首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heme- and metal-independent chloroperoxidase from Serratia marcescens W 250 is shown to be capable of catalyzing the p-nitrophenyl phosphate hydrolysis. The parameters of the phosphatase reaction are determined and inhibitors and activators of the process are found. A hypothetical mechanism of the hydrolysis of phosphoesters by heme- and metal-independent haloperoxidases is suggested.  相似文献   

2.
Two modified 2′-deoxynucleoside 5′-triphosphates have been used for the in vitro selection of a modified deoxyribozyme (DNAzyme) capable of the sequence-specific cleavage of a 12 nt RNA target in the absence of divalent metal ions. The modified nucleotides, a C5-imidazolyl-modified dUTP and 3-(aminopropynyl)-7-deaza-dATP were used in place of TTP and dATP during the selection and incorporate two extra protein-like functionalities, namely, imidazolyl (histidine analogue) and primary amino (lysine analogue) into the DNAzyme. The functional groups are analogous to the catalytic Lys and His residues employed during the metal-independent cleavage of RNA by the protein enzyme RNaseA. The DNAzyme requires no divalent metal ions or other cofactors for catalysis, remains active at physiological pH and ionic strength and can recognize and cleave a 12 nt RNA substrate with sequence specificity. This is the first example of a functionalized, metal-independent DNAzyme that recognizes and cleaves an all-RNA target in a sequence-specific manner. The selected DNAzyme is two orders of magnitude more efficient in its cleavage of RNA than an unmodified DNAzyme in the absence of metal ions and represents a rate enhancement of 105 compared with the uncatalysed hydrolysis of RNA.  相似文献   

3.
Fructose-1,6-bisphosphatase (FBPase), a key enzyme of gluconeogenesis and photosynthetic CO2 fixation, catalyzes the hydrolysis of fructose 1,6-bisphosphate (FBP) to produce fructose 6-phosphate, an important precursor in various biosynthetic pathways. All known FBPases are metal-dependent enzymes, which are classified into five different classes based on their amino acid sequences. Eukaryotes are known to contain only the type-I FBPases, whereas all five types exist in various combinations in prokaryotes. Here we demonstrate that the uncharacterized protein YK23 from Saccharomyces cerevisiae efficiently hydrolyzes FBP in a metal-independent reaction. YK23 is a member of the histidine phosphatase (phosphoglyceromutase) superfamily with homologues found in all organisms. The crystal structure of the YK23 apo-form was solved at 1.75-Å resolution and revealed the core domain with the α/β/α-fold covered by two small cap domains. Two liganded structures of this protein show the presence of two phosphate molecules (an inhibitor) or FBP (a substrate) bound to the active site. FBP is bound in its linear, open conformation with the cleavable C1-phosphate positioned deep in the active site. Alanine replacement mutagenesis of YK23 identified six conserved residues absolutely required for activity and suggested that His13 and Glu99 are the primary catalytic residues. Thus, YK23 represents the first family of metal-independent FBPases and a second FBPase family in eukaryotes.  相似文献   

4.
Haloperoxidases are enzymes capable of formation of carbon-halogen bonds in the presence of hydrogen peroxide and halide ions. A mechanism of halogenation catalyzed by heme- and metal-independent bacterial haloperoxidases differs from other representatives of this group of enzymes. Here we report for the first time that bacterial non-heme haloperoxidases possess a phosphatase activity. Chloroperoxidase from Serratia marcescens W 250 purified up to homogeneity is shown to catalyze p-nitrophenylphosphate hydrolysis (K(m) value, 1.8+/-0.1 mM at pH 5.7). The reaction is activated by Mg(2+) and F(-), and is inhibited by WO(4)(2-), tartrate, acetate and phosphate anions. The irreversible inhibition by phenylmethanesulfonyl fluoride, modifier of serine residue in active site, decreases in the presence of phosphate ions. A mechanism of phosphoesters hydrolysis by non-heme haloperoxidases is proposed.  相似文献   

