首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Polyembryony seems to be advantageous to mother plants in detriment of their siblings which face competition since the beginning of seed development. This competition may limit the turnover of embryos into seedlings and their survival ability. We analysed polyembryony frequency and embryo to seedling turnover in three Handroanthus species with sporophytic apomixis. We tested if the embryo number per seed affected seed and embryo morphometry, seedling survival ability and seed individual survival (i.e. survival of at least one seedling per seed). The number of embryos per seed was compared with seedling number at different developmental stages. All 14 populations showed high frequencies of polyembryonic seeds (21–91%). As the number of embryos per seed increased (up to eight embryos/seed), there was a reduction of mean embryo mass, area, seedling length, individual seedling survival ability, and embryo to seedling turnover. There was also an increase in embryo morphological anomalies. However, enhanced seed individual survival was also observed. Thus, the high frequency of polyembryonic seeds and the increase in seed individual survival support the idea that polyembryony represents an alternative reproductive mechanism which can favours these species.  相似文献   

2.
Some citrus varieties express a form of apomixis termed nucellar embryony in which the adventive embryos develop from nucellus tissue surrounding the embryo sac. This trait results in many seeds containing multiple embryos (polyembryony). Inheritance of the frequency of polyembryony was studied in 88 progeny from a cross of Citrus maxima (monoembryonic) × Poncirus trifoliata (polyembryonic). The frequency of polyembryonic seed produced by each progeny was determined by scoring 100–500 seeds for the number of seedlings to emerge from each seed. Two groups of eight individuals from each extreme of the population were chosen for bulked segregant analysis with amplified fragment length polymorphism markers amplified with 256 primer combinations. Candidate markers identified in the bulks as linked to the trait were tested on the 32 individuals used to create the bulks and then on the remaining plants in the population. Five candidate markers tightly linked to polyembryony in P. trifoliata were identified. Specific marker alleles were present in nearly all progeny that produced polyembryonic seed, and alternate alleles were present in nearly all progeny that produced only monoembryonic seed. The region defined by these markers very likely contains a gene that is essential for the production of polyembryonic seeds by apomixis, but also shows segregation distortion. The proportion of polyembryonic seeds varied widely among the hybrid progeny, probably due to other genes. Scoring 119 progeny of a P. trifoliata selfed population for the closely linked markers and the proportion of polyembryonic seeds confirmed close linkage between these markers and polyembryony.  相似文献   

3.
Polyembryony has been commonly associated with apomixis in the angiosperms and seems to be more common than expected, even in biomes where sexual reproduction processes are predominant. Recent studies in Cerrado, the Neotropical savannas of Central Brazil, showed high frequencies of apomixis and polyembryony and indicated these processes as reproductive and evolutionary alternatives for plants in these areas. In this sense, we investigated the occurrence of polyembryony and its relationships with ecological (season and type of dispersal, ploidy, species distribution and breeding system) and taxonomic (tribe) factors in the Melastomataceae, a mostly tropical family already known for its high frequency of apomixis and very common in Cerrado. We collected seeds from 69 populations of 53 species, which were sown in germination chambers. After seed germination, the presence and number of seedlings per seed were evaluated as a method to estimate polyembryony. We encountered 18 species (33.96%) with polyembryony (more than one seedling, or gemellar seedlings, originated per seed) concentrated in species of the tribe Miconieae (64%) and Microlicieae (16.67%), but absent in Melastomeae. Monoembryony was present only in sexual species, while all apomictic species were polyembryonic. In Miconia, the polyembryony was correlated with polyploidy, and monoembryony with diploid species. Polyembryony was more common among species with wide distribution in the Cerrado region, which indicates that the presence of gemellar seedlings is important for establishment and survival of the group in the Cerrado biome.  相似文献   

