首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Insect–insect interactions can have implications for biological control programmes when multiple agent species are released. In many cases there is an increase in the efficacy when more than one species is used; however, there is a possibility that releasing an additional species into a programme could have a negative effect. The interactions between three arthropod agents of water hyacinth Eichhornia crassipes (Martius) Solms-Laubach, Eccritotarsus catarinensis (Carvalho), Neochetina bruchi Hustache and Neochetina eichhorniae Warner were investigated in an experiment to measure the impact that pairwise combinations of the insects may have on their performance. There was a significant interaction between the mirid E. catarinensis and the weevil N. eichhorniae, with significantly fewer weevil feeding scars when in combination with the mirid (approximately 0.2 scars per cm2) than when alone (approximately 0.4 scars per cm2). There were also slightly fewer petioles mined by N. eichhorniae when in combination with the mirid. Interestingly there was a negative interaction between the two weevil species when in combination, with the number of feeding scars being significantly lower per individual when the two species were in combination. None of the insects performed significantly better when in combination with another insect, however, the mirid was never negatively affected by the presence of either weevil species. The interactions observed between the insects tested were identifiable but subtle and are unlikely to have implications on establishment or performance of the insects in the introduced range, South Africa.  相似文献   

2.
We assessed the effect of two biological control agents, the mirid Eccritotarsus catarinensis (Carvalho) and the weevil Neochetina eichhorniae (Warner), singly or in combination, on the competitive ability of their host plant, water hyacinth, Eichhornia crassipes (Mart.) Solms-Laub., grown in a screen house, in competition with another aquatic plant (Pistia stratiotes L.). Water hyacinth plant growth characteristics measured included fresh weight, leaf and petiole lengths, number of inflorescences produced, and new shoots. Without herbivory, water hyacinth was 18 times more competitive than water lettuce (across all experimental combinations of initial plant densities), as estimated from fresh weights. Both insect species, singly or in combination, reduced water hyacinth plant growth characteristics. E. catarinensis alone was less damaging than the weevil and under normal conditions, i.e., floating water hyacinth, is not expected to increase control of water hyacinth beyond that of the weevil. When combined with the weevil, half the inoculum of weevils and half the inoculum of mirids produced the same growth reduction as the full inoculum of the weevil. Under conditions where the weevils are not effective because water hyacinths are seasonally rooted in mud, the mirid, which lives entirely on leaves, should become a useful additional biological control agent. Handling Editor: John Scott.  相似文献   

3.
Water hyacinth Eichhornia crassipes (Mart.) Solms. is an aquatic weed that infests most of the White Nile system in the Sudan. Serious economical and ecological problems are caused by this weed. The two weevils Neochetina eichhorniae and Neochetina bruchi were imported and released in an attempted biological control against the weed. The adults of these weevils attack the plant and feed by removing tissues from the leaf pseudolamina and petioles. The larvae tunnel inside the petioles and the crown. The optimum temperature for feeding and development of both species is 25° C. Results obtained from stocking hyacinth plants with adults and larvae of both species separately revealed that N. bruchi is more efficient in checking the growth of the plant. The progeny of a pair of N. bruchi and N. eichhorniae reared separately on 41 hyacinth plants for a period of 61 days (one generation period) reduced their population growth by 25.4% and 12.7% respectively. The progeny of both species in a mixed culture reduced the growth of the plants by 22.5% in the same period, while in the control the population of the plants increased 136.6%.  相似文献   

4.
Additive or synergistic effects among introduced and native insect and plant pathogen agents are necessary to achieve biological control of waterhyacinth (Eichhornia crassipes), a globally damaging aquatic weed. In field plots, plants were infested with waterhyacinth weevils (Neoechetina bruchi and N. eichhorniae) and leaves were scarred by weevil feeding. Subsequent infection by the fungal pathogen Cercospora piaropi caused necrotic lesions to form on leaves. Necrosis development was 7.5- and 10.5-fold greater in plots augmented with both weevils and C. piaropi and weevils alone, respectively, than in plots receiving only C. piaropi. Twenty-four days after weevil infestation, the percentage of laminar area covered by lesions on third-youngest and oldest live leaves was elevated 2.3–2.5-fold in plots augmented with weevils. Scar density and necrosis coverage on young leaf laminae were positively correlated, even though antipathogenic soluble peroxidases were elevated 3-fold in plots augmented with weevils alone or weevils and C. piaropi. Combined weevil and fungal augmentation decreased shoot densities and leaves per plant. In a no-choice bioassay, weevil feeding on oldest but not young leaves was reduced 44 two weeks after C. piaropi inoculation. Protein content and peroxidase activities were elevated 2–6-fold in oldest leaves three weeks after inoculation. Augmentation with both waterhyacinth weevils and C. piaropi led to the development of an additive biological control impact, mediated by one or more direct interactions between these agents, and not plant quality effects.  相似文献   

