首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Dendrodendritic interactions between excitatory mitral cells and inhibitory granule cells in the olfactory bulb create a dense interaction network, reorganizing sensory representations of odors and, consequently, perception. Large-scale computational models are needed for revealing how the collective behavior of this network emerges from its global architecture. We propose an approach where we summarize anatomical information through dendritic geometry and density distributions which we use to calculate the connection probability between mitral and granule cells, while capturing activity patterns of each cell type in the neural dynamical systems theory of Izhikevich. In this way, we generate an efficient, anatomically and physiologically realistic large-scale model of the olfactory bulb network. Our model reproduces known connectivity between sister vs. non-sister mitral cells; measured patterns of lateral inhibition; and theta, beta, and gamma oscillations. The model in turn predicts testable relationships between network structure and several functional properties, including lateral inhibition, odor pattern decorrelation, and LFP oscillation frequency. We use the model to explore the influence of cortex on the olfactory bulb, demonstrating possible mechanisms by which cortical feedback to mitral cells or granule cells can influence bulbar activity, as well as how neurogenesis can improve bulbar decorrelation without requiring cell death. Our methodology provides a tractable tool for other researchers.  相似文献   

4.
The olfactory bulb employs lateral and feedback inhibitory pathways to distribute odor information across parallel assemblies of mitral and granule cells. The pathways involve dendritic action potentials that can interact with a variety of voltage-dependent conductances and synaptic transmission to produce complex and dynamic patterns of activity. Electrical coupling also helps to ensure proper coordination and synchronization of these patterns. These mechanisms provide numerous options for dynamic modulation and control of signaling in the olfactory bulb.  相似文献   

5.
Inhibition in the olfactory bulb of the carp was studied by recording potentials from secondary neurons intracellularly. Three types of inhibition — trace, early, and late — can arise in neurons of the olfactory bulb. Trace inhibition corresponds to hyperpolarization about 20 msec in duration, which is closely connected with the spike, but it is not after-hyperpolarization but an IPSP. Early and late inhibition correspond to IPSPs of different parameters. The first has a latency of 0–50 msec (relative to the spike) and a duration of 60–400 msec; the corresponding values for the second are 100–400 msec and 0.5–3 sec. The possible mechanisms of these types of inhibition are discussed.M. V. Lomonosov Moscow State University. Translated from Neirofiziologiya, Vol. 3, No. 6, pp. 650–656, November–December, 1971.  相似文献   

6.
It has been suggested that the olfactory bulb, the first processing center after the sensory cells in the olfactory pathway, plays a role in olfactory adaptation, odor sensitivity enhancement by motivation and other olfactory psychophysical phenomena. In a mathematical model based on the bulbar anatomy and physiology, the inputs from the higher olfactory centers to the inhibitory cells in the bulb are shown to be able to modulate the response, and thus the sensitivity of the bulb to specific odor inputs. It follows that the bulb can decrease its sensitivity to a pre-existing and detected odor (adaptation) while remaining sensitive to new odors, or increase its sensitivity to interested searching odors. Other olfactory psychophysical phenomena such as cross-adaptation etc. are discussed as well.  相似文献   

7.
8.
9.
10.
The olfactory system of the pigeon (Columba livia) was examined. Our electrophysiological and experimental neuroanatomical (Fink-Heimer technique) data showed that axons from the olfactory bulb terminated in both sides of the forebrain. The cortex prepiriformis (olfactory cortex), the hyperstriatum ventrale and the lobus parolfactorius comprised the uncrossed terminal field. The crossed field included the paleostriatum primitivum and the caudal portion of the lobus parolfactorius, areas which were reached through the anterior commissure. In this report the relationships between areas that receive olfactory information and the possible roles that olfaction plays in the birds' behavior are discussed.  相似文献   

11.
  相似文献   

12.
During embryonic development, olfactory sensory neurons extend axons that form synapses with the dendrites of projection neurons in glomeruli of the olfactory bulb (OB). The glycosyltransferase beta3GnT1 regulates the expression of 1B2-reactive lactosamine glycans that are mosaically distributed among glomeruli. In newborn beta3GnT1-/- mice, lactosamine expression is lost, and many glomeruli fail to form. To determine the role of lactosamine in OB targeting, we analyzed the trajectories of specific OR axon populations and their reactivity with 1B2 in beta3GnT1-/- mice. mI7 axons and P2 axons, both of which are weakly 1B2+ in wild-type mice, fail to grow to their normal positions in the glomerular layer during early postnatal development and never recover in adult mutant mice. In contrast, many M72 axons, which are always lactosamine negative in wild-type mice, survive but are misguided to the extreme anterior OB in neonatal mutant mice and persist as heterotypic glomeruli, even in adult null mice. These results show that the loss of lactosamine differentially affects each OR population. Those that lose their normal expression of lactosamine fail to form stable connections with mitral and tufted cells in the OB, disappear during early postnatal development, and do not recover in adults. Neurons that are normally lactosamine negative, survive early postnatal degeneration in beta3GnT1-/- mice but extend axons that converge on inappropriate targets in the mutant OB.  相似文献   

