首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Yi GY  He W 《Biometrics》2009,65(2):618-625
Summary .  Recently, median regression models have received increasing attention. When continuous responses follow a distribution that is quite different from a normal distribution, usual mean regression models may fail to produce efficient estimators whereas median regression models may perform satisfactorily. In this article, we discuss using median regression models to deal with longitudinal data with dropouts. Weighted estimating equations are proposed to estimate the median regression parameters for incomplete longitudinal data, where the weights are determined by modeling the dropout process. Consistency and the asymptotic distribution of the resultant estimators are established. The proposed method is used to analyze a longitudinal data set arising from a controlled trial of HIV disease ( Volberding et al., 1990 , The New England Journal of Medicine 322, 941–949). Simulation studies are conducted to assess the performance of the proposed method under various situations. An extension to estimation of the association parameters is outlined.  相似文献   

2.
Rank-based regression for analysis of repeated measures   总被引:1,自引:0,他引:1  
Wang  You-Gan; Zhu  Min 《Biometrika》2006,93(2):459-464
  相似文献   

3.
Summary Often a binary variable is generated by dichotomizing an underlying continuous variable measured at a specific time point according to a prespecified threshold value. In the event that the underlying continuous measurements are from a longitudinal study, one can use the repeated‐measures model to impute missing data on responder status as a result of subject dropout and apply the logistic regression model on the observed or otherwise imputed responder status. Standard Bayesian multiple imputation techniques ( Rubin, 1987 , in Multiple Imputation for Nonresponse in Surveys) that draw the parameters for the imputation model from the posterior distribution and construct the variance of parameter estimates for the analysis model as a combination of within‐ and between‐imputation variances are found to be conservative. The frequentist multiple imputation approach that fixes the parameters for the imputation model at the maximum likelihood estimates and construct the variance of parameter estimates for the analysis model using the results of Robins and Wang (2000, Biometrika 87, 113–124) is shown to be more efficient. We propose to apply ( Kenward and Roger, 1997 , Biometrics 53, 983–997) degrees of freedom to account for the uncertainty associated with variance–covariance parameter estimates for the repeated measures model.  相似文献   

4.
Informative drop-out arises in longitudinal studies when the subject's follow-up time depends on the unobserved values of the response variable. We specify a semiparametric linear regression model for the repeatedly measured response variable and an accelerated failure time model for the time to informative drop-out. The error terms from the two models are assumed to have a common, but completely arbitrary joint distribution. Using a rank-based estimator for the accelerated failure time model and an artificial censoring device, we construct an asymptotically unbiased estimating function for the linear regression model. The resultant estimator is shown to be consistent and asymptotically normal. A resampling scheme is developed to estimate the limiting covariance matrix. Extensive simulation studies demonstrate that the proposed methods are suitable for practical use. Illustrations with data taken from two AIDS clinical trials are provided.  相似文献   

5.
Logistic regression for two-stage case-control data   总被引:4,自引:0,他引:4  
BRESLOW  N. E.; CAIN  K. C. 《Biometrika》1988,75(1):11-20
  相似文献   

6.
Albert PS 《Biometrics》2000,56(2):602-608
Binary longitudinal data are often collected in clinical trials when interest is on assessing the effect of a treatment over time. Our application is a recent study of opiate addiction that examined the effect of a new treatment on repeated urine tests to assess opiate use over an extended follow-up. Drug addiction is episodic, and a new treatment may affect various features of the opiate-use process such as the proportion of positive urine tests over follow-up and the time to the first occurrence of a positive test. Complications in this trial were the large amounts of dropout and intermittent missing data and the large number of observations on each subject. We develop a transitional model for longitudinal binary data subject to nonignorable missing data and propose an EM algorithm for parameter estimation. We use the transitional model to derive summary measures of the opiate-use process that can be compared across treatment groups to assess treatment effect. Through analyses and simulations, we show the importance of properly accounting for the missing data mechanism when assessing the treatment effect in our example.  相似文献   

