首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
It is well established that for most people linguistic processing is primarily a left hemisphere activity, whereas recent evidence has shown that basic odor perception is more lateralized to the right hemisphere. Importantly, under certain conditions, emotional responding also shows right hemisphere laterality. Hedonic (pleasantness) assessments constitute basic level emotional responses. Given that olfaction is predominantly ipsilateral in function, it was hypothesized that odor pleasantness evaluations may be accentuated by right nostril perception and that odor naming would be superior with left nostril perception. To test this prediction we presented eight familiar neutral-mildly pleasant odors for subjects to sniff through the left and right nostrils. Subjects smelled each odor twice (once through each nostril) at two different sessions, separated by 1 week. At each session subjects provided pleasantness, arousal and naming responses to each odorant. Results revealed that odors were rated as more pleasant when sniffed through the right nostril and named more correctly when sniffed through the left. No effects for arousal were obtained. These findings are consistent with previously demonstrated neural laterality in the processing of olfaction, emotion and language, and suggest that a local and functional convergence may exist between olfaction and emotional processing.  相似文献   

2.
3.
4.
5.
6.
Distel H  Hudson R 《Chemical senses》2001,26(3):247-251
Odor perception, including intensity, is affected by knowledge of odor source. For 76 subjects tested with 24 everyday odorants, ratings of intensity, pleasantness and familiarity were enhanced when subjects either could identify the odor source themselves or were provided with the name by the experimenter. Ratings were highest when subjects judged that the names provided matched their own perception, suggesting an interaction between individuals' cognitive representation of odors and their immediate perceptual experience.  相似文献   

7.
Recordings in the locust antennal lobe (AL) reveal activity-dependent, stimulus-specific changes in projection neuron (PN) and local neuron response patterns over repeated odor trials. During the first few trials, PN response intensity decreases, while spike time precision increases, and coherent oscillations, absent at first, quickly emerge. We examined this "fast odor learning" with a realistic computational model of the AL. Activity-dependent facilitation of AL inhibitory synapses was sufficient to simulate physiological recordings of fast learning. In addition, in experiments with noisy inputs, a network including synaptic facilitation of both inhibition and excitation responded with reliable spatiotemporal patterns from trial to trial despite the noise. A network lacking fast plasticity, however, responded with patterns that varied across trials, reflecting the input variability. Thus, our study suggests that fast olfactory learning results from stimulus-specific, activity-dependent synaptic facilitation and may improve the signal-to-noise ratio for repeatedly encountered odor stimuli.  相似文献   

8.
Xia S  Tully T 《PLoS biology》2007,5(10):e264
Molecular and cellular studies have begun to unravel a neurobiological basis of olfactory processing, which appears conserved among vertebrate and invertebrate species. Studies have shown clearly that experience-dependent coding of odor identity occurs in “associative” olfactory centers (the piriform cortex in mammals and the mushroom body [MB] in insects). What remains unclear, however, is whether associative centers also mediate innate (spontaneous) odor discrimination and how ongoing experience modifies odor discrimination. Here we show in naïve flies that Gαq-mediated signaling in MB modulates spontaneous discrimination of odor identity but not odor intensity (concentration). In contrast, experience-dependent modification (conditioning) of both odor identity and intensity occurs in MB exclusively via Gαs-mediated signaling. Our data suggest that spontaneous responses to odor identity and odor intensity discrimination are segregated at the MB level, and neural activity from MB further modulates olfactory processing by experience-independent Gαq-dependent encoding of odor identity and by experience-induced Gαs-dependent encoding of odor intensity and identity.  相似文献   

9.
10.
11.
12.
Drosophila odor receptors revealed   总被引:1,自引:0,他引:1  
Smith DP 《Neuron》1999,22(2):203-204
  相似文献   

