首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 219 毫秒
1.
The formation of cranial bone requires the differentiation of osteoblasts from undifferentiated mesenchymal cells. The balance between osteoblast recruitment, proliferation, differentiation and apoptosis in sutures between cranial bones is essential for calvarial bone formation. The mechanisms that control human osteoblasts during normal calvarial bone formation and premature suture ossification (craniosynostosis) begin to be understood. Our studies of the human calvaria osteoblast phenotype and calvarial bone formation showed that premature fusion of the sutures in non-syndromic and syndromic (Apert syndrome) craniosynostoses results from precocious osteoblast differentiation. We showed that Fibroblast Growth Factor-2 (FGF-2), FGF receptor-2 (FGFR-2) and Bone Morphogenetic Protein-2 (BMP-2), three essential factors involved in skeletal development, regulate the proliferation, differentiation and apoptosis in human calvaria osteoblasts. Mechanisms that induce the differentiated osteoblast phenotype have also been identified in human calvaria osteoblasts. We demonstrated the implication of molecules (N-cadherin, Il-1) and signaling pathways (src, PKC) by which these local factors modulate human calvaria osteoblast differentiation and apoptosis. The identification of these essential signaling molecules provides new insights into the pathways controlling the differentiated osteoblast phenotype, and leads to a more comprehensive view in the mechanisms that control normal and premature cranial ossification in humans.  相似文献   

2.
3.
4.
Fibroblast growth factor (FGF) and bone morphogenetic protein (BMP) play essential roles in bone formation and osteoblast activity through the extracellular signal‐regulated kinase 1/2 (ERK1/2) and Smad pathways. Sprouty family members are intracellular inhibitors of the FGF signaling pathway, and four orthologs of Sprouty have been identified in mammals. In vivo analyses have revealed that Sprouty2 is associated with bone formation. However, the mechanism by which the Sprouty family controls bone formation has not been clarified. In this study, we investigated the involvement of Sprouty2 in osteoblast proliferation and differentiation. We examined Sprouty2 expression in MC3T3‐E1 cells, and found that high levels of Sprouty2 expression were induced by basic FGF stimulation. Overexpression of Sprouty2 in MC3T3‐E1 cells resulted in suppressed proliferation compared with control cells. Sprouty2 negatively regulated the phosphorylation of ERK1/2 after basic FGF stimulation, and of Smad1/5/8 after BMP stimulation. Furthermore, Sprouty2 suppressed the expression of osterix, alkaline phosphatase, and osteocalcin mRNA, which are markers of osteoblast differentiation. Additionally, Sprouty2 inhibited osteoblast matrix mineralization. These results suggest that Sprouty2 is involved in the control of osteoblast proliferation and differentiation by downregulating the FGF‐ERK1/2 and BMP‐Smad pathways, and suppresses the induction of markers of osteoblast differentiation.  相似文献   

5.
6.
7.
8.
FGF and FGFR signaling in chondrodysplasias and craniosynostosis   总被引:2,自引:0,他引:2  
The first experimental mouse model for FGF2 in bone dysplasia was made serendipitously by overexpression of FGF from a constitutive promoter. The results were not widely accepted, rightfully drew skepticism, and were difficult to publish; because of over 2,000 studies published on FGF‐2 at the time (1993), only a few reported a role of FGF‐2 in bone growth and differentiation. However, mapping of human dwarfisms to mutations of the FGFRs shortly, thereafter, made the case that bone growth and remodeling was a major physiological function for FGF. Subsequent production of numerous transgenic and targeted null mice for several genes in the bone growth and remodeling pathways have marvelously elucidated the role of FGFs and their interactions with other genes. Indeed, studies of the FGF pathway present one of the best success stories for use of experimental genetics in functionally parsing morphogenetic regulatory pathways. What remains largely unresolved is the pleiotropic nature of FGF‐2. How does it accelerate growth in one cell then stimulate apoptosis or retard growth for another cell in the same type of tissue? Some of the answers may come through distinguishing the FGF‐2 protein isoforms, made from alternative translation start sites, these appear to have substantially different functions. Although we have made substantial progress, there is still much to be learned regarding FGF‐2 as a most complex, enigmatic protein. Studies of genetic models in mice and human FGFR mutations have provided strong evidence that FGFRs are important modulators of osteoblast function during membranous bone formation. However, there is some controversy regarding the effects of FGFR signaling in human and murine genetic models. Although significant progress has been made in our understanding of FGFR signaling, several questions remain concerning the signaling pathways involved in osteoblast regulation by activated FGFR. Additionally, little is known about the specific role of FGFR target genes involved in cranial bone formation. These issues need to be addressed in future in in vitro and in vivo approaches to better understand the molecular mechanisms of action of FGFR signaling in osteoblasts that result in anabolic effects in bone formation. J. Cell. Biochem. © 2005 Wiley‐Liss, Inc.  相似文献   