7.
Ekholm A  McDonald JW  Smith PW 《Biometrics》2000,56(3):712-718
Models for a multivariate binary response are parameterized by univariate marginal probabilities and dependence ratios of all orders. The w-order dependence ratio is the joint success probability of w binary responses divided by the joint success probability assuming independence. This parameterization supports likelihood-based inference for both regression parameters, relating marginal probabilities to explanatory variables, and association model parameters, relating dependence ratios to simple and meaningful mechanisms. Five types of association models are proposed, where responses are (1) independent given a necessary factor for the possibility of a success, (2) independent given a latent binary factor, (3) independent given a latent beta distributed variable, (4) follow a Markov chain, and (5) follow one of two first-order Markov chains depending on the realization of a binary latent factor. These models are illustrated by reanalyzing three data sets, foremost a set of binary time series on auranofin therapy against arthritis. Likelihood-based approaches are contrasted with approaches based on generalized estimating equations. Association models specified by dependence ratios are contrasted with other models for a multivariate binary response that are specified by odds ratios or correlation coefficients.  相似文献   

8.
For analyzing longitudinal binary data with nonignorable and nonmonotone missing responses, a full likelihood method is complicated algebraically, and often requires intensive computation, especially when there are many follow-up times. As an alternative, a pseudolikelihood approach has been proposed in the literature under minimal parametric assumptions. This formulation only requires specification of the marginal distributions of the responses and missing data mechanism, and uses an independence working assumption. However, this estimator can be inefficient for estimating both time-varying and time-stationary effects under moderate to strong within-subject associations among repeated responses. In this article, we propose an alternative estimator, based on a bivariate pseudolikelihood, and demonstrate in simulations that the proposed method can be much more efficient than the previous pseudolikelihood obtained under the assumption of independence. We illustrate the method using longitudinal data on CD4 counts from two clinical trials of HIV-infected patients.  相似文献   

9.
We consider longitudinal studies in which the outcome observed over time is binary and the covariates of interest are categorical. With no missing responses or covariates, one specifies a multinomial model for the responses given the covariates and uses maximum likelihood to estimate the parameters. Unfortunately, incomplete data in the responses and covariates are a common occurrence in longitudinal studies. Here we assume the missing data are missing at random (Rubin, 1976, Biometrika 63, 581-592). Since all of the missing data (responses and covariates) are categorical, a useful technique for obtaining maximum likelihood parameter estimates is the EM algorithm by the method of weights proposed in Ibrahim (1990, Journal of the American Statistical Association 85, 765-769). In using the EM algorithm with missing responses and covariates, one specifies the joint distribution of the responses and covariates. Here we consider the parameters of the covariate distribution as a nuisance. In data sets where the percentage of missing data is high, the estimates of the nuisance parameters can lead to highly unstable estimates of the parameters of interest. We propose a conditional model for the covariate distribution that has several modeling advantages for the EM algorithm and provides a reduction in the number of nuisance parameters, thus providing more stable estimates in finite samples.  相似文献   

10.
Longitudinal studies frequently incur outcome-related nonresponse. In this article, we discuss a likelihood-based method for analyzing repeated binary responses when the mechanism leading to missing response data depends on unobserved responses. We describe a pattern-mixture model for the joint distribution of the vector of binary responses and the indicators of nonresponse patterns. Specifically, we propose an extension of the multivariate logistic model to handle nonignorable nonresponse. This method yields estimates of the mean parameters under a variety of assumptions regarding the distribution of the unobserved responses. Because these models make unverifiable identifying assumptions, we recommended conducting sensitivity analyses that provide a range of inferences, each of which is valid under different assumptions for nonresponse. The methodology is illustrated using data from a longitudinal study of obesity in children.  相似文献   

11.
12.
13.
Albert PS  Follmann DA  Wang SA  Suh EB 《Biometrics》2002,58(3):631-642
Longitudinal clinical trials often collect long sequences of binary data. Our application is a recent clinical trial in opiate addicts that examined the effect of a new treatment on repeated binary urine tests to assess opiate use over an extended follow-up. The dataset had two sources of missingness: dropout and intermittent missing observations. The primary endpoint of the study was comparing the marginal probability of a positive urine test over follow-up across treatment arms. We present a latent autoregressive model for longitudinal binary data subject to informative missingness. In this model, a Gaussian autoregressive process is shared between the binary response and missing-data processes, thereby inducing informative missingness. Our approach extends the work of others who have developed models that link the various processes through a shared random effect but do not allow for autocorrelation. We discuss parameter estimation using Monte Carlo EM and demonstrate through simulations that incorporating within-subject autocorrelation through a latent autoregressive process can be very important when longitudinal binary data is subject to informative missingness. We illustrate our new methodology using the opiate clinical trial data.  相似文献   