5.
Water hyacinth,Eichhornia crassipes (Martius) Solms-Laubach (Pontederiaceae) was first reported in Bénin in 1977 and about 10 years later became the major floating water weed in the south east, obstructing boat traffic and fisheries. Water hyacinth multiplies in permanently fresh water in the swampy upper reaches of the Sô River and in tributaries of the Ouémé River. From there it is moved by wind and water flow to the coastal lagoons. The coastal lagoons are brackish during the dry season and water hyacinth eventually dies. In 1991,Neochetina eichhorniae (Warner) (Col.: Curculionidae) of South American origin was imported from Australia via quarantine in Britain to Bénin. A small infestation of the fungusBeauveria bassiana (Bals.) Vuill. (Hyphomycetes) was eliminated from the colony before release by sterilizing eggs and rearing a fungus-free generation. Between late 1991 and mid 1993, about 23,900N. eichhorniae were released at 11 localities along the Ouémé River and in the head waters of the Sô River. Regular monitoring revealed feeding scars by adults on leaves and tunnelling by larvae in petioles at all release sites. By October 1993,N. eichhorniae had spread up to 20 km from some release sites.Neochetina bruchi Hustache was imported in 1992. A total of about 5,700 weevils has been released in six localities since mid 1992. Recoveries of offspring were made in all but one locality. Despite the negative impact of water flow, wind, penetration of salt water, and removal of infested water hyacinth by fishermen,N. eichhorniae andN. bruchi are established in Bénin in a situation typical for coastal West Africa.  相似文献   

6.
The integrated control of water hyacinth, Eichhornia crassipes (Martius) Solms-Laubach (Pontederiaceae) has become necessary in South Africa, as biological control alone is perceived to be too slow in controlling the weed. In total, seven insect biological control agents have been released on water hyacinth in South Africa. At the same time, herbicides are applied by the water authorities in areas where the weed continues to be troublesome. This study investigated the assumption that the two control methods are compatible by testing the direct toxicity of a range of herbicide formulations and surfactants on two of the biological control agents released against water hyacinth, the weevil, Neochetina eichhorniae Warner (Coleoptera: Curculionidae) and the water hyacinth mirid, Eccritotarsus catarinensis (Carvalho) (Hemiptera: Miridae). A number of the formulations used resulted in significant mortality of the mirid and the weevil. Products containing 2,4-D amine and diquat as active ingredients caused higher mortality of both agents (up to 80% for the mirid) than formulations containing glyphosate. Furthermore, when surfactants were added to enhance herbicide efficiency, it resulted in increased toxicity to the insects. We recommend that glyphosate formulations should be used in integrated control programmes, and that surfactants be avoided in order to reduce the toxic nature of spray formulations to the insect biological control agents released against water hyacinth.  相似文献   

7.
A mirid,Eccritotarsus catarinensis(Carvalho), was studied as a potentially damaging natural enemy for water hyacinth, (Eichhornia crassipes(Mart.) Solms-Laub.), in South Africa. In the laboratory, eggs were inserted into the leaf tissue parallel to the leaf surface. The four nymphal instars fed gregariously with the adults mainly on the undersurface of the leaves, causing severe chlorosis at high population levels. The duration of immature stages (egg and nymphs) was approximately 23 days, while the adults survived for approximately 50 days. Favorable biological characteristics ofE. catarinensisincluded a high rate of increase, gregarious habits, long-lived and mobile adults, and several generations per year. Laboratory host range of the mirid was determined by adult choice trials on 67 plant species in 36 families and adult no-choice trials on five species in the Pontederiaceae. Feeding was recorded on all Pontederiaceae tested and oviposition on four of the five species. However, these plant species proved to be inferior hosts forE. catarinensisin comparison to water hyacinth, suggesting thatE. catarinensiswould be an acceptable natural enemy for water hyacinth in South Africa.  相似文献   