5.
Type III CRISPR-Cas effector systems detect foreign RNA triggering DNA and RNA cleavage and synthesizing cyclic oligoadenylate molecules (cA) in their Cas10 subunit. cAs act as a second messenger activating auxiliary nucleases, leading to an indiscriminate RNA degradation that can end in cell dormancy or death. Standalone ring nucleases are CRISPR ancillary proteins which downregulate the strong immune response of Type III systems by degrading cA. These enzymes contain a CRISPR-associated Rossman-fold (CARF) domain, which binds and cleaves the cA molecule. Here, we present the structures of the standalone ring nuclease from Sulfolobus islandicus (Sis) 0811 in its apo and post-catalytic states. This enzyme is composed by a N-terminal CARF and a C-terminal wHTH domain. Sis0811 presents a phosphodiester hydrolysis metal-independent mechanism, which cleaves cA4 rings to generate linear adenylate species, thus reducing the levels of the second messenger and switching off the cell antiviral state. The structural and biochemical analysis revealed the coupling of a cork-screw conformational change with the positioning of key catalytic residues to proceed with cA4 phosphodiester hydrolysis in a non-concerted manner.  相似文献   

6.
3-Deoxy-D-manno-octulosonate 8-phosphate synthase (KDO8PS) catalyzes the reaction between three-carbon phosphoenolpyruvate (PEP) and five-carbon d-arabinose 5-phosphate (A5P), generating KDO8P, a key intermediate in the biosynthetic pathway to 3-deoxy-D-manno-octulosonate, a component of the lipopolysaccharide of the Gram-negative bacterial cell wall. Both metal-dependent and metal-independent forms of KDO8PS have been characterized. KDO8PS is evolutionarily and mechanistically related to the first enzyme of the shikimate pathway, the obligately divalent metal ion-dependent 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase (DAH7PS) that couples PEP and four-carbon D-erythrose 4-phosphate (E4P) to give DAH7P. In KDO8PS, an absolutely conserved KANRS motif forms part of the A5P binding site, whereas in DAH7PS, an absolutely conserved KPR(S/T) motif accommodates E4P. Here, we have characterized four mutants of this motif (AANRS, KAARS, KARS, and KPRS) in metal-dependent KDO8PS from Acidithiobacillus ferrooxidans and metal-independent KDO8PS from Neisseria meningitidis to test the roles of the universal Lys and the Ala-Asn portion of the KANRS motif. The X-ray structures, determined for the N. meningitidis KDO8PS mutants, indicated no gross structural penalty resulting from mutation, but the subtle changes observed in the active sites of these mutant proteins correlated with their altered catalytic function. (1) The AANRS mutations destroyed catalytic activity. (2) The KAARS mutations lowered substrate selectivity, as well as activity. (3) Replacing KANRS with KARS or KPRS destroyed KDO8PS activity but did not produce a functional DAH7PS. Thus, Lys is critical to catalysis, and other changes are necessary to switch substrate specificity for both the metal-independent and metal-dependent forms of these enzymes.  相似文献   

7.
We have cloned a full-length cDNA for a beta-galactoside-binding protein with a relative molecular mass of 32 kDa (32-kDa GBP), recently purified from a nematode, Caenorhabditis elegans (Hirabayashi, J., Satoh, M., Ohyama, Y., and Kasai, K. (1992) J. Biochem. 111, 553-555). The clone contained a single open reading frame encoding 279 amino acids, including the initiator methionine. Significant sequence homology to metal-independent beta-galactoside-binding lectins (25-30% identities), which had previously been found only in vertebrates, was observed. Moreover, the nematode 32-kDa GBP proved to have a unique polypeptide architecture; that is, it is composed of two tandemly repeated homologous domains, each consisting of about 140 amino acids. The internal homology was about 32%. Thus, this protein is constructed with a duplicated fundamental unit which is similar to the subunit of vertebrate 14-kDa lectins. In spite of the extreme phylogenic distance between nematodes and vertebrates (divergence greater than 6 x 10(8) years ago), both of the two repeated domains of the nematode 32-kDa GBP retained most of the amino acid residues conserved in vertebrate lectins. This means that members of the metal-independent animal lectin family are distributed much more widely than had been believed: from nematodes to vertebrates. The implication is that proteins belonging to this family have fundamental roles which are not restricted to vertebrates but are common to almost all animals.  相似文献   

