首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rat C6 glioma cells were cultured for 4 days in MEM medium supplemented with 10% bovine serum and Na+,K+-ATPase activity was determined in homogenates of harvested cells. Approximately 50% of enzyme activity was attained at 1.5 mM K+ and the maximum (2.76±0.13 mol Pi/h/mg protein) at 5 mM K+. The specific activity of Na+,K+-ATPase was not influenced by freezing the homogenates or cell suspensions before the enzyme assay. Ten minutes' exposure of glioma cells to 10–4 or 10–5 M noradrenaline (NA) remained without any effect on NA+,K+-ATPase activity. Neither did the presence of NA in the incubation medium, during the enzyme assay, influence the enzyme activity. The nonresponsiveness of Na+,K+-ATPase of C6 glioma cells to NA is consistent with the assumption that (+) form of the enzyme may be preferentially sensitive to noradrenaline. Na+,K+-ATPase was inhibited in a dose-dependent manner by vanadate and 50% inhibition was achieved at 2×10–7 M concentration. In spite of the fact that Na+,K+-ATPase of glioma cells was not responsive to NA, the latter could at least partially reverse vanadate-induced inhibition of the enzyme. Although the present results concern transformed glial cells, they suggest the possibility that inhibition of glial Na+,K+-ATPase may contribute to the previously reported inhibition by vanadate of Na+,K+-ATPase of the whole brain tissue.  相似文献   

2.
The Na+, K+-ATPase activity and its response to vanadate inhibition was investigated in cerebral cortex homogenates of 7-, 12- and 18-day-old rats. The enzyme was inhibited by vanadate in a dose-dependent manner in all these age groups. Furthermore, there was a different sensitivity towards vanadate during postnatal development; the concentration of V+5 needed for 50% inhibiton of Na+, K+-ATPase was 1.1×10–6M, 2×10–7M and 4.4×10–7M for 7-, 12- and 18-day-old rats, respectively. It is suggested that the different sensitivity of Na+, K+-ATPase towards vanadate inhibition during postnatal development might be due to age-dependent changes in the ratio of various cell types.Special Issue dedicated to Dr. O. H. Lowry.  相似文献   

3.
The effect of lipid peroxidation on the affinity of specific active sites of Na+, K+-ATPase for ATP (substrate), K+ and Na+ (activators), and strophanthidin (a specific inhibitor) was investigated. Brain cell membranes were peroxidized in vitro in the presence of 100M ascorbate and 25M FeCl2 at 37°C for time intervals from 0–20 min. The level of thiobarbituric acid reactive substances and the activity of Na+, K+-ATPase were determined. The enzyme activity decreased by 80% in the first min. from 42.0±3.8 to 8.8±0.9 mol Pi/mg protein/hr and remained unchanged thereafter. Lipid peroxidation products increased to a steady state level from 0.2±0.1 to 16.5 ±1.5 nmol malonaldehyde/mg protein by 3 min. In peroxidized membranes, the affinity for ATP and strophanthidin was increased (two and seven fold, respectively), whereas affinity for K+ and Na+ was decreased (to one tenth and one seventh of control values, respectively). Changes in the affinity of active sites will affect the phosphorylation and dephosphorylation mechanisms of Na+, K+-ATPase reaction. The increased affinity for ATP favors the phosphorylation of the enzyme at low ATP concentrations whereas, the decreased affinity for K+ will not favor the dephosphorylation of the enzyme-P complex resulting in unavailability of energy for transmembrane transport processes. The results demonstrate that lipid peroxidation alters Na+, K+-ATPase function by modification at specific active sites in a selective manner, rather than through a non-specific destructive process.  相似文献   