8.
Water hyacinth (Eichhornia crassipes (Martius) Solms-Laubach) is a serious invasive weed in the Sacramento–San Joaquin River Delta of California. Three insects: Neochetina eichhorniae Warner and Neochetina bruchi Hustache (Coleoptera: Curculionidae) and Niphograpta (=Sameodes) albiguttalis (Warren) (Lepidoptera: Crambidae) were released during 1982–1987 at four locations for the biological control of water hyacinth. Observations in 1985 suggested that all three species had established. By 2002, water hyacinth populations in the Delta still required an aggressive chemical control campaign and the status of the biological control agents was in question. In late 2002, a field survey to determine the distribution and abundance of the released insects was performed. Water hyacinth plants were collected by boat in the main water channels and from land at smaller sloughs and examined for insects. In total, 27 sites with water hyacinth distributed across the Delta were examined of which 21 had weevils. Weevil abundance ranged from 0 to 10.9 weevils per plant, with an average of 0.93 (±0.47 SEM) adult weevils per plant. All weevils (n?=?518) were identified as N. bruchi. No N. eichhorniae were recovered and no larvae or evidence of larval feeding by N. albiguttalis were observed. A total of 322 weevils were examined for microsporidia and none was found infected, indicating an infection rate of less than 1%. These results suggest that N. bruchi may be the only established biological control agent of water hyacinth in the Delta and that infection by microsporidia does not appear to be limiting its population abundance.  相似文献   

9.
South Africa has one of the world’s biggest gold mining regions with an associated problem of acid mine drainage (AMD), which increases the bioavailability of heavy metal contaminants in water. The prevalence of water hyacinth (Eichhornia crassipes) in South African water systems, despite the release of seven biocontrol agents since 1974, is often attributed to high levels of eutrophication. Metal concentration in plant shoots is known to affect insect herbivory. Nevertheless, little is known about the effect of heavy metals or AMD on Neochetina eichhorniae and Neochetina bruchi, which are the most widely established biocontrol agents on E. crassipes in South Africa. Herein, the effect of eight different heavy metals common in AMD (arsenic (As), gold (Au), copper (Cu), iron (Fe), mercury (Hg), manganese (Mn), uranium (U) and zinc (Zn)), as well as three different simulated AMD concentration treatments (low, medium and high), on the performance of Neochetina weevils were investigated by releasing adults on plants growing in tubs and pools, three weeks after the addition of individual metal or AMD treatments. After six weeks, the number of weevil larvae per plant, the number of adult survivors per plant, the number of adult feeding scars on leaves, and the number of larval mines per plant were recorded. Two females of N. eichhorniae and N. bruchi from each tub were dissected and the number of ovariole follicles was counted. Adult feeding in Neochetina was significantly reduced on plants exposed to both Cu and As while larval feeding was significantly reduced on plants exposed to Hg, Zn, As and Cu, with Cu causing the greatest effect. Similarly, weevil feeding and reproduction were reduced in the medium and high concentration AMD treatments. Larval development was significantly impaired by both metal and AMD treatments. These negative effects disagree with published data which showed no effect of metals on Neochetina weevils. The disparity is explained by long exposure of the weevils on whole plants, rather than short exposure to excised leaves, as recorded in the literature. Finally these findings provide evidence that some heavy metals and AMD might be constraining biocontrol agents of water hyacinth in South Africa.  相似文献   

10.
The larvae of the leaf-feeding weevil Oxyops vitiosa, a biological control agent of Melaleuca quinquenervia, are covered with a viscous orange coating that is thought to protect against generalist predators. This coating is gradually lost as the larvae drop to the ground and pupate in subterranean pupal cells. To test the antipredator activity of this species, four immature life stages (early instars, late instars, prepupae, pupae) were exposed to a common generalist predator, the red imported fire ant Solenopsis invicta. Choice tests were conducted by placing an O. vitiosa individual and a control larva of the weevil Neochetina eichhorniae into an arena containing a S. invicta colony and observing subsequent ant behaviors. S. invicta workers contacted O. vitiosa early instars, late instars, and prepupae less frequently than control N. eichhorniae larvae, and upon contact S. invicta was less likely to behave aggressively toward these O. vitiosa life stages than toward N. eichhorniae larvae. However, S. invicta contacted, attacked, and consumed naked (nonencased) O. vitiosa pupae and N. eichhorniae larvae with equal frequency. Encased O. vitiosa pupae buried in sand were not attacked compared to susceptible encased pupae on the sand surface. By shifting from a chemical defense during the larval stages to a physical defense during the pupal stage, O. vitiosa reduces the risk of attack by this generalist predator.  相似文献   