8.
Mammalian members of glycosyltransferase family 6 (GT6) of the CAZy database have a GT-A fold containing a conserved Asp-X-Asp (DXD) sequence that binds an essential metal cofactor. Bacteroides ovatus GT6a represents a GT6 clade found in more than 30 Gram-negative bacteria that is similar in sequence to the catalytic domains of mammalian GT6, but has an Asn95-Ala-Asn97 (NXN) sequence substituted for the DXD motif and metal-independent catalytic activity. Co-crystals of a low activity mutant of BoGT6a (E192Q) with UDP-GalNAc contained protein complexes with intact UDP-GalNAc and two forms with hydrolysis products (UDP plus GalNAc) representing an initial closed complex and later open form primed for product release. Two cationic residues near the C terminus of BoGT6a, Lys231 and Arg243, interact with the diphosphate moiety of UDP-GalNAc, but only Lys231 interacts with the UDP product and may function in leaving group stabilization. The amide group of Asn95, the first Asn of the NXN motif, interacts with the ribose moiety of the substrate. This metal-independent GT6 resembles its metal-dependent homologs in undergoing conformational changes on binding UDP-GalNAc that arise from structuring the C terminus to cover this substrate. It appears that in the GT6 family, the metal cofactor functions specifically in binding the UDP moiety in the donor substrate and transition state, actions that can be efficiently performed by components of the polypeptide chain.  相似文献   

9.
The enzyme 3-deoxy-d-manno-2-octulosonate-8-phosphate (KDO8P) synthase is metal-dependent in one class of organisms and metal-independent in another. We have used a rapid transient kinetic approach combined with site-directed mutagenesis to characterize the role of the metal ion as well as to explore the catalytic mechanisms of the two classes of enzymes. In the metal-dependent Aquifex pyrophilus KDO8P synthase, Cys11 was replaced by Asn (ApC11N), and in the metal-independent Escherichia coli KDO8P synthase a reciprocal mutation, Asn26 to Cys, was prepared (EcN26C). The ApC11N mutant retained about 10% of the wild-type maximal activity in the absence of metal ions. Addition of divalent metal ions did not affect the catalytic activity of the mutant enzyme and its catalytic efficiency (kcat/Km) was reduced by only approximately 12-fold, implying that the ApC11N KDO8P synthase mutant has become a bone fide metal-independent enzyme. The isolated EcN26C mutant had similar metal content and spectral properties as the metal-dependent wild-type A. pyrophilus KDO8P synthase. EDTA-treated EcN26C retained about 6% of the wild-type activity, and the addition of Mn2+ or Cd2+ stimulated its activity to approximately 30% of the wild-type maximal activity. This suggests that EcN26C KDO8P synthase mutant has properties similar to that of metal-dependent KDO8P synthases. The combined data indicate that the metal ion is not directly involved in the chemistry of the KDO8P synthase catalyzed reaction, but has an important structural role in metal-dependent enzymes in maintaining the correct orientation of the substrates and/or reaction intermediate(s) in the enzyme active site.  相似文献   

10.
Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) in association with CRISPR-associated (Cas) proteins constitutes a formidable defense system against mobile genetic elements in prokaryotes. In type I-C, the ribonucleoprotein surveillance complex comprises only three Cas proteins, namely, Cas5d, Csd1 and Csd2. Unlike type I-E that uses Cse3/CasE for metal-independent CRISPR RNA maturation, type I-C that lacks this deputes Cas5d to process the pre-crRNA. Here, we report the promiscuous DNase activity of Cas5d in presence of divalent metals. Remarkably, the active site that renders RNA hydrolysis may be tuned by metal to act on DNA substrates too. Further, the realization that Csd1 is a fusion of its functional homolog Cse1/CasA and Cse2/CasB forecasts that the stoichiometry of the constituents of the surveillance complex in type I-C may differ from type I-E. Although Csd2 seems to be inert, Csd1 too exhibits RNase and metal-dependent DNase activity. Thus, in addition to their proposed functions, the DNase activity of Cas5d and Csd1 may also enable them to be co-opted in adaptation and interference stages of CRISPR immunity wherein interaction with DNA substrates is involved.  相似文献   