4.
Apomixis and adventitious polyembryony have been reported for several species of Bombacoideae, including Eriotheca pubescens, a tree species of the Neotropical savanna (Cerrado) areas in Brazil. However, the origin of polyembryonic seeds and their importance for the reproduction of the species remained to be shown. Here, we analyzed the early embryology of this species to establish the apomictic origin of extranumerary embryos. We also observed the geographic distribution of polyembryony in E. pubescens, and tested if apomixis was related to the source of pollen (self or cross) and population density. Moreover, we tested if polyembryonic apomictic embryos would develop normally into seedlings. In the observed seed primordia, after a relatively long quiescent period, the zygote developed into a sexual embryo concurrently with adventitious apomictic embryos which developed from nucellus cells. Adventitious embryos develop faster than sexual ones and are morphologically similar, so that 44 days after anthesis it was virtually impossible to distinguish and trace the fate of the sexual embryo. Polyembryony is widely distributed in populations some 400 km distant, and only one strictly monoembryonic individual was observed during the study. The number of embryos per seed varied between fruits and individuals but was significantly higher in seeds from cross-pollinations than from selfs, although fruit and seed set after crosses were much lower than after selfs. Embryo development into seedlings depended on their weight at germination, but polyembryonic seeds germinated and produced up to seven seedlings per seed in greenhouse conditions. Adventitious embryony and apomictic seedlings would explain the mostly clonal populations suggested by molecular studies.  相似文献   

5.
Apomixis and polyploidy have been important in the evolution of the angiosperms, and sporophytic apomixis has been associated with polyembryony and polyploidy in tropical floras. We studied the occurrence of polyembryony in populations of tetraploid Anemopaegma acutifolium, A. arvense and A. glaucum from the Brazilian cerrados, and histological features of sexual and apomictic processes were investigated in A. acutifolium. All populations and species were polyembryonic (68.9–98.4% of seeds). Normal double fertilization occurred in most ovules, with exceptions being that 3% of ovules were penetrated but not fertilized and in 4% of ovules both synergids were penetrated. The penetration of both synergids suggests a continuous attraction of pollen tubes and polyspermy. Adventitious embryo precursor cells (AEPs) arose from nucellar and integumental cells of the ovule in pollinated and unpollinated A. acutifolium, indicating sporophytic apomixis. However, further embryo and endosperm development required pollination and fertilization. This pseudogamy also allows concurrent sexual embryo development. Similar polyembryony rates and polyploidy indicated that A. arvense and A. glaucum are also apomictic, forming an agamic complex similar to that observed for some species of confamilial, but not closely related Handroanthus. The co‐occurrence of apomixis and polyploidy in different groups of Bignoniaceae indicates homoplasious origin of these agamic complexes. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 173 , 77–91.  相似文献   

6.
It has been hypothesized that the fitness of selfed progeny must be lowered by inbreeding depression. Most research into the breeding systems of orchids shows a similar fruit set from outcrossing and self-pollination, but few studies have measured seed production and viability. In five populations of Laelia autumnalis, in central México, we studied the species reproductive system and the early costs of endogamy. We performed spontaneous self-pollination, apomixis, assisted self-pollination, cross-pollination, and exogamous pollination (using pollen from a different population) treatments of bagged flowers and measured fruit set, seed production, and germination. No fruits were produced in the apomixis and spontaneous self-pollination treatments. Reproductive success from self-pollination was lower than that from cross- and exogamous pollination and no difference was found between the latter two treatments. The ratio between self-pollination and cross-pollination success in different traits ranged from 0.80?±?0.18 (fruit set) to 0.22?±?0.13 (seeds with embryo). The latter value suggests a high endogamy costs in the production of viable seeds. The concatenated success of the different traits studied showed that the relative fitness of self-pollination was 63% lower than with cross-pollination. Laelia autumnalis is a self-compatible non-autogamous species in which the cost of endogamy occurs at seed production and cannot be compensated for at other early stages. This also occurs in other orchid species and is likely to be a general pattern.  相似文献   

7.
Under greenhouse conditions, Epidendrum nocturnum Jacq. plantsproduce fruits by both self-fertilization and cleistogamy. Althoughadapted to these reproductive processes the species respondalso to cross-pollination. Seeds without embryos and with oneembryo are usual but occasionally seeds with two, three or fourembryos are produced. Multiple embryos are formed by polyembryonyand apomixis. Epidendrum nocturnum, self-pollination, cleistogamy, apomixis, polyembryony, supernumerary embryos  相似文献   

