首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The complete covalent structure of liver microsomal NADH-cytochrome b5 reductase from steer liver microsomes was determined. Cleavage at methionyl bonds gave 10 peptides accounting for all the residues of the protein. Acid cleavage of the reductase at the Asp-Pro bonds gave three peptides accounting for all the CNBr peptides in the molecule. Subfragmentation of these peptides by chemical and enzymatic cleavage provided overlaps which established all the fragments in an unambiguous sequence of 300 residues, corresponding to Mr 34,110. Limited tryptic digestion cleaved reductase at residues 28 and 119, yielding a preparation having two noncovalently linked peptides having a conformation which binds flavin and retains the structural features essential for NADH-cytochrome b5 activity. A model for the secondary structure of cytochrome b5 reductase is proposed that is based on computer-assisted analysis of the amino acid sequence. In this model the beta-turns are predominant and there is some 25% alpha and 30% beta structure.  相似文献   

3.
Two distinct forms of cytochrome b5 exist in the rat hepatocyte. One is associated with the membrane of the endoplasmic reticulum (microsomal, or Mc, cyt b5) while the other is associated with the outer membrane of liver mitochondria (OM cyt b5). Rat OM cyt b5, the only OM cyt b5 identified so far, has a significantly more negative reduction potential and is substantially more stable toward chemical and thermal denaturation than Mc cytochromes b5. In addition, hemin is kinetically trapped in rat OM cyt b5 but not in the Mc proteins. As a result, no transfer of hemin from rat OM cyt b5 to apomyoglobin is observed at pH values as low as 5.2, nor can the thermodyamically favored ratio of hemin orientational isomers be achieved under physiologically relevant conditions. These differences are striking given the similarity of the respective protein folds. A combined theoretical and experimental study has been conducted in order to probe the structural basis behind the remarkably different properties of rat OM and Mc cytochromes b5. Molecular dynamics (MD) simulations starting from the crystal structure of bovine Mc cyt b5 revealed a conformational change that exposes several internal residues to the aqueous environment. The new conformation is equivalent to the "cleft-opened" intermediate observed in a previously reported MD simulation of bovine Mc cyt b5 [Storch, E. M., and Daggett, V. (1995) Biochemistry 34, 9682-9693]. The rat OM protein does not adopt a comparable conformation in MD simulations, thus restricting access of water to the protein interior. Subsequent comparisons of the protein sequences and structures suggested that an extended hydrophobic network encompassing the side chains of Ala-18, Ile-32, Leu-36, and Leu-47 might contribute to the inability of rat OM cyt b5 to adopt the cleft-opened conformation and, hence, stabilize its fold relative to the Mc isoforms. A corresponding network is not present in bovine Mc cyt b5 because positions 18, 32, and 47, are occupied by Ser, Leu, and Arg, respectively. To probe the roles played by Ala-18, Ile-32, and Leu-47 in endowing rat OM cyt b5 with its unusual structural properties, we have replaced them with the corresponding residues in bovine Mc cyt b5. Hence, the I32L (single), A18S/L47R (double), and A18S/L47R/I32L (triple) mutants of rat OM cyt b5 were prepared. The stability of these proteins was found to decrease in the following order: WT rat OM > rat OM I32L > rat OM A18S/L47R > rat OM A18S/L47R/I32L > bovine Mc cyt b5. The decrease in stability of the rat OM protein correlates with the extent to which the hydrophobic cluster involving the side chains of residues 18, 32, 36, and 47 has been disrupted. Complete disruption of the hydrophobic network in the triple mutant is confirmed in a 2.0 A resolution crystal structure of the protein. Disruption of the hydrophobic network also facilitates hemin loss at pH 5.2 for the double and triple mutants, with the less stable triple mutant exhibiting the greater rate of hemin transfer to apomyoglobin. Finally, 1H NMR spectroscopy and side-by-side comparisons of the crystal structures of bovine Mc, rat OM, and rat OM A18S/L47R/I32L cyt b5 allowed us to conclude that the nature of residue 32 plays a key role in controlling the relative stability of hemin orientational isomers A and B in rat OM cyt b5. A similar analysis led to the conclusion that Leu-70 and Ser-71 play a pivotal role in stabilizing isomer A relative to isomer B in Mc cytochromes b5.  相似文献   