11.
Two distinct groups of 3-deoxy-d-manno-octulosonate 8-phosphate synthase (KDO8PS), a key enzyme of cell-wall biosynthesis, differ by their requirement for a divalent metal ion for enzymatic activity. The unique difference between these groups is the replacement of the metal-binding Cys by Asn. Substitution of just this Asn for a Cys in metal-independent KDO8PS does not create the obligate metal-ion dependency of natural metal-dependent enzymes. We describe how three or four mutations of the metal-independent KDO8PS from Neisseria meningitidis produce a fully functional, obligately metal-dependent KDO8PS. For the substitutions Asn23Cys, Asp247Glu (this Asp binds to the metal ion in all metal-dependent KDO8PS) and Pro249Ala, and for double and triple combinations, mutant enzymes that contained Cys in place of Asn showed an increase in activity in the presence of divalent metal ions. However, combining these mutations with substitution by Ser of the Cys residue in the conserved 246CysAspGlyPro249 motif of metal-independent KDO8PS created enzymes with obligate metal dependency. The quadruple mutant (Asn23Cys/Cys246Ser/Asp247Glu/Pro249Ala) showed comparable activity to wild-type enzymes only in the presence of metal ions, with maximum activity with Cd2+, the metal ion that is strongly inhibitory at micromolar concentrations for the wild-type enzyme. In the absence of metal ions, activity was barely detectable for this quadruple mutant or for triple mutants bearing both Cys246Ser and Asn23Cys mutations. The structures of NmeKDO8PS and its Asn23Cys/Asp247Glu/Pro249Ala and quadruple mutants at pH 4.6 were characterized at resolutions better than 1.85 Å. Aged crystals of the Asn23Cys/Asp247Glu/Pro249Ala mutant featured a Cys23-Cys246 disulfide linkage, explaining the spectral bleaching observed when this mutant was incubated with Cu2+. Such bleaching was not observed for the quadruple mutant. Reverse evolution to a fully functional obligately metal-dependent KDO8PS has been achieved with just three directed mutations for enzymes that have, at best, 47% identity between metal-dependent and metal-independent pairs.  相似文献   

12.
Muconate lactonizing enzymes (MLEs) convert cis,cis-muconates to muconolactones in microbes as part of the beta-ketoadipate pathway; some also dehalogenate muconate derivatives of xenobiotic haloaromatics. There are three different MLE classes unrelated by evolution. We present the X-ray structure of a eukaryotic MLE, Neurospora crassa 3-carboxy-cis,cis-muconate lactonizing enzyme (NcCMLE) at 2.5 A resolution, with a seven-bladed beta propeller fold. It is related neither to bacterial MLEs nor to other beta propeller enzymes, but is structurally similar to the G protein beta subunit. It reveals a novel metal-independent cycloisomerase motif unlike the bacterial metal cofactor MLEs. Together, the bacterial MLEs and NcCMLE structures comprise a striking structural example of functional convergence in enzymes for 1,2-addition-elimination of carboxylic acids. NcCMLE and bacterial MLEs may enhance the reaction rate differently: the former by electrophilic catalysis and the latter by electrostatic stabilization of the enolate.  相似文献   