11.
A population of yellow starthistle (Centaurea solstitialis L.) near Dayton, Washington developed herbicide resistance in response to repeated applications of picloram and other auxin-type herbicides. Laboratory and field experiments were conducted in 1998 to determine host acceptability and suitability of this herbicide-resistant yellow starthistle population to the biological control weevil Eustenopus villosus (Boheman) (Coleoptera: Curculionidae). In choice and no-choice feeding and oviposition experiments using excised buds, the weevil did not demonstrate a consistent preference for either herbicide-resistant (R) or -susceptible (S) yellow starthistle. When caged on buds of intact plants, the E. villosus feeding rate of 97% did not differ between R and S types. Host plant suitability, measured as larval damage and development to adult weevils, was equivalent in R and S types, with weevils maturing in 46% of the R and in 32% of the S capitula bearing oviposition scars. The number of viable achenes per capitulum was reduced by 87% due to larval feeding, with no difference between R and S types. Observations at the field site where resistance was found revealed oviposition scars on 78% of the late-bud-stage capitula on 23 June 1998 and 73% of the flowering and postflowering capitula on 15 August 1998. Selection for herbicide resistance has not created host incompatibility for E. villosus nor reduced the effectiveness of E. villosus as a biological control agent.  相似文献   

12.
Water hyacinth (Eichhornia crassipes (Mart.) Solms.)creates severe problems in the irrigationdistricts of Mexico, particularly in westernSinaloa. Therefore water hyacinth weevils(Neochetina eichhorniae Warner and N. bruchi Hustache), imported from the USA in1993, were used to initiate a biologicalcontrol program. Precautionary screeningrevealed that some were infected with amicrosporidian so disease-free colonies wereproduced by eliminating infected breedinglines. To demonstrate effectiveness prior toopen field releases, weevils were firstreleased in cages at field sites. Weevilintensity increased to 6.3 weevils/plant after320 days when the plants were all dead ordying. More than 8,600 N. bruchi and14,500 N. eichhorniae were then releasedat various sites during January 1995 to August1996. Waterhyacinth coverage declined atBatamote reservoir (134 ha) from 95% to <3%by 1997; at the 12-ha Hilda reservoir from100% in May 1995 to 1% by March 1998; at the42.3-ha Arroyo Prieto reservoir from 100% to1% during the same interval; and at theMariquita reservoir (492 ha), the largestreservoir in the Humaya system, from 394 ha(80%)to 98.4 ha (20%).  相似文献   

13.
The discovery that cryptic species are more abundant than previously thought has implications for weed biological control, as there is a risk that cryptic species may be inadvertently released with consequences for the safety of the practice. A cryptic species of a biological control agent released for the control of the invasive alien macrophyte, water hyacinth, Eichhornia crassipes (C. Mart.) Solms. (Pontederiaceae), was recently discovered in South Africa. The two species were considered a single species prior to genetic analysis and interbreeding experiments. The original biological control agent retains the name Eccritotarsus catarinensis (Carvalho) (Heteroptera: Miridae) whereas the new species has been described as Eccritotarsus eichhorniae Henry. In this study, we compared the host specificity, efficacy, and thermal physiologies of the two species. The host specificity of the two species within the Pontederiaceae was very similar and both are safe for release in South Africa. Comparison of the per capita impact of the two species indicated that E. eichhorniae was the more damaging species but this is likely to be influenced by temperature, with E. catarinensis being more effective under lower temperatures and E. eichhorniae being more effective under higher temperatures. Releasing the correct species for the thermal environment of each release site will improve the level of control of water hyacinth in South Africa. This example highlights the need to keep populations of biological control agents from different native range collection localities separate, and to screen for host specificity and efficacy.  相似文献   