13.
Wilson DA  Sullivan RM 《Neuron》2011,72(4):506-519
Natural odors, generally composed of many monomolecular components, are analyzed by peripheral receptors into component features and translated into spatiotemporal patterns of neural activity in the olfactory bulb. Here, we will discuss the role of the olfactory cortex in the recognition, separation and completion of those odor-evoked patterns, and how these processes contribute to odor perception. Recent findings regarding the neural architecture, physiology, and plasticity of the olfactory cortex, principally the piriform cortex, will be described in the context of how this paleocortical structure creates odor objects.  相似文献   

14.
The chemical composition of odors produced by nine strains ofStreptomyces was determined. StrainsStreptomyces aureofaciens, S. avermitilis, S. cinamomensis, S. coelicolor, S. griseus, S. lividans, S. rimosus, S. spectabilis, S. virginiae (as representatives of producers of biologically active compounds) were cultivated at the same time statically in dishes and in shaken flasks at similar cultivation conditions. According to the GC-MS analysis of odor compounds, more than twenty noteworthy volatile chemical individuals were identified. As the main component of odor spectrum geosmin and homologues of oxolones (dihydrofuranones) were found; the other compounds (pyrazine derivatives, acetoin and its homologues, aromatic esters, furan derivatives,etc.) were in minority. An erratum to this article is available at .  相似文献   

15.
A unifying feature of mammalian and insect olfactory systems is that olfactory sensory neurons (OSNs) expressing the same unique odorant-receptor gene converge onto the same glomeruli in the brain [1-7]. Most odorants activate a combination of receptors and thus distinct patterns of glomeruli, forming a proposed combinatorial spatial code that could support discrimination between a large number of odorants [8-11]. OSNs also exhibit odor-evoked responses with complex temporal dynamics [11], but the contribution of this activity to behavioral odor discrimination has received little attention [12]. Here, we investigated the importance of spatial encoding in the relatively simple Drosophila antennal lobe. We show that Drosophila can learn to discriminate between two odorants with one functional class of Or83b-expressing OSNs. Furthermore, these flies encode one odorant from a mixture and cross-adapt to odorants that activate the relevant OSN class, demonstrating that they discriminate odorants by using the same OSNs. Lastly, flies with a single class of Or83b-expressing OSNs recognize a specific odorant across a range of concentration, indicating that they encode odorant identity. Therefore, flies can distinguish odorants without discrete spatial codes in the antennal lobe, implying an important role for odorant-evoked temporal dynamics in behavioral odorant discrimination.  相似文献   

16.
Mice were trained on a variety of odor detection and discrimination tasks in 100- or 200-trial sessions using a go, no-go discrete trials operant conditioning procedure. Odors, presented for 1 s on each trial, were generated by an air dilution olfactometer (for threshold tests) and an easily constructed eight-channel liquid dilution unit (for two- and multiple-odor discrimination tasks). Mice rapidly acquired the operant task and demonstrated excellent stimulus control by odor vapors. Their absolute detection threshold for ethyl acetate was similar to that obtained with rats using similar methods. They readily acquired four separate two-odor discrimination tasks and continued to perform well when all eight odors were presented in random order in the same session and when reinforcement probability for correct responding was decreased from 1 to 0.5. Memory for these eight odors, assessed under extinction after a 32 day rest period, was essentially perfect. Time spent sampling the odor on S+ and S- trials was highly correlated with response accuracy. When accuracy was at chance levels (e.g. initial trials on a novel task), stimulus sampling time on both S+ and S- trials was approximately 0.5-0.7 s. As response accuracy increased, sampling time on S+ trials tended to increase and remain higher than sampling time on S- trials.  相似文献   