13.
The enzymes 3-deoxy-d-manno-2-octulosonate-8-phosphate (KDO8P) synthase and 3-deoxy-d-arabino-2-heptulosonate-7-phosphate (DAHP) synthase catalyze a similar aldol-type condensation between phosphoenolpyruvate (PEP) and the corresponding aldose: arabinose 5-phosphate (A5P) and erythrose 4-phosphate (E4P), respectively. While KDO8P synthase is metal-dependent in one class of organisms and metal-independent in another, only a metal-dependent class of DAHP synthases has thus far been identified in nature. We have used catalytically active E and Z isomers of phosphoenol-3-fluoropyruvate [(E)- and (Z)-FPEP, respectively] as mechanistic probes to characterize the differences and/or the similarities between the metal-dependent and metal-independent KDO8P synthases as well as between the metal-dependent KDO8P synthase and DAHP synthase. The direct evidence of the overall stereochemistry of the metal-dependent Aquifex pyrophilus KDO8P synthase (ApKDO8PS) reaction was obtained by using (E)- and (Z)-FPEPs as alternative substrates and by subsequent (19)F NMR analysis of the products. The results reveal the si face addition of the PEP to the re face of the carbonyl of A5P, and establish that the stereochemistry of ApKDO8PS is identical to that of the metal-independent Escherichia coli KDO8P synthase enzyme (EcKDO8PS). In addition, both ApKDO8PS and EcKDO8PS enzymes exhibit high selectivity for (E)-FPEP versus (Z)-FPEP, the relative k(cat)/K(m) ratios being 100 and 33, respectively. In contrast, DAHP synthase does not discriminate between (E)- and (Z)-FPEP (the k(cat)/K(m) being approximately 7 x 10(-)(3) microM(-)(1) s(-)(1) for both compounds). The pre-steady-state burst experiments for EcKDO8PS showed that product release is rate-limiting for the reactions performed with either PEP, (E)-FPEP, or (Z)-FPEP, although the rate constants, for both product formation and product release, were lower for the fluorinated analogues than for PEP [125 and 2.3 s(-)(1) for PEP, 2.5 and 0.2 s(-)(1) for (E)-FPEP, and 9 and 0.1 s(-)(1) for (Z)-FPEP, respectively]. The observed data indicate substantial differences in the PEP subsites and open the opportunity for the design of selective inhibitors against these two families of enzymes.  相似文献   

14.
SalM is a short-chain dehydrogenase/reductase enzyme from the marine actinomycete Salinispora tropica that is involved in the biosynthesis of chloroethylmalonyl-CoA, a novel halogenated polyketide synthase extender unit of the proteasome inhibitor salinosporamide A. SalM was heterologously overexpressed in Escherichia coli and characterized in vitro for its substrate specificity, kinetics, and reaction profile. A sensitive real-time 13C NMR assay was developed to visualize the oxidation of 5-chloro-5-deoxy-d-ribose to 5-chloro-5-deoxy-d-ribono-γ-lactone in an NAD+-dependent reaction, followed by spontaneous lactone hydrolysis to 5-chloro-5-deoxy-d-ribonate. Although short-chain dehydrogenase/reductase enzymes are widely regarded as metal-independent, a strong divalent metal cation dependence for Mg2+, Ca2+, or Mn2+ was observed with SalM. Oxidative activity was also measured with the alternative substrates d-erythrose and d-ribose, making SalM the first reported stereospecific non-phosphorylative ribose 1-dehydrogenase.  相似文献   

15.
Nifedipine, which is unstable at light, is photolytically converted to the corresponding 4-[2'-nitrosophenyl]-pyridine (NTP). We reported earlier that NTP react with unsaturated lipids in a pseudo Diels-Alder reaction, thus forming stable nitroxide radicals. In this paper we report that superoxide is being generated in the latter reaction. Superoxide formation was evidenced by SOD-inhibitable cytochrome c reduction in the reaction of NTP with egg phosphatidylcholine at molar ratio 1:1, and 1:3. In this reaction an ESR-observable nitroxide radical was formed. Maximum nitroxide formation was observed after 90 min; the addition of SOD (93 units/ml) increased the concentration of nitroxide. This effect of SOD was reversed by catalase, indicating involvement of hydrogen peroxide in this effect. The nitroxide radical formation appears to be metal-independent, since neither iron salts, nor an iron chelator, desferal, influenced the nitroxide formation. Although production of superoxide in our system was only observed at high concentrations of NTP and of unsaturated lipids, this reaction may be of potential cytotoxic significance due to redox cycling of the nitroxide/hydroxylamine couple in cellular systems.  相似文献   

16.
Summary The supernatant of Escherichia coli B autolysed in the presence of polymyxin B contains a single, metal-independent aminopeptidase activity (E.C.-group 3.4.1). The enzyme cleaves the 4-nitroanilides of L-alanine, L-lysine, L-leucine, glycine, and weakly L-phenylalanine. The corresponding N-acetyl-L-alanine-, L-glutamic acid- and L-cysteine-derivatives are not attacked.Dedicated to Dr. Hans Poschenrieder on the occasion of his 75th birthday.  相似文献   