13.
John JA  Key B 《Chemical senses》2003,28(9):773-779
During development, primary olfactory axons typically grow to their topographically correct target zone without extensive remodelling. Similarly, in adults, new axons arising from the normal turnover of sensory neurons essentially project to their target without error. In the present study we have examined axon targeting in the olfactory pathway following extensive chemical ablation of the olfactory neuroepithelium in the P2-tau:LacZ line of mice. These mice express LacZ in the P2 subpopulation of primary olfactory neurons whose axons target topographically fixed glomeruli on the medial and lateral surfaces of the olfactory bulb. Intraperitoneal injections of dichlobenil selectively destroyed the sensory neuroepithelium of the nasal cavity without direct physical insult to the olfactory neuron pathway. Primary olfactory neurons regenerated and LacZ staining revealed the trajectory of the P2 axons. Rather than project solely to their topographically appropriate glomeruli, the regenerating P2 axons now terminated in numerous inappropriate glomeruli which were widely dispersed over the olfactory bulb. While these errors in targeting were refined over time, there was still considerable mis-targeting after four months of regeneration.  相似文献   

14.
The responses to odor stimulation of 40 single units in the olfactory mucosa and of 18 units in the olfactory bulb of the tortoise (Gopherus polyphemus) were recorded with indium-filled, Pt-black-tipped microelectrodes. The test battery consisted of 27 odorants which were proved effective by recording from small bundles of olfactory nerve. Two concentrations of each odorant were employed. These values were adjusted for response magnitudes equal to those for amyl acetate at –2.5 and –3.5 log concentration in olfactory twig recording. Varying concentrations were generated by an injection-type olfactometer. The mucosal responses were exclusively facilitory with a peak frequency of 16 impulses/sec. 19 mucosal units responded to at least one odorant and each unit was sensitive to a limited number of odorants (1–15). The sensitivity pattern of each unit was highly individual, with no clear-cut types, either chemical or qualitative, emerging. Of the 18 olfactory bulb units sampled, all responded to at least one odorant. The maximum frequency observed during a response was 39 impulses/sec. The bulbar neurons can be classified into two types. There are neurons that respond exclusively with facilitation and others that respond with facilitation to some odorants and with inhibition to others. Qualitatively or chemically similar odorants did not generate similar patterns across bulbar units.  相似文献   

15.
Inhibition in neurons of the lizard olfactory bulb was investigated by intracellular recording. The hyperpolarization arising in the neurons after the spike in the response to orthodromic and antidromic activation is similar in composition and reflects the development of early and late IPSPs, differing from one another in latency, duration, and mechanism of generation. The early IPSP is evidently generated by the functioning of dendrodendritic synapses, formed by dendrites of the interglomerular cell on the membrane of the apical dendrites of the secondary neurons, whereas synapses generating the late IPSP are located on the basal dendrites and are formed by endings of the granular cells. The mechanisms of generation of the early and late IPSPs in the secondary neurons are discussed. A classification of neurons of the lizard olfactory bulb is given on the basis of analysis of their intracellular activity.  相似文献   

16.
啮齿动物的犁鼻器和副嗅球与社会通讯和生殖行为有关,主嗅球影响其觅食行为。达乌尔黄鼠(Spermophilus dauricus)是一种具有较低社会行为的储脂类冬眠动物。本研究用组织学和免疫组织化学方法探究了其犁鼻器和副嗅球的结构特点及嗅球神经元活动对季节变化的适应。结果发现,达乌尔黄鼠犁鼻器具有较大的血管,犁鼻器管腔外侧为非感觉性的呼吸上皮(Respiratory epithelium,RE),内侧为感觉上皮(Sensory epithelium,SE),RE较SE薄,靠近管腔处为假复层柱状上皮。选取犁鼻器中间部位比较,发现SE的厚度、长度及感觉细胞密度均无性别差异。副嗅球位于主嗅球后方背内侧,由6层细胞构成。侧嗅束穿过副嗅球,位于颗粒细胞层之上。雄性达乌尔黄鼠较雌性有更长的僧帽细胞层和颗粒细胞层。春季(3月)和冬季(1月)达乌尔黄鼠主嗅球的嗅小球层、僧帽细胞层和颗粒细胞层的c-Fos-ir神经元密度显著低于夏季(7月)和秋季(10月),且冬季外网织层的c-Fos-ir神经元密度显著低于夏季和秋季,说明达乌尔黄鼠在冬季和春季的嗅觉神经活动较弱,呈现出对冬眠的生理性适应。这些结果丰富了动物犁鼻器和副嗅球的形态学资料,并有助于理解冬眠动物嗅觉系统对季节变化和冬眠的适应。  相似文献   

17.
Modeling the olfactory bulb and its neural oscillatory processings   总被引:11,自引:0,他引:11  
The olfactory bulb of mammals aids in the discrimination of odors. A mathematical model based on the bulbar anatomy and electrophysiology is described. Simulations of the highly non-linear model produce a 35–60 Hz modulated activity which is coherent across the bulb. The decision states (for the odor information) in this system can be thought of as stable cycles, rather than point stable states typical of simpler neuro-computing models. Analysis shows that a group of coupled non-linear oscillators are responsible for the oscillatory activities. The output oscillation pattern of the bulb is determined by the odor input. The model provides a framework in which to understand the transform between odor input and the bulbar output to olfactory cortex. There is significant correspondence between the model behavior and observed electrophysiology.  相似文献   

18.
Brunjes  PC; Kishore  R 《Chemical senses》1998,23(6):717-719
Blocking airflow through half of the nasal cavity during early life results in a 25% reduction in the size of the ipsilateral main olfactory bulb. The present study indicates that the size of the accessory bulb is relatively unaffected by the procedure.   相似文献   

19.
To gain insight into the function of AOB and MOB during different social interaction and in different vole species,the behaviors and neural activation of the olfactory bulbs in social interactions of mandarin voles Microtus mandarinus and reed voles Microtus fortis were compared in the present research.Mandarin voles spent significantly more time attacking and sniffing their opponents and sniffing sawdust than reed voles.During same sex encounters,mandarin voles attacked their opponents for a significantly ...  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号