8.
Interference between male and female functions within a monoecious plant may hinder crossing and decrease seed set. We assessed the probability of self-pollination and the effect of self-pollination on cross-pollination for two self-incompatible species: Nothofagus obliqua and N. nervosa. The probability of self-pollination was studied by tracking the phenologies of staminate and pistillate flowers, including an analysis of stigmatic receptivity. Pure and mixed pollinations were performed in order to evaluate the effect of self-pollination upon cross-pollination. Phenological observations suggest that self-pollination is highly likely in both species. Compared to pure cross-pollination, the application of self-pollination prior to cross-pollination resulted in lower numbers of germinated pollen grains for both species, and also in a lower production of viable seeds in N. nervosa. The low proportion of viable seeds often observed in natural populations of N. obliqua and N. nervosa may be related to self-pollination.  相似文献   

9.
Summary Fertility parameters were estimated inVaccinium myrtillus andV. vitis-idaea after self- and cross-pollinations performed in growth chamber. We showed a drastic decrease in fertility after self-pollination as compared to cross-pollination. Number of plump seeds per berry was compared with previous field data. In both species, growth room conditions improved plump seed number after cross-pollination but not after self-pollination. In addition, in order to enhance resources supply to young developing fruits, cytokinin application was tested inV. myrtillus but no effect was detected. We hypothesize that the partial self-sterility is due to inbreeding depression based on the expression of recessive lethals.  相似文献   

10.
  • Gall inducers use these structures as shelters and sources of nutrition. Consequently, they cause multiple physiological changes in host plants.
  • We studied the impact caused by seed coat galls of a braconid wasp on the performance of fruits, seeds and seedlings of tree Inga laurina. We tested whether these seed galls are ‘nutrient sinks’ with respect to the fruit/seed of host plant, and so constrain the reproductive ability and reduce seedling longevity. We measured the influence of such galls on the secondary compounds, fruit and seed parameters, seed viability and germination and seedling performance.
  • Inga laurina has indehiscent legumes with polyembryonic seeds surrounded by a fleshy sarcotesta rich in sugars. The galls formed inside the seed coat and galled tissues presented higher phenol concentrations, around 7‐fold that of ungalled tissues. Galls caused a significant reduction in parameters such as fruit and seed size, seed weight and the number of embryos. Fluctuating asymmetry (a stress indicator) was 31% higher in leaves of galled seed plants in comparison to ungalled seed plants. However, the negative effects on fruit and seed parameters were not sufficient to reduce seed germination (except the synchronization index) or seedling performance (except leaf area and chlorophyll content).
  • We attributed these results to the ability of I. laurina to tolerate gall attack on seeds without a marked influence on seedling performance. Moreover, because of the intensity of seed galling on host plant, we suggest that polyembryony may play a role in I. laurina reproduction increasing tolerance to seed damage.
  相似文献   

11.
Handroanthus chrysotrichus shows pollination-dependent self-fertility, polyploidy, and adventitious polyembryony, and it is closely related to H. ochraceus, for which apparently conflicting reports of self-incompatibility and apomixis have been published. The present study aims to investigate the polyembryony in these species by means of histological analysis of ovule/seed development in unpollinated, selfed, and crossed pistils/fruits (in H. chrysotrichus only) as well as seed germination experiments. Experimental pollinations were carried out to evaluate breeding systems in the studied populations, and the results indicated self-fertility in both species. Adventitious embryo precursor cells (AEPs) were formed in the ovules of unpollinated, selfed, and crossed pistils. However, unfertilized ovules never develop into seeds, and fertilization/endosperm initiation clearly stimulates the formation of AEPs in pollinated pistils. The inability of AEP-bearing unfertilized ovules to initiate endospermogenesis clearly shows that fertilization is needed for adventitious embryo development. Consequently, formation of AEPs is required but is not sufficient for apomictic reproduction in H. chrysotrichus. Analysis of the positions of multiple embryos in the endosperm indicated that fertilized ovules are able to develop into seeds even in the absence of a zygotic embryo. The development of AEPs in ovules of H. chrysotrichus foregoes the stage in which activation of selfed pistil rejection takes place in H. impetiginosus, a species with late-acting self-incompatibility. Our study supports the hypothesis that the self-fertility in H. chrysotrichus (and perhaps also in H. ochraceus) resulted from the emergence of pseudogamous apomixis, favored by the physiological peculiarities of the late-acting self-incompatibility and possibly related to polyploidy.  相似文献   