14.
Wang YG  Zhao Y 《Biometrics》2008,64(1):39-45
Summary .   We consider ranked-based regression models for clustered data analysis. A weighted Wilcoxon rank method is proposed to take account of within-cluster correlations and varying cluster sizes. The asymptotic normality of the resulting estimators is established. A method to estimate covariance of the estimators is also given, which can bypass estimation of the density function. Simulation studies are carried out to compare different estimators for a number of scenarios on the correlation structure, presence/absence of outliers and different correlation values. The proposed methods appear to perform well, in particular, the one incorporating the correlation in the weighting achieves the highest efficiency and robustness against misspecification of correlation structure and outliers. A real example is provided for illustration.  相似文献   

15.
Identifying changepoints is an important problem in molecular genetics. Our motivating example is from cancer genetics where interest focuses on identifying areas of a chromosome with an increased likelihood of a tumor suppressor gene. Loss of heterozygosity (LOH) is a binary measure of allelic loss in which abrupt changes in LOH frequency along the chromosome may identify boundaries indicative of a region containing a tumor suppressor gene. Our interest was on testing for the presence of multiple changepoints in order to identify regions of increased LOH frequency. A complicating factor is the substantial heterogeneity in LOH frequency across patients, where some patients have a very high LOH frequency while others have a low frequency. We develop a procedure for identifying multiple changepoints in heterogeneous binary data. We propose both approximate and full maximum-likelihood approaches and compare these two approaches with a naive approach in which we ignore the heterogeneity in the binary data. The methodology is used to estimate the pattern in LOH frequency on chromosome 13 in esophageal cancer patients and to isolate an area of inflated LOH frequency on chromosome 13 which may contain a tumor suppressor gene. Using simulations, we show that our approach works well and that it is robust to departures from some key modeling assumptions.  相似文献   

16.
A covariance estimator for GEE with improved small-sample properties   总被引:2,自引:0,他引:2  
Mancl LA  DeRouen TA 《Biometrics》2001,57(1):126-134
In this paper, we propose an alternative covariance estimator to the robust covariance estimator of generalized estimating equations (GEE). Hypothesis tests using the robust covariance estimator can have inflated size when the number of independent clusters is small. Resampling methods, such as the jackknife and bootstrap, have been suggested for covariance estimation when the number of clusters is small. A drawback of the resampling methods when the response is binary is that the methods can break down when the number of subjects is small due to zero or near-zero cell counts caused by resampling. We propose a bias-corrected covariance estimator that avoids this problem. In a small simulation study, we compare the bias-corrected covariance estimator to the robust and jackknife covariance estimators for binary responses for situations involving 10-40 subjects with equal and unequal cluster sizes of 16-64 observations. The bias-corrected covariance estimator gave tests with sizes close to the nominal level even when the number of subjects was 10 and cluster sizes were unequal, whereas the robust and jackknife covariance estimators gave tests with sizes that could be 2-3 times the nominal level. The methods are illustrated using data from a randomized clinical trial on treatment for bone loss in subjects with periodontal disease.  相似文献   

17.
We consider a nonparametric (NP) approach to the analysis of repeated measures designs with censored data. Using the NP model of Akritas and Arnold (1994, Journal of the American Statistical Association 89, 336-343) for marginal distributions, we present test procedures for the NP hypotheses of no main effects, no interaction, and no simple effects. This extends the existing NP methodology for such designs (Wei and Lachin, 1984, Journal of the American Statistical Association 79, 653-661). The procedures do not require any modeling assumptions and should be useful in cases where the assumptions of proportional hazards or location shift fail to be satisfied. The large-sample distribution of the test statistics is based on an i.i.d. representation for Kaplan-Meier integrals. The testing procedures apply also to ordinal data and to data with ties. Useful small-sample approximations are presented, and their performance is examined in a simulation study. Finally, the methodology is illustrated with two real life examples, one with censored and one with missing data. It is indicated that one of the data sets does not conform to any set of assumptions underlying the available methods and also that the present method provides a useful additional analysis even when data sets conform to modeling assumptions.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号