis begins earliest in two-wave IOIs, intermediate in three-wave IOIs with an ipsilateral CL/follicle relationship, and latest in three-wave IOIs with a contralateral relationship was supported. The hypothesis that a minor FSH surge occurs most frequently in association with three follicular waves was not supported.  相似文献   

14.
15.
To understand the mechanisms governing oocyte maturation better, the effects of the gonadotropin surge were studied on follicular cells of bovine preovulatory follicles. For this purpose, qualitative and quantitative changes in protein synthesis by both granulosa cells and cumulus cells were compared relative to the luteinizing hormone (LH) surge and the resumption of meiosis in the oocyte. Follicular cells were collected at different times before and up to 25 hr after the LH surge. For each individual preovulatory follicle, granulosa and cumulus cells were incubated separately for 3 hr with 3H-methionine or with 35S-methionine. Newly synthesized cytosolic proteins from granulosa and cumulus cells and proteins secreted into the medium were analyzed by polyacrylamide gel electrophoresis. The radioactivity was measured by liquid scintillation counting after slicing of the gels or revealed by fluorography. Three major peaks of the newly synthesized proteins, with molecular weights of 76, 56, and 30 kDa, were studied throughout the preovulatory period. After the LH surge, the overall level of protein synthesis increased in granulosa cells. In addition, the pattern of cytosolic proteins in granulosa cells changed, and, in particular, the relative synthesis of the 30 kDa peak decreased. These changes in cytosolic protein synthesis may be due to the action of LH since they could be reproduced in vitro in LH-stimulated granulosa cells. A predominant peak of 56 kDa was secreted by granulosa cells throughout the experimental period. No significant change was observed in proteins synthesized by cumulus cells under the same experimental conditions. The amounts of radioactivity incorporated into the three major proteins secreted by granulosa cells, however, were correlated significantly with the amounts of radioactivity incorporated by similar proteins synthesized by cumulus cells. These results indicate that cumulus cells respond differently from granulosa cells to the gonadotropin surge but not in an independent manner.  相似文献   

16.
In the preovulatory ovarian follicle, mammalian oocytes are maintained in prophase meiotic arrest until the luteinizing hormone (LH) surge induces reentry into the first meiotic division. Dramatic changes in the somatic cells surrounding the oocytes and in the follicular wall are also induced by LH and are necessary for ovulation. Here, we provide genetic evidence that LH-dependent transactivation of the epidermal growth factor receptor (EGFR) is indispensable for oocyte reentry into the meiotic cell cycle, for the synthesis of the extracellular matrix surrounding the oocyte that causes cumulus expansion, and for follicle rupture in vivo. Mice deficient in either amphiregulin or epiregulin, two EGFR ligands, display delayed or reduced oocyte maturation and cumulus expansion. In compound-mutant mice in which loss of one EGFR ligand is associated with decreased signaling from a hypomorphic allele of the EGFR, LH no longer signals oocyte meiotic resumption. Moreover, induction of genes involved in cumulus expansion and follicle rupture is compromised in these mice, resulting in impaired ovulation. Thus, these studies demonstrate that LH induction of epidermal growth factor-like growth factors and EGFR transactivation are essential for the regulation of a critical physiological process such as ovulation and provide new strategies for manipulation of fertility.  相似文献   

17.

Background  

This study aims to gather information either supporting or rejecting the hypothesis that acute stress may induce ovulation in women. The formulation of this hypothesis is based on 2 facts: 1) estrogen-primed postmenopausal or ovariectomized women display an adrenal-progesterone-induced ovulatory-like luteinizing hormone (LH) surge in response to exogenous adrenocorticotropic hormone (ACTH) administration; and 2) women display multiple follicular waves during an interovulatory interval, and likely during pregnancy and lactation. Thus, acute stress may induce ovulation in women displaying appropriate serum levels of estradiol and one or more follicles large enough to respond to a non-midcycle LH surge.  相似文献   

18.

Background  

In the ewe, ovarian antral follicles emerge or grow from a pool of 2–3 mm follicles in a wave like pattern, reaching greater than or equal to 5 mm in diameter before regression or ovulation. There are 3 or 4 such follicular waves during each estrous cycle. Each wave is preceded by a peak in serum FSH concentrations. The role of pulsatile LH in ovarian antral follicular emergence and growth is unclear; therefore, the purpose of the present study was to further define this role.  相似文献   

19.
Blood samples were collected and follicle diameters were determined daily beginning on Day 12 (Day 0 = ovulation) in 35 interovulatory intervals (IOIs) in heifers. A minor follicular wave with maximal diameter (6.0 ± 0.3 mm) on Day −4 was detected in six of seven IOIs that were scanned for follicles 4 mm or greater. The number of IOIs with a CV-identified minor FSH surge toward the end of the IOI was greater (P < 0.03) in two-wave IOIs (10/17) than in three-wave IOIs (4/18). The 17 two-wave IOIs were used for study of the temporal relationships among preovulatory follicle, FSH, LH, and estradiol. Daily growth rate of the preovulatory follicle was maximum on Days −11 to −7, minimum (P < 0.05) on Days −7 to −4, and increased (resurged, P < 0.05) on Days −4 to −3. A transient increase in FSH was maximum on mean Day −4, and the peak of a minor FSH surge occurred on Day −4.5 ± 0.2. Concentration of LH and estradiol increased between Days −5 and −4. Results demonstrated resurgence of the preovulatory follicle apparently for the first time in any species. Resurgence seemed more related temporally to the minor FSH surge than to the LH increase, but further study is needed. Results supported the novel hypotheses that a minor FSH surge near the end of the IOI is temporally associated with (1) the emergence of a minor follicular wave and (2) the resurgence in growth rate of the preovulatory follicle.  相似文献   

20.
Preovulatory bovine follicles (n = 28) were collected at different times after the onset of standing oestrus until shortly before ovulation. In-vitro conversion of tritiated androstenedione in the presence of NADPH by homogenates of the follicular wall was compared in phases relative to the LH peak. During phase 0 (before the LH surge) conversion into oestradiol-17 beta was high and production of oestrone was about 8-fold lower. During phases 1 (0-6 h after the LH peak) and 2A (6-14 h after the LH peak) the production of oestradiol and oestrone remained constant; the percentage of remaining androstenedione increased. In phase 2B (14-20 h after the LH peak) conversion into oestradiol and oestrone had decreased to about one third correlating with a higher percentage of remaining androstenedione. In phase 3 (20 h after the LH peak until ovulation) conversion into oestradiol and oestrone remained constant. The ratio between the production of oestrone and oestradiol remained constant throughout the phases of preovulatory development (0.13), indicating a concurrent inhibition of aromatase and 17 beta-hydroxysteroid dehydrogenase activities. Conversion into 19-hydroxyandrostenedione showed a pattern similar to that of oestradiol, and testosterone was produced in minute quantities. The results indicate that in preovulatory bovine follicles eventual inhibition of aromatization takes place at about 14 h after the preovulatory LH peak.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号