12.
Some tropical Bignoniaceae form sporophytic apomictic polyploid complexes are similar to better studied temperate plants. Handroanthus ochraceus is a widely distributed Neotropical savanna tree with both monoembryonic/self-sterile, and polyembryonic/apomictic and self-fertile populations, but lacking chromosome number and morphological comparative studies. We tested if monoembryonic/non-apomictic and polyembryonic/apomictic populations differed in ploidy and morphological features, as a basis to understand evolution and biogeography of these plants. Chromosome number and embryo number per seed were investigated, and uni- and multivariate analyses of flower and leaf morphology were done for five populations of H. ochraceus. We found two pure monoembryonic diploid (2n?=?40), and one pure polyembryonic (62–94% of polyembryonic seeds) tetraploid population (2n?=?80). One of the diploid populations presented only one individual with 3.2% polyembryonic seeds and was considered a non-apomictic population. Another population showed predominantly polyembryonic (27–66% of polyembryonic seeds) tetraploid individuals, but one diploid individual with 2% of polyembryonic seeds, and was considered a mixed apomictic and non-apomictic population. Morphological analyses confirmed breeding system clusters, and that stigma width, as well as pollen grain area, was consistently larger in polyembryonic populations. Polyploid plants showed larger cells, as well as larger organs and other distinctive features, which will be useful to identify apomictic populations and to future taxonomic discussions. The species can be considered an agamic complex with apomixis associated with neopolyploidy. This trend is also found in other tropical sporophytic apomictics, contrasting with the usual reports linking diploidy or paleopolyploidy to this kind of apomictics.  相似文献   

13.
The 27 lemon cultivars analysed could be considered slightly or moderately polyembryonic, with 25 to 43% of seeds being polyembryonic and from 1.3 to 1.6 embryos per seed. On this basis, it is necessary to rescue zygotic embryos at an immature stage. Rescue and in vitro embryo development have been studied in two Citrus limon polyembryonic cultivars. Sucrose (50 and 70 g/l) was combined with Murashige and Skoog and Gamborg’s B5 media and tested for optimal growth response. An important effect of genotype was observed: embryos from cultivar ‘Eureka’ had greater survival, germination percentage, and radical development. While the sucrose concentration in the medium did not have an effect on germination, the medium affected the embryo survival and root development of the seedlings, Gamborg’s B5 medium giving the best results. The ability to form plants in vitro was affected by an increase of embryo developmental stage. The germination and seedling height were greater with embryos of seeds collected 135–150 days after anthesis.  相似文献   

14.
几种具无融合生殖特性的植物多胚和多苗现象的观察   总被引:3,自引:1,他引:3  
报道6种具无融合生殖特性的植物种子的胚数和萌发实生苗数的观察结果。金桔(Fortunellamargarita (Lour.)Swingle)、蜜桔(Citrus unshiu Marcoritch)和花椒(Zanthoxylum bungeanum Maxim.)具珠心胚,含多胚种子频率分别为97.50%、100%和45.00%;多胚种子的胚数范围分别为2~49,3~54和2~6。草地早熟禾(Poa pratensis L.)、滨草(Elymus rectisetus)和湖北海棠(Malus hupehensis(pampon.)Rehd.)具非减数配子体无融合生殖特性,含多胚种子频率依次为34.25%、8.11%和37.50%;前两种的多胚种子中胚数范围为2~3,后者为2~15。蜜桔、草地早熟禾和湖北海棠种子萌发多苗的频率分别为22.00%、6.14%和2.22%。描述了多胚种子中胚的形态、位置和分布。对6种植物含单胚种子的胚的来源进行了分析。初步结论:1.具无融合生殖现象的植物种子含多胚和萌发多苗的特性可作为寻找具无融合生殖特性的植物的形态学指标;2.对其筛选的材料进行大孢子发生、胚囊形成和早期胚胎发育的研究,以期阐明多胚来源和生殖类型。  相似文献   

15.