9.
10.
To clarify the roles of fibroblast growth factors (FGF) in limb cartilage pattern formation, the effects of various FGF on recombinant limbs that were composed of dissociated and reaggregated mesoderm and ectodermal jackets were examined. Fibroblast growth factor-soaked beads were inserted just under the apical ectodermal ridge (AER) of recombinant limbs and the recombinant limbs were grafted and allowed to develop. Control recombinant limbs without FGF beads formed one or two cartilage elements. Recombinants with FGF-4 beads formed up to five cartilage elements, which were aligned along the anteroposterior (AP) axis. Each cartilage element showed digit-like segmentation. In contrast, recombinants with FGF-2 beads showed formation of multiple thick and unsegmented cartilage rods, which elongated inside and outside the AP plane from the distal end of the recombinants. Recombinants with FGF-8 beads formed a truncated cartilage pattern and recombinants with FGF-10 beads formed a cartilage pattern similar to that of the control recombinants. The expression of the Fgf-8, Msx-1 and Hoxa-13 genes in the developing recombinant limbs were examined. FGF-4 induced extension of the length of the Fgf-8-positive epidermis, or AER, along the AP axis 5 days after grafting, at which time the digits are specified. FGF-2 induced expansion of the Msx-1-positive area, first in the proximal direction and then along the dorsoventral axis. The functions of these FGF in recombinant and normal limb patterning are discussed in this paper.  相似文献   

11.
12.
Signaling pathways for bone morphogenetic proteins (BMPs) are important in osteoblast differentiation. Although the precise function of type I BMP receptors in mediating BMP signaling for osteoblast differentiation and bone formation has been characterized previously, the role of type II BMP receptors in osteoblasts is to be well clarified. In this study, we investigated the role of type II BMP receptor (BMPR-II) and type IIB activin receptor (ActR-IIB) in BMP2-induced osteoblast differentiation. While osteoblastic 2T3 cells expressed BMPR-II and ActR-IIB, loss-of-function studies, using dominant negative receptors and siRNAs, showed that BMPR-II and ActR-IIB compensated each other functionally in mediating BMP2 signaling and BMP2-induced osteoblast differentiation. This was evidenced by two findings. First, unless there was loss of function of both type II receptors, isolated disruption of either BMPR-II or ActR-IIB did not remove BMP2 activity. Second, in cells with loss of function of both receptors, restoration of function of either BMPR-II or ActR-IIB by transfection of the wild-type forms, restored BMP2 activity. These findings suggest a functional redundancy between BMPR-II and ActR-IIB in osteoblast differentiation. Results from experiments to test the effects of transforming growth factor β (TGF-β), activin, and fibroblast growth factor (FGF) on osteoblast proliferation and differentiation suggest that inhibition of receptor signaling by double-blockage of BMPR-II and ActR-IIB is BMP-signaling specific. The observed functional redundancy of type II BMP receptors in osteoblasts is novel information about the BMP signaling pathway essential for initiating osteoblast differentiation.  相似文献   