4.
A NADH-cytochrome c reductase activity was increased upon mitogen stimulation of human lymphocytes. The activity was not inhibited by antimycin A or rotenone but was specifically inhibited by antibodies elicited against rat liver NADH-cytochrome b5 reductase or cytochrome b5. The activity was linear with cellular homogenates up to 5.2 × 106 cells/ml and had abroad pH optimum of 7.7. The presence of 3-methylcholanthrene in mitogen stimulation media had no effect on the NADH-cytochrome c reductase activity but differentially induced the benzo(a)pyrene hydroxylase (AHH) activity. The reductase activity was present in nonstimulated cells and appears not to be significantly increased in activity per cell upon mitogen-stimulation of the peripheral lymphocyte.  相似文献   

5.
NADH-cytochrome b5 reductase from hog gastric microsomes was studied with respect to substrate dependence, optimum pH, thermal denaturation as well as anti-cytochrome b5 antibodies and different ions. The reduction of potassium ferricyanide by the enzyme was specific for NADH. Using potassium ferricyanide or trypsin-solubilized liver cytochrome b5 (Tb5) as substrates, enzyme activity was inhibited by ADP and to a lesser extent by ATP. Tb5- (but not ferricyanide-) reductase was activated by ionic strength up to 0.05 ion equivalent per liter and inhibited at higher strengths whatever the ion used (Cl-, Na+, Ca2+, Mg2+). Enzyme solubilization occurred with Triton X100. The solubilization increased the Tb5- (but not the ferricyanide-) reductase activity up to a Triton:protein ratio of 15. We therefore suggest that gastric microsomes contain a Triton soluble membrane-bound NADH cytochrome b5 reductase which is in many respects similar to the liver and red cell enzymes.  相似文献   

6.
1. Lung NADH-cytochrome b5 reductase was saturated with its artificial substrate, potassium ferricyanide at approximately 0.1 mM ferricyanide concentration, and the activity of the lung enzyme was inhibited by the higher concentrations of potassium ferricyanide. Ferricyanide at 0.5 and 1.0 mM inhibited the activity of the enzyme by about 20 and 61% respectively. The apparent Km value was calculated as 13.7 microM potassium ferricyanide and 4.3 microM NADH. 2. The Michaelis constants for cytochrome b5 and NADH were determined to be 1.67 and 7.7 microM from the Lineweaver-Burk plots. These results demonstrate that affinity of the lung reductase for its natural substrate is almost 10 times higher than that for potassium ferricyanide. 3. Addition of non-ionic detergent stimulated the rate of reductase-catalyzed reduction of lung cytochrome b5 up to 8.2-fold. 4. Kinetic studies performed with lung reductase by varying NADH and cytochrome b5 concentrations at different fixed concentrations at cytochrome b5 or NADH showed a series of parallel lines indicating a "ping-pong" type of kinetic mechanism for interaction of NADH and cytochrome b5 with lung cytochrome b5 reductase.  相似文献   

7.
To elucidate the mechanism for the synthesis of the coenzyme forms of cobalamin in mammals, rat liver aquacobalamin reductase was partially characterized. Rat liver contained both NADH- and NADPH-linked aquacobalamin reductases. The NADH-linked enzyme was distributed in the mitochondria (approx. 40%) and microsomes (60%), identical to the distribution of the NADPH-linked enzyme. The two mitochondrial NADH- and NADPH-linked enzymes were located inside of the outer membrane.  相似文献   

8.
9.
10.
11.
12.
In a number of animal species soluble NADH-cytochrome b5 reductase of erythrocytes was compared with membrane-bound NADH-cytochrome b5 reductase of liver microsomes by using an antibody to purified NADH-cytochrome b5 reductase from rat liver microsomes. The results obtained indicated clearly that they are immunologically very similar to each other. The data with erythrocyte ghosts suggested that cytochrome b5 and NADH-cytochrome b5 reductase are also present in the ghost.  相似文献   