14.
Mile-a-minute weed, Persicaria perfoliata (L.) H. Gross (Polygonaceae), is an annual vine from Asia that has invaded the eastern US where it can form dense monocultures and outcompete other vegetation in a variety of habitats. The host-specific Asian weevil Rhinoncomimus latipes Korotyaev (Coleoptera: Curculionidae) was first released in the US in 2004 as part of a classical biological control program. The weevil was intensively monitored in three release arrays over 4 years, and field cages at each site were used to determine the number of generations produced. The weevil established at all three sites and produced three to four generations before entering a reproductive diapause in late summer. Weevils dispersed at an average rate of 1.5–2.9 m wk−1 through the 50 m diameter arrays, which had fairly contiguous mile-a-minute cover. Weevils dispersing in the broader, more variable landscape located both large monocultures and small isolated patches of mile-a-minute 600–760 m from the release within 14 months. Weevil density ranged from fewer than 10 to nearly 200 weevils m−2 mile-a-minute weed. Mile-a-minute cover decreased at the site with the highest weevil density. The production of P. perfoliata seed clusters decreased with increasing weevil populations at two sites, and seedling production declined over time at two sites by 75% and 87%. The ability of the weevil to establish, produce multiple generations per season, disperse to new patches, and likelihood of having an impact on plants in the field suggests that R. latipes has the potential to be a successful biological control agent.  相似文献   

15.
Since 1999, four specific weevils (Coleoptera, Curculionidae) were released in the Republic of Congo against three exotic floating water weeds: Neochetina eichhorniae Warner and N. bruchi Hustache against water hyacinth, Neohydronomus affinis Hustache against water lettuce, and Cyrtobagous salviniae Calder and Sands against water fern. Recoveries of exotic weevils were made from all 24 release sites except one, and all four species have established and spread (up to 800 km for water hyacinth weevils). Within a few years of releases, control of water fern and water lettuce was such that fishing and navigation could be resumed, while reductions of water hyacinth populations were only beginning.  相似文献   

16.
Native snakeweeds, especially Gutierrezia sarothrae (Pursh) Britton and Rusby and Gutierrezia microcephala (DC.) A. Gray, are among the most widespread and damaging weeds of rangelands in the western United States and northern Mexico. The genus long ago spread to southern South America, where further speciation occurred. We have found several species of insects in Argentina that damage other species of snakeweeds there and are possible candidates for biological control in North America. The first of these, the root-boring weevil, Heilipodus ventralis (Hustache), was tested in Argentina and then sent to the USDA-ARS Insect Quarantine Facility at Temple, Texas, for host specificity testing on North American plants. We tested H. ventralis on 40 species of the family Asteraceae, in 19 tests of five types, using 686 adults and 365 larvae. Host specificity increased from adult feeding, to ovipositional selection, to larval development. At Temple, adults fed mostly on 6 species of the closely related genera Grindelia, Gutierrezia, and Gymnosperma, but with substantial feeding on four other genera of the two preferred subtribes Solidagininae and Machaerantherinae and on Baccharis in the tribe Baccharidinae, with lesser feeding on the subtribe Asterinae, all in the tribe Astereae, and on 1 species in the tribe Anthemideae. Females oviposited primarily on the same 6 species but very little on plants outside the 2 preferred subtribes. Larvae developed only on 9 of the 29 U.S. plant species tested, 6 within the two preferred subtribes and on Brickellia and Aster in other tribes. Only 5 species of three genera appear to be potential true hosts of H. ventralis in North America, on which all stages of the life cycle, adult feeding, oviposition, and larval development, can take place; these are Gymnosperma glutinosum (Spreng.) Less., Gutierrezia grandis Blake, Gut. microcephala, Gut. sarothrae, and Grindelia lanceolata Nutt. None of these genera contain species of economic or notable ecological value; the few rare species appear to be protected by habitat isolation from attack by H. ventralis. H. ventralis, therefore, appears sufficiently host specific for field release in North America. This is the first introduced biocontrol agent to be approved for release in a continental area to control a native weed.  相似文献   

17.
The host range ofEccritotarsus catarinensiswas determined using 33 plant species to assess the risk of using this insect, a native of South America, for the classical biological control of waterhyacinth (Eichhornia crassipes) in Australia and Papua New Guinea. The results, in conjunction with the results of Hillet al.(1999) who tested 67 species (mostly South African), strongly suggest thatE. catarinensisis restricted to the Pontederiaceae, a family of aquatic plants. All five species of Pontederiaceae in the Australian testing,E. crassipes, Pontederia cordata, Monochoria vaginalis, M. cyanea,andM. australasica,were suitable for insect development. Colonies persisted for at least four generations onE. crassipes, P. cordata,andM. vaginalis.Two-way choice and multiple-choice preference trials were conducted and discussed.E. catarinensisdid not exhibit a clear preference for waterhyacinth over other Pontederiaceae in these trials. Most oviposition occurred into the upper surface of the lamina during laboratory testing despite observations that the underside was preferred in the field. Although not considered suitable for release in Australia, this insect may be useful in other countries where more serious waterhyacinth problems occur and whereM. vaginalisis a serious weed, such as in Southeast Asia.  相似文献   