17.
Allantoinase acts as a key enzyme for the biogenesis and degradation of ureides by catalyzing the conversion of (S)-allantoin into allantoate, the final step in the ureide pathway. Despite limited sequence similarity, biochemical studies of the enzyme suggested that allantoinase belongs to the amidohydrolase family. In this study, the crystal structure of allantoinase from Escherichia coli was determined at 2.1 Å resolution. The enzyme consists of a homotetramer in which each monomer contains two domains: a pseudo-triosephosphate-isomerase barrel and a β-sheet. Analogous to other enzymes in the amidohydrolase family, allantoinase retains a binuclear metal center in the active site, embedded within the barrel fold. Structural analyses demonstrated that the metal ions in the active site ligate one hydroxide and six residues that are conserved among allantoinases from other organisms. Functional analyses showed that the presence of zinc in the metal center is essential for catalysis and enantioselectivity of substrate. Both the metal center and active site residues Asn94 and Ser317 play crucial roles in dictating enzyme activity. These structural and functional features are distinctively different from those of the metal-independent allantoinase, which was very recently identified.  相似文献   

18.
The metal-independent production of hydroxyl radicals (*OH) from H(2)O(2) and tetrachloro-1,4-benzoquinone (TCBQ), a carcinogenic metabolite of the widely used wood-preservative pentachlorophenol, was studied by electron spin resonance methods. When incubated with the spin trapping agent 5,5-dimethyl-1-pyrroline N-oxide (DMPO), TCBQ and H(2)O(2) produced the DMPO/*OH adduct. The formation of DMPO/*OH was markedly inhibited by the *OH scavenging agents dimethyl sulfoxide (DMSO), ethanol, formate, and azide, with the concomitant formation of the characteristic DMPO spin trapping adducts with *CH(3), *CH(CH(3))OH, *COO(-), and *N(3), respectively. The formation of DMPO/*OH and DMPO/*CH(3) from TCBQ and H(2)O(2) in the absence and presence, respectively, of DMSO was inhibited by the trihydroxamate compound desferrioxamine, accompanied by the formation of the desferrioxamine-nitroxide radical. In contrast, DMPO/*OH and DMPO/*CH(3) formation from TCBQ and H(2)O(2) was not affected by the nonhydroxamate iron chelators bathophenanthroline disulfonate, ferrozine, and ferene, as well as the copper-specific chelator bathocuproine disulfonate. A comparative study with ferrous iron and H(2)O(2), the classic Fenton system, strongly supports our conclusion that *OH is produced by TCBQ and H(2)O(2) through a metal-independent mechanism. Metal-independent production of *OH from H(2)O(2) was also observed with several other halogenated quinones.  相似文献   

19.
A scheme of eukaryotic phylogeny has been suggested based on the structure and physical linkage of the enzymes that catalyze mRNA cap formation. Here we show that the intracellular parasite Encephalitozoon cuniculi encodes a complete mRNA capping apparatus consisting of separate triphosphatase (EcCet1), guanylyltransferase (EcCeg1), and methyltransferase (Ecm1) enzymes, which we characterize biochemically and genetically. The triphosphatase EcCet1 belongs to a metal-dependent phosphohydrolase family that includes the triphosphatase components of the capping apparatus of fungi, DNA viruses, and the malaria parasite Plasmodium falciparum. These enzymes are structurally and mechanistically unrelated to the metal-independent cysteine phosphatase-type RNA triphosphatases found in metazoans and plants. Our findings support the proposed evolutionary connection between microsporidia and fungi, and they place fungi and protozoa in a common lineage distinct from that of metazoans and plants. RNA triphosphatase presents an attractive target for antiprotozoal/antifungal drug development.  相似文献   

20.
Animal metal-independent ß-galactoside-binding lectinswere initially found in vertebrates, but they have recentlybeen isolated from much lower invertebrates, such as nematodeand sponge, as well. Further, an eosinophilic lysophospholipaseassociated with various inflammatory reactions was very recentlyfound to be a new member of this protein family. It appearsthat ß-galactoside-binding lectins and some non-lectinproteins form a superfamily whose members are widely distributedfrom vertebrates to invertebrates. From the viewpoints of proteinarchitecture, the superfamily members can be subdivided intothree types; i.e. ‘proto type’ (the relatively well-studied14 kDa lectins), ‘chimera type’ (29–35 kDalectins also known as  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号