13.
14.
15.
16.
Fibroblast growth factor 2 (FGF2) positively modulates osteoblast differentiation and bone formation. However, the mechanism(s) is not fully understood. Because the Wnt canonical pathway is important for bone homeostasis, this study focuses on modulation of Wnt/β-catenin signaling using Fgf2(-/-) mice (FGF2 all isoforms ablated), both in the absence of endogenous FGF2 and in the presence of exogenous FGF2. This study demonstrates a role of endogenous FGF2 in bone formation through Wnt signaling. Specifically, mRNA expression for the canonical Wnt genes Wnt10b, Lrp6, and β-catenin was decreased significantly in Fgf2(-/-) bone marrow stromal cells during osteoblast differentiation. In addition, a marked reduction of Wnt10b and β-catenin protein expression was observed in Fgf2(-/-) mice. Furthermore, Fgf2(-/-) osteoblasts displayed marked reduction of inactive phosphorylated glycogen synthase kinase-3β, a negative regulator of Wnt/β-catenin pathway as well as a significant decrease of Dkk2 mRNA, which plays a role in terminal osteoblast differentiation. Addition of exogenous FGF2 promoted β-catenin nuclear accumulation and further partially rescued decreased mineralization in Fgf2(-/-) bone marrow stromal cell cultures. Collectively, our findings suggest that FGF2 stimulation of osteoblast differentiation and bone formation is mediated in part by modulating the Wnt pathway.  相似文献   

17.
Fibroblast Growth Factors (FGFs) regulate prenatal and postnatal bone formation through activation of FGF receptors (FGFR) and downstream signaling events. During the last decade, major advances have been made in our understanding of the mechanisms by which FGF/FGFR signaling controls osteoprogenitor cell replication and osteoblast differentiation and function. The analysis of the phenotype induced by FGF invalidation and mutations in FGFR allowed to delineate key FGF signaling pathways that regulate osteoblastogenesis. Molecular genomic studies led to identify target genes that are controlled by FGF/FGFR signaling and govern osteoblasts. The analysis of intracellular signaling pathways showed the importance of functional crosstalks between FGF signaling and other pathways in the regulation of bone formation. These recent progresses in the mechanisms underlying FGF/FGFR signaling may provide a molecular basis for developing therapeutic strategies in human skeletal dysplasias.  相似文献   

18.
19.
We recently showed that the Apert Ser252Trp fibroblast growth factor receptor-2 (FGFR-2) mutation causes premature osteoblast differentiation and increased subperiosteal calvaria bone matrix formation. To gain further insight into the cellular mechanisms involved in these effects, we examined the effects of the mutation on the expression of FGFRs in relation to cell proliferation and differentiation markers in vivo and in vitro, and we analyzed the underlying signaling pathways in mutant cells. Immunohistochemical analysis of the Apert calvaria suture showed that the Ser252Trp FGFR-2 mutation increased type 1 collagen, osteocalcin, and osteopontin expression in preosteoblasts compared to normal, whereas cell growth was not affected. The premature osteoblast differentiation induced by the mutation was associated with lower than normal FGFR-2 immunolabeling, whereas FGFR-1 and FGFR-3 levels were not decreased. Immunocytochemical analysis in osteoblasts isolated from Apert coronal suture showed that the Ser252Trp mutation induced constitutive downregulation of FGFR-2 in mutant cells. Western blot analysis of FGFRs in immortalized mutant osteoblastic cells confirmed that the mutation induced FGFR-2 downregulation. FGFR-2 mRNA levels were not altered in mutant cells, indicating that FGFR-2 downregulation resulted from receptor internalization rather than from changes in receptor mRNA. The signaling pathway involved in FGFR-2 downregulation was studied using specific inhibitors of FGF signaling molecules. The selective PKC inhibitor calphostin C markedly reduced FGFR-2 protein levels in mutant cells, in contrast to the p38 MAP kinase inhibitor SB 203580 or the Erk 1,2 MAP kinase inhibitor PD-98059, showing that PKC is involved in FGFR-2 regulation, but not in FGFR-2 downregulation in mutant cells. The results indicate that the premature osteoblast differentiation induced by the FGFR-2 Ser252Trp mutation is associated with a PKC-independent downregulation of FGFR-2 in human calvaria cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号