Background and Aims

Reduction in female fitness in large clones can occur as a result of increased geitonogamous self-fertilization and its influence through inbreeding depression. This possibility was investigated in the self-compatible, bee-pollinated perennial herb Aconitum kusnezoffii which varies in clone size.

Methods

Field investigations were conducted on pollinator behaviour, flowering phenology and variation in seed set. The effects of self-pollination following controlled self- and cross-pollination were also examined. Selfing rates of differently sized clones were assessed using allozyme markers.

Key Results

High rates of geitonogamous pollination were associated with large display size. Female fitness at the ramet level decreased with clone size. Fruit and seed set under cross-pollination were significantly higher than those under self-pollination. The pre-dispersal inbreeding depression was estimated as 0·502 based on the difference in seed set per flower between self- and cross-pollinated flowers. Selfing rates of differently sized clones did not differ.

Conclusions

It is concluded that in A. kusnezoffii the negative effects of self-pollination causing reduced female fertility with clone size arise primarily from a strong early-acting inbreeding depression leading to the abortion of selfed embryos prior to seed maturation.Key words: Early-acting inbreeding depression, Aconitum kusnezoffii, clone size, female reproductive success, geitonogamy  相似文献   

16.
杂交种子研究在一定程度上能说明是否存在杂种不活机制,在植物生殖隔离研究中具有重要意义。通过对同域分布的西藏杓兰(Cypripedium tibeticum)、黄花杓兰(C.flavum)和褐花杓兰(C.calcicola)的自交、异交、杂交种子的形态特征及活性进行分析,发现3种杓兰属植物两两之间均可产生杂交种子,且杂交种子活性较高,杂交种子与其他处理所得种子的外观、表面纹饰无显著性差异;种子宽度、种子长度、有胚率、着色率并没有比自交或异交种子显著低。这一结果表明这3种同域杓兰属植物种与种之间具有相当高的亲和性,它们之间不存在明显的杂种不活机制。黄花杓兰与西藏杓兰或褐花杓兰间的传粉者大小明显不同,黄花杓兰由丽蝇和熊蜂工蜂传粉,而西藏杓兰和褐花杓兰由体形较大的熊蜂蜂王传粉,传粉者隔离已使得它们之间的物种界限比较清晰,因此已经没有必要再产生杂种不活等其他隔离机制。而西藏杓兰与褐花杓兰的传粉者相同,又没有明显的杂种不活隔离机制,暗示它们之间有其他合子后隔离机制或应将其合并为一个种。  相似文献   

17.
We investigated whether partial self-sterility inCalluna vulgarisresultsfrom abortion of selfed offspring owing to inbreeding depressionor a late-acting self-incompatibility mechanism, and whetherself-pollen interferes with normal functioning of cross-pollen.Self-pollination resulted in 75% less seed set than cross-pollination.Self-pollen tubes reached ovaries and penetrated ovules as oftenas those of cross-pollen. Following self-pollination, examinationof the size of undeveloped seeds showed that at least 70% resultedfrom ovule fertilization and arrest of development occurredat various stages. All self-pollinated plants produced seedsand self-fertility varied among plants. These results indicatethat the reduced seed set observed in self-pollination is morelikely the result of inbreeding depression rather than a late-actingself-incompatibility system. The fecundity component of inbreedingdepression was high (0.762). Seed set was reduced by an averageof 40% when self-pollen was mixed with cross-pollen, comparedto pure cross-pollination. Using genetic markers, we found about20% of seeds resulted from self-pollination in mixed-pollinatedfruits.C. vulgarisis likely to experience self-pollination innature and our data suggest this will reduce the number of ovulesthat might otherwise mature after cross-pollination.Copyright1999 Annals of Botany Company Calluna vulgaris(heather), self-pollination, pollen tube, ovule fertilization, early inbreeding depression, pollen interference.  相似文献   