4.
Summary Elementary Na+ currents were recorded at 19°C in cell attached and inside-out patches from cultured neonatal rat cardiocytes in order to study the effect of cAMP and other 6-aminopurines.The treatment of the cardiocytes with db-cAMP (1×10–3 mol/liter) led to a decline of reconstructed macroscopic peakI Na to 62±7.6% of the initial control value. This reduction in NP0 was mostly accompanied by a decrease in burst activity. Openstate kinetics were preserved even in DPI-modified, noninactivating Na+ channels. Since the stimulator of the adenylate cyclase, forskolin (1×10–6 mol/liter), evoked a similar pattern of response, the NP0 decrease can be considered as the functional correlate of Na+ channel phosphorylation brought about by cAMP-dependent protein kinase. As found in inside-out patches, cAMP (1×10–3 mol/liter) remained effective under cell-free conditions and reduced reconstructed macroscopic peakI NA to about 50% of the initial control value when the absence of Mg-ATP at the cytoplasmic membrane surface prevents phosphorylation reactions. A very similar response developed in the cytoplasmic presence of other 6-aminopurines including ATP (1×103 mol/liter), adenosine (1×10–4 mol/liter), adenine (1×10–5 mol/liter) and hypoxanthine (1×10–5 mol/liter). This susceptibility to adenine suggests that cardiac Na+ channelsin situ could sense intracellular fluctuations of adenine nucleotides, most likely of ATP.  相似文献   

5.
Summary Progesterone initiates the resumption of the meiotic divisions in the amphibian oocyte. Depolarization of theRana pipiens oocyte plasma membrane begins 6–10 hr after exposure to progesterone (1–2 hr before nuclear breakdown). The oocyte cytoplasm becomes essentially isopotential with the medium by the end of the first meiotic division (20–22 hr). Voltage-clamp studies indicate that the depolarization coincides with the disappearance of an electrogenic Na+, K+-pump, and other electrophysiological studies indicate a decrease in both K+ and Cl conductances of the oocyte plasma membrane. Measurement of [3H]-ouabain binding to the plasma-vitelline membrane complex indicates that there are high-affinity (K d-4.2×10–8 m), K+-sensitive ouabain-binding sites on the unstimulated (prophase-arrest) oocyte and that ouabain binding virtually disappears during membrane depolarization. [3H]-Leucine incorporation into the plasma-vitelline membrane complex increased ninefold during depolarization with no significant change in uptake or incorporation into cytoplasmic proteins or acid soluble pool(s). This together with previous findings suggests that progesterone acts at a translational level to produce a cytoplasmic factor(s) that down-regulates the membrane Na+, K+-ATPase and alters the ion permeability and transport properties of both nuclear and plasma membranes.  相似文献   

6.
Previous work from this laboratory led to the isolation by gel filtration and anionic exchange HPLC of a rat brain fraction named II-E, which highly inhibits synaptosomal membrane Na+, K+-ATPase activity. In this study we evaluated the kinetics of such inhibition and found that inhibitory potency was independent of Na+(1.56–200 mM), K+(1.25–40 mM), or ATP (1–8 mM) concentration. Hanes-Woolf plots indicated that II-E decreases Vmax but does not alter KMvalue, and suggested uncompetitive inhibition for Na+, K+or ATP. However, II-E became a stimulator at 0.5 mM ATP concentration. It is postulated that this brain factor may modulate ionic transport at synapses, thus participating in central neurotransmission.  相似文献   

7.
Previous evidence from this laboratory indicated that catecholamines and brain endogenous factors modulate Na+, K+-ATPase activity of the synaptosomal membranes. The filtration of a brain total soluble fraction through Sephadex G-50 permitted the separation of two fractions-peaks I and II-which stimulated and inhibited Na+, K+-ATPase, respectively (Rodríguez de Lores Arnaiz and Antonelli de Gomez de Lima, Neurochem. Res.11, 1986, 933). In order to study tissue specificity a rat kidney total soluble was fractionated in Sephadex G-50 and kidney peak I and II fractions were separated; as control, a total soluble fraction prepared from rat cerebral cortex was also processed. The UV absorbance profile of the kidney total soluble showed two zones and was similar to the profile of the brain total soluble. Synaptosomal membranes Na+, K+- and Mg2+-ATPases were stimulated 60–100% in the presence of kidney and cerebral cortex peak I; Na+, K+-ATPase was inhibited 35–65% by kidney peak II and 60–80% by brain peak II. Mg2+-ATPase activity was not modified by peak II fractions. ATPases activity of a kidney crude microsomal fraction was not modified by kidney peak I or brain peak II, and was slightly increased by kidney peak II or brain peak I. Kidney purified Na+, K+-ATPase was increased 16–20% by brain peak I and II fractions. These findings indicate that modulatory factors of ATPase activity are not exclusive to the brain. On the contrary, there might be tissue specificity with respect to the enzyme source.  相似文献   