17.
Kraft P  Fráter G 《Chirality》2001,13(8):388-394
This brief review, the summary of a talk at the Symposium on Biological Chirality 2000 in Szeged, Hungary, illustrates what chiral recognition tells us about the molecular parameters of the musk odor sensation. While the enantioselectivity of odor perception is strong evidence for the key role of proteinogenic receptors in the molecular mechanism of olfaction, the quantitative and qualitative odor differences of enantiomers are often not very pronounced, as in the case of muscone (17/26). In those cases, however, where there is strong enantiodiscrimination, we find most intense musk odorants with very low odor thresholds, such as (-)-(12R)-12-methyl-9-oxa-14-tetradecanolide (35), (12R;9Z)-12-methyl-14-tetradec-9-enolide [(R)-Nirvanolide, 38], and (-)-(4S;7R)-1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta[g]-2-benzopyran [(-)-(4S;7R)-Galaxolide, 57], the latter being rather rigid. We thus can assume the geometry of the musk receptor to be fairly complementary to these compounds, which therefore can serve as templates for the design of new musk odorants.  相似文献   

18.
Attentional modulation of central odor processing   总被引:4,自引:1,他引:3  
Two studies were conducted to investigate the influence of attention on the components of the chemosensory event-related potential (CSERP). In the first study the odors linalool and eugenol were delivered to six male subjects, in the second study three male and two female subjects were presented with their own body odor (axillary hair) and the body odor of a same sex donor. In both studies the odors were presented in an oddball paradigm under ignore and attend conditions via a constant- flow olfactometer. In the ignore condition attention was diverted from the odors with a distractor task, while in the attend condition the subjects were asked to respond to the infrequently occurring odor. In both studies the allocation of attention led to a decrease in the latency of the early components (N1, P2, N2) and to an increase in the amplitude of the late positivities. The modulation of the early components suggests that attentional gating in olfaction might already be effective at an early processing level.   相似文献   

19.
The odor coding system of Drosophila   总被引:3,自引:0,他引:3  
Our understanding of the molecular and cellular organization of the Drosophila melanogaster olfactory system has increased dramatically in recent years. A large family of approximately 60 odorant receptors has been identified, and many of these receptors have been functionally characterized. The odor responses of olfactory receptor neurons have been characterized, and much has been learned about how odors are represented in olfactory centers in the brain. The circuitry of the olfactory system has been studied in detail, and the developmental mechanisms that specify the wiring and functional diversity of olfactory neurons are becoming increasingly well understood. Thus, functional, anatomical and developmental studies are rapidly being integrated to form a unified picture of odor coding in this model olfactory system.  相似文献   

20.
We present a general physicochemical sampling model for olfaction, based on established pharmacological laws, in which arbitrary combinations of odorant ligands and receptors can be generated and their individual and collective effects on odor representations and olfactory performance measured. Individual odor ligands exhibit receptor-specific affinities and efficacies; that is, they may bind strongly or weakly to a given receptor, and can act as strong agonists, weak agonists, partial agonists, or antagonists. Ligands interacting with common receptors compete with one another for dwell time; these competitive interactions appropriately simulate the degeneracy that fundamentally defines the capacities and limitations of odorant sampling. The outcome of these competing ligand-receptor interactions yields a pattern of receptor activation levels, thereafter mapped to glomerular presynaptic activation levels based on the convergence of sensory neuron axons. The metric of greatest interest is the mean discrimination sensitivity, a measure of how effectively the olfactory system at this level is able to recognize a small change in the physicochemical quality of a stimulus. This model presents several significant outcomes, both expected and surprising. First, adding additional receptors reliably improves the system’s discrimination sensitivity. Second, in contrast, adding additional ligands to an odorscene initially can improve discrimination sensitivity, but eventually will reduce it as the number of ligands increases. Third, the presence of antagonistic ligand-receptor interactions produced clear benefits for sensory system performance, generating higher absolute discrimination sensitivities and increasing the numbers of competing ligands that could be present before discrimination sensitivity began to be impaired. Finally, the model correctly reflects and explains the modest reduction in odor discrimination sensitivity exhibited by transgenic mice in which the specificity of glomerular targeting by primary olfactory neurons is partially disrupted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号