18.
The rare rainforest tree species, Syzygium paniculatum, is the only known Australian species of the genus to produce seeds that regularly have multiple embryos. Evidence from other species suggests that this is a case of adventitious polyembryony, with the embryos arising from maternal nucellar tissue. In the present study we use microsatellite data to determine whether sexual reproduction does occur and, if it does, to investigate the relative fitness of asexual versus sexual seedlings. Genotyping suggested that the species is a polyploid and our results found very little genetic diversity within and among populations (with a total of nine genotypic combinations across the entire species). The only significant variation was between the three northernmost populations and the other eight populations sampled. Analysis of individual embryos showed that sexually derived embryos did occur in some seeds but that these were not necessarily the fittest. In general, the seedling from the largest embryo is the first to emerge and maintains a competitive advantage over the other seedlings from the same seed. We discuss the ramifications of the low levels of genetic diversity and consider whether there is a direct relationship between polyembryony and the inferred polyploidy of the species. We consider the possible advantages of reproductive bet‐hedging but also highlight the susceptibility of a species with low genetic diversity to extreme stochastic events. Syzygium paniculatum occurs in areas heavily impacted by human activity and these findings should contribute to improved management of this threatened species.  相似文献   

19.
Apomicts that produce unreduced parthenogenetic eggs are generally polyploid and occur in at least 33 of 460 families of angiosperms. Embryo sacs of these apomicts form precociously from ameiotic megaspore mother cells (diplospory) or adjacent somatic cells (apospory). Polysporic species (bisporic and tetrasporic) are sexual and occur in at least 88 families. Their embryo sacs also form precociously, but only non-critical portions of meiosis are affected. It is hypothesized that (i) the partial to complete replacement of meiosis by embryo sac formation in apomictic and polysporic species results from asynchronously-expressed duplicate genes that control female development, (ii) duplicate genes result from polyploidy or paleopolyploidy (diploidized polyploidy with chromatin from multiple genomes), (iii) apomixis results from competition between nearly complete sets of asynchronously-expressed duplicate genes, and (iv) polyspory and polyembryony result from competition between incomplete sets of asynchronously-expressed duplicate genes. Phylogenetic and genomic studies were conducted to evaluate this hypothesis. Apomictic, polysporic, and polyembryonic species tended to occur together in cosmopolitan families in which temporal variation in female development is expected, apomicts were generally polyploid with few chromosomes per genome (X = 9.6pL0.4 SE), and polysporic and polyembryonic species were paleopolyploid with many chromosomes per genome (x= 15.7pL0.6 and 13.2pL0.4, respectively). These findings support the proposed duplicate-gene asynchrony hypothesis and further suggest asexual reproduction in apomicts preserves primary genomes, sexual reproduction in polysporic and polyembryonic polyploids accelerates paleopolyploidization, and pa-leopolyploidization may sometimes eliminate gene duplications required for apomixis while retaining duplications required for polyspory or polyembryony. Hence, apomixis, with its long-term reproductive stability, may occasionally serve as an evolutionary springboard in the evolution of normal and developmentally-novel paleopolyploid sexual species and genera.  相似文献   

20.
The nonnative vine Vincetoxicum rossicum threatens several ecosystems in the Lower Great Lakes Basin of North America. One feature that may contribute to its invasiveness is the production of some seeds with multiple embryos (polyembryony), which may be beneficial as a bet-hedging strategy in variable environments. However, lower seed reserves per embryo in polyembryonic seeds may entail costs in low-light environments. The effect of seed from three embryonic classes (1, 2, or 3 embryos/seed) on V. rossicum survival and growth was studied under two forest understory light environments: full canopy (shade) or canopy gaps (light) in New York state. Two seedling cohorts were planted, in May 2004 and in May 2005. The survival and growth of seedlings was monitored biweekly for two (2005 cohort) or three (2004 cohort) seasons. For both cohorts, plants grown in canopy shade had reduced survival and growth compared with those grown in gaps. Contrary to expectations, seed embryo number had no effect on the final height, survival, or dry mass of plants in either habitat. Our results suggest that any fitness advantage provided by polyembryony may be habitat (light) dependent and not a general trait that affords V. rossicum a benefit in all habitats colonized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号