8.
Summary The presence of a coupled Na+/Ca2+ exchange system has been demonstrated in plasma membrane vesicles from rat pancreatic acinar cells. Na+/Ca2+ exchange was investigated by measuring45Ca2+ uptake and45Ca2+ efflux in the presence of sodium gradients and at different electrical potential differences across the membrane (=) in the presence of sodium. Plasma membranes were prepared by a MgCl2 precipitation method and characterized by marker enzyme distribution. When compared to the total homogenate, the typical marker for the plasma membrane, (Na++K+)-ATPase was enriched by 23-fold. Markers for the endoplasmic reticulum, such as RNA and NADPH cytochromec reductase, as well as for mitochondria, the cytochromec oxidase, were reduced by twofold, threefold and 10-fold, respectively. For the Na+/Ca2+ countertransport system, the Ca2+ uptake after 1 min of incubation was half-maximal at 0.62 mol/liter Ca2+ and at 20 mmol/liter Na+ concentration and maximal at 10 mol/liter Ca2+ and 150 mmol/liter Na+ concentration, respecitively. When Na+ was replaced by Li+, maximal Ca2+ uptake was 75% as compared to that in the presence of Na+. Amiloride (10–3 mol/liter) at 200 mmol/liter Na+ did not inhibit Na+/Ca2+ countertransport, whereas at low Na+ concentration (25 mmol/liter) amiloride exhibited dose-dependent inhibition to be 62% at 10–2 mol/liter. CFCCP (10–5 mol/liter) did not influence Na+/Ca2+ countertransport. Monensin inhibited dose dependently; at a concentration of 5×10–6 mol/liter inhibition was 80%. A SCN or K+ diffusion potential (=), being positive at the vesicle inside, stimulated calcium uptake in the presence of sodium suggesting that Na+/Ca2+ countertransport operates electrogenically, i.e. with a stoichiometry higher than 2 Na+ for 1 Ca2+. In the absence of Na+, did not promote Ca2+ uptake. We conclude that in addition to ATP-dependent Ca2+ outward transport as characterized previously (E. Bayerdörffer, L. Eckhardt, W. Haase & 1. Schulz, 1985,J. Membrane Biol. 84:45–60) the Na+/Ca2+ countertransport system, as characterized in this study, represents a second transport system for the extrusion of calcium from the cell. Furthermore, the high affinity for calcium suggests that this system might participate in the regulation of the cytosolic free Ca2+ level.  相似文献   

9.
The effect of L-arginine on the Na+,K+-ATPase activity in rat aorta endothelium was studied at its physiological concentrations in the range of 10–6-10–3 M. The enzyme activity was 35.5% increased by low concentrations of L-arginine (10–5 M) and its activity was 32.3-37.1% decreased at the L-arginine concentrations of 10–4-10–3 M. A similar inhibition (by 34.5-42.8%) was also found in the presence of a NO-donor nitroglycerol (10–4-10–3 M). An optical isomer of L-arginine, D-arginine, at the concentrations of 10–5 M also increased the enzyme activity by 37.1%, but its inhibiting effect was much less pronounced and was 15.7% at the D-arginine concentration of 10–3 M. An inhibitor of NO-synthase, L-NAME (NG-nitroarginine, methyl ester), failed to inhibit Na+,K+-ATPase. However, the presence of L-NAME abolished the inhibition of Na+,K+-ATPase by high concentrations of L-arginine. Thus, the effect of L-arginine on the endothelial Na+-pump depended on its concentration, and it is suggested that the enzyme inhibition by high concentrations of L-arginine should be associated with activation of the endogenous synthesis of NO.  相似文献   