13.
14.
Synthesis of rat liver microsomal cytochrome b5 by free ribosomes   总被引:16,自引:9,他引:7       下载免费PDF全文
Free and membrane-bound polyribosomes were separated from liver homogenates and characterized by electron microscopy. Using the wheat germ cell-free translation system, total translation products of poly A+RNA extracted from free polyribosomes (poly A+RNAf) showed some correlation to total liver cytosol proteins. In contrast, translation products of poly A+RNA from membrane-bound polyribosomes (poly A+RNAmb) showed some similarity to rat serum. Antibody to purified rat serum albumin immunoprecipitated from only the translation products of poly A+RNAmb a single polypeptide of mol wt 68,000. i.e., 3,000 greater than secreted serum albumin. In contrast, antibody to detergent-extracted cytochrome b5 immunoprecipitated from only the translation products of poly A+RNAf a single polypeptide of mol wt 17,500, identical to that of microsomal cytochrome b5. A consideration of the known properties of cytochrome b5 is consistent with an exclusive site of synthesis on free ribosomes.  相似文献   

15.
16.
17.
18.
An antibody preparation elicited against purified, lysosomal-solubilized NADH-cytochrome b5 reductase from rat liver microsomes was shown to interact with methemoglobin reductase of human erythrocytes by inhibiting the rate of erythrocyte cytochrome b5 reduction by NADH. The ferricyanide reductase activity of the enzyme was not inhibited by the antibody, suggesting that the inhibition of methemoglobin reductase activity may be due to interference with the binding of cytochrorme b5 to the flavoprotein. Under conditions of limiting concentrations of flavoprotein, the antibody inhibited the rate of methemoglobin reduction in a reconstituted system consisting of homogeneous methemoglobin reductase and cytochrome b5 from human erythrocytes. This inhibition was due to the decreased level of reduced cytochrome b5 during the steady state of methemoglobin reduction while the rate of methemoglobin reduction per reduced cytochrome b5 stayed constant, suggesting that the enzyme was not concerned with an electron transport between the reduced cytochrome b5 and methemoglobin.An antibody to purified, trypsin-solubilized cytochrome b5 from rat liver microsomes was shown to inhibit erythrocyte cytochrome b5 reduction by methemoglobin reductase and NADH to a lesser extent than microsomal cytochrome b5 preparations from rat liver (trypsin solubilized or detergent solubilized) and pig liver (trypsin solubilized). The results presented establish that soluble methemoglobin reductase and cytochrome b5 of human erythrocytes are immunochemically similar to NADH-cytochrome b5 reductase and cytochrome b5 of liver microsomes, respectively.  相似文献   

19.
Immunoreactive cytochrome b5 and NADPH-cytochrome P-450 reductase (EC 1.6.2.4) from rat liver microsomal fractions were measured by using an enzyme-linked immunoadsorbent assay (e.l.i.s.a.) as a function of age, sex and type of inducer (phenobarbital or 3-methylcholanthrene), and the values were compared with those obtained by spectral measurement (for cytochrome b5) or enzymic assay (for reductase). In untreated animals, there was more cytochrome b5 and NADPH-cytochrome P-450 reductase when measured by an e.l.i.s.a. than was seen spectrally or enzymically. However, for microsomal preparations from phenobarbital-pretreated animals, spectrally obtained values for cytochrome b5 and immunoreactive-cytochrome b5 values were similar. Values from control animals suggest that there is about 20-30% more immunoreactive cytochrome b5 than that which is spectrally detectable.  相似文献   

20.
A soluble form of NADH-cytochrome b5 reductase (NADH: ferricytochrome b5 oxidoreductase, EC 1.6.2.2) was found in the cytosolic fraction of rabbit liver. The partially purified enzyme was strictly specific for NADH. It catalyzed the reduction of several substrates such as the methemoglobin-ferrocyanide complex (Hegesh, E. and Avron, M. (1967) Biochim. Biophys. Acta 146, 91-101) (apparent Km: 8 micrometer), potassium ferricyanide (apparent Km: 10 micrometer) and ferricytochrome b5 (apparent Km: 15 micrometer). Upon acrylamide gel isoelectro-focusing followed by specific staining, the enzyme was resolved into four bands (isoelectric pH: 7.05, 6.70, 6.50 and 6.30). The optimum pH of activity with ferricytochrome b5 as a substrate was 6.5. The estimated molecular weight was 25 000--30 000. The enzyme was unsensitive to cyanide. It was strongly inhibited by p-hydroxymercuribenzoate. The cytosolic liver cytochrome b5 reductase was immunologically related to the soluble cytochrome b5 reductase from human and rabbit red-cells, and to the microsomal cytochrome b5 reductase from rabbit liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号