18.
The Madagascan endemic, Bryophyllum delagoense (Crassulaceae), is a major weed in Queensland, Australia. Despite having first been recorded in Australia in the 1940s, it is far more invasive there than on the African mainland where it was introduced more than 170 years ago. This may be due to a number of factors, one of which could be the occurrence of new natural enemy associations in southern Africa. Among the insects of crassulaceous plants that have extended their host ranges, a stem-boring weevil, Alcidodes sedi, was studied to elucidate its status as a natural enemy of B. delagoense in southern Africa and as a candidate biological control agent for introduction to Australia. Laboratory studies indicated that damage inflicted by adult and larval feeding caused significant reductions in stem length and number of leaves. Preliminary host-range trials revealed that A. sedi can complete its development on other species in the Crassulaceae, including most of the introduced Bryophyllum species and some Kalanchoe species native to South Africa. Despite the oligophagous nature of A. sedi and the fact that it can complete its development on a number of ornamental species in the Crassulaceae, it should be considered a potential biological control agent in Australia. All of the native Crassulaceae in Australia are in the genus Crassula, most of which are very small and therefore unlikely to support the development of a large weevil like A. sedi. However, additional host-range trials will have to be undertaken in Australia to determine whether the weevil can be considered safe for release.  相似文献   

19.
Macfadyena unguis-cati (L.) Gentry (Bignoniaceae) was introduced as an ornamental in South Africa, but is fast becoming an important invasive plant in many areas. It is difficult to control the plant chemically and mechanically. The first biocontrol agent, the chrysomelid Charidotis auroguttata (Boheman), has been released. It established at some release sites, but numbers have so far remained low. Additional biocontrol agents were sought to augment C. auroguttata. The potential host ranges of two foliage feeding lace bugs, Carvalhotingis visenda (Drake and Hambleton) and C. hollandi (Drake) (Hemiptera: Tingidae) were evaluated on the basis of nymphal no-choice and adult multi-choice tests involving 23 plant species in 11 families. In no-choice tests, nymphs of both species were able to survive and complete development on M. unguis-cati only, and adults of both species only fed and oviposited on M. unguis-cati during the adult multi-choice tests. Host specificity tests thus confirm that the tingids are highly host specific biocontrol agents, and will not pose risk to any non-target plants in South Africa. A study to determine the potential impact of C. hollandi nymphal feeding on M. unguis-cati showed a significant decrease in the chlorophyll contents of leaves when compared to those of control plants. These studies indicate that, once released, the two lace bug species could contribute significantly to the biological control of M. unguis-cati in South Africa.  相似文献   

20.
The Argentine root-boring weevil Heilipodus ventralis (Hustache) is a candidate for biological control of the perennial snakeweeds Gutierrezia sarothrae (Pursh) Britton and Rusby and G. microcephala (DeCandolle) A. Gray, poisonous native weeds of rangelands of the southwestern United States. In Argentina, the weevil occurs in semiarid regions from Tucumán south to Chubut, which are climatically similar to broad areas of the southwestern United States. Laboratory-reared females lived ca. 112 days and laid ca. 117 eggs. The eggs hatched in ca. 15 days. The larvae had eight instars; they required ca. 151 days and pupae ca. 27 days to develop. Adult weevils emerged from the taproots in early summer, fed on the leaves and terminals, and oviposited mostly in the crown near the soil line. The feeding of one or more pairs of caged adults killed medium-sized plants. The larvae tunneled downward to the taproot where they pupated. They overwintered in the taproots of these perennial host plants and pupated in the spring. A generation required 1 year but some individuals probably required two growing seasons. At Peninsula Valdés, Chubut, H. ventralis preferred Gutierrezia solbrigii Cabrera to Grindelia chiloensis (Corn.) Cabrera by a ratio of 1.9 to 1.0. In the field there, crowns of large Gu. solbrigii (average 60 cm canopy diameter) contained an average 5.0 larvae per plant, those of small plants (23 cm diameter) contained 1.1 larvae, and plants smaller than 10 cm rarely contained larvae. No insect parasitoids or predators were found attacking any stage. H. ventralis probably evolved on xerophytic, temperate Astereae, from ancestors of the genus Heilipus that fed on species of ancient, hygrophytic, tropical plant families.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号