10.
Summary The effects of temperature and pressure on Na+/K+-adenosine triphosphatases (Na+/K+-ATPases) from gills of marine teleost fishes were examined over a range of temperatures (10–25°C) and pressures (1–680 atm). The relationship between gill membrane fluidity and Na+/K+-ATPase activity was studied using the fluorescent probe 1,6-diphenyl-1,3,5-hexatriene (DPH). The increase in temperature required to offset the membrane ordering effects of high pressure was 0.015–0.025°C·atm-1, the same coefficient that applied to Na+/K+-ATPase activities. Thus, temperature-pressure combinations yielding the same Na+/K+-ATPase activity also gave similar estimates of membrane fluidity. Substituion of endogenous lipids with lipids of different composition altered the pressure responses of Na+/K+-ATPase. Na+/K+-adenosine triphosphatase became more sensitive to pressure in the presence of chicken egg phosphatidylcholine, but phospholipids isolated from fish gills reduced the inhibition by pressure of Na+/K+-ATPase. Cholesterol increased enzyme pressure sensitivity. Membrane fluidity and pressure sensitivity of Na+/K+-ATPase were correlated, but the effects of pressure also dependent on the source of the enzyme. Our results suggest that pressure adaptation of Na+/K+-ATPase is the result of both changes in the primary structure of the protein and homeoviscous adaptation of the lipid environment.Abbreviations EDTA; DPH 1,6-diphenyl-1,3,5-hexatriene - PC phosphatidylcholine - PL phospholipid - SDH succinate dehydrogenase  相似文献   

11.
Summary Bidirectional transepithelial K+ flux measurements across high-resistance epithelial monolayers of MDCK cells grown upon millipore filters show no significant net K+ flux.Measurements of influx and efflux across the basal-lateral and apical cell membranes demonstrate that the apical membranes are effectively impermeable to K+.K+ influx across the basal-lateral cell membranes consists of an ouabain-sensitive component, an ouabain-insensitive component, an ouabain-insensitive but furosemide-sensitive component, and an ouabain-and furosemide-insensitive component.The action of furosemide upon K+ influx is independent of (Na+–K+)-pump inhibition. The furosemide-sensitive component is markedly dependent upon the medium K+, Na+ and Cl content. Acetate and nitrate are ineffective substitutes for Cl, whereas Br is partially effective. Partial Cl replacement by NO3 gives a roughly linear increase in the furosemide-sensitive component. Na+ replacement by choline abolishes the furosemide-sensitive component, whereas Li+ is a partially effective replacement. Partial Na+ replacement with choline gives an apparent affinity of 7mm Na, whereas variation of the external K+ content gives an affinity of the furosemide-sensitive component of 1.0mm.Furosemide inhibition is of high affinity (K 1/2=3 m). Piretanide, ethacrynic acid, and phloretin inhibit the same component of passive K+ influx as furosemide; amiloride, 4,-aminopyridine, and 2,4,6-triaminopyrimidine partially so. SITS was ineffective.Externally applied furosemide and Cl replacement by NO 3 inhibit K+ efflux across the basal-lateral membranes indicating that the furosemide-sensitive component consists primarily of KK exchange.  相似文献   

12.
Summary Addition of glucose or the nonmetabolizable analogue -methyl-d-glucoside to rabbit proximal tubules suspended in a glucoseand alanine-free buffer caused a sustained increase in intracellular Na+ content (+43±7 nmol · (mg protein)–1) and a concomitant but larger decrease in K+ content (–72±11 nmol· (mg protein)–1). A component of the net K+ efflux was Ba2+ insensitive, and was inhibited by high (1mm) but not low (10 m) concentrations of the diuretics, furosemide and bumetanide. The increase in intracellular Na+ content is consistent with the view that the increased rates of Na+ and water transport seen in the proximal tubule in the presence of glucose can be attributed (at least in part) to a stimulation of basolateral pump activity by an increased [Na+] i .  相似文献   

13.
Na+,K+-ATPase activity was determined in fetal guinea pig brain at 35, 40, 45, 50, 55, and 60 days of gestation. The activity remained at a constant level during the early periods (35–45 days) of gestation and increased significantly during 45–60 days. Following maternal hypoxia, the activity of Na+,K+-ATPase in the term (60 days) fetal brain was reduced by 50% whereas the preterm (50 days) brain activity was unaffected. Under identical hypoxic conditions, the enzymatic activity of adult brain was significantly reduced by 20%. Na+,K+-ATPase obtained from fetal brain (50 days of gestation) has both a low and a high affinity for ATP (K m values =0.50 and 0.053 mM and correspondingV max values =10.77 and 2.82 umoles Pi/mg protein/hr), whereas the enzyme in the adult brain has only a low affinity (K m=1.67 mM andV max=20.32 umoles Pi/mg protein/hr). The high and low affinity sites for ATP in the fetal brain suggests a mechanism essential for the maintenance of cellular ionic gradients at low concentrations of ATP and which would provide the fetal brain with a greater tolerance to hypoxia. The high sensitivity of Na+,K+-ATPase activity to hypoxia in guinea pig brain at term suggests that the cell membrane functions of the fetal brain may be more susceptible to hypoxia at term than it is earlier in gestation.  相似文献   

14.
Four stable hybridoma cell lines secreting antibodies specific to the membrane (Na+ + K+)-dependent ATPase isolated from lamb kidney medulla have been produced by fusing mouse myeloma cells with spleen cells from immunized mice. These cell lines produce IgG γ1 heavy chain and κ light chain antibodies which are directed against the catalytic or α-subunit of the (Na+ + K+)-ATPase enzyme. Binding studies, using antibodies that were produced by growing hybridomas in vivo and purified by affinity column chromatography, suggest a somewhat higher affinity of these antibodies for the isolated α-subunit than for the ‘native’ holoenzyme. In addition, these monoclonal antibodies show no reactivity with either the glycoprotein (β) subunit of the lamb enzyme nor the (Na+ + K+)-ATPase from rat kidney, an ouabain-insensitive organ. Cotitration binding experiments have shown that the antibodies from two cell lines originally isolated independently from the same culture plate well population of fused cells bind to the same determinant site and are probably the same antibody. Cotitration and competition binding studies with two other antibodies have revealed two additional distinct antibody binding sites which appear to have little overlap with the first site. One of the three different antibodies isolated caused a partial inhibition of the (Na+ + K+)-ATPase activity. This antibody appears to be directed against a specific functionally important site of the α-subunit and is a competitive inhibitor of ATP binding. Under optimum conditions of ATPase activity, this inhibitory effect is not altered by the presence of the other two antibodies.  相似文献   

15.
Summary The effect of extracellular and intracellular Na+ (Na o + , Na i + ) on ouabain-resistant, furosemide-sensitive (FS) Rb+ transport was studied in human erythrocytes under varying experimental conditions. The results obtained are consistent with the view that a (1 Na++1 K++2 Cl) cotransport system operates in two different modes: modei) promoting bidirectional 11 (Na+–K+) cotransport, and modeii) a Na o + -independent 11 K o + /K i + exchange requiring Na i + which, however, is not extruded. The activities of the two modes of operation vary strictly in parallel to each other among erythrocytes of different donors and in cell fractions of individual donors separated according to density. Rb+ uptake through Rb o + /K i + exchange contributes about 25% to total Rb+ uptake in 145mm NaCl media containing 5mm RbCl at normal Na i + (pH 7.4). Na+–K+ cotransport into the cells occurs largely additive to K+/K+ exchange. Inward Na+–Rb+ cotransport exhibits a substrate inhibition at high Rb o + . With increasing pH, the maximum rate of cotransport is accelerated at the expense of K+/K+ exchange (apparent pK close to pH 7.4). The apparentK m Rb o + of Na+–K+ cotransport is low (2mm) and almost independent of pH, and high for K+/K+ exchange (10 to 15mm), the affinity increasing with pH. The two modes are discussed in terms of a partial reaction scheme of (1 Na++1 K++2 Cl) cotransport with ordered binding and debinding, exhibiting a glide symmetry (first on outside = first off inside) as proposed by McManus for duck erythrocytes (McManus, T.J., 1987,Fed. Proc., in press). N-ethylmaleimide (NEM) chemically induces a Cl-dependent K+ transport pathway that is independent of both Na o + and Na i + . This pathway differs in many properties from the basal, Na o + -independent K+/K+ exchange active in untreated human erythrocytes at normal cell volume. Cell swelling accelerates a Na o + -independent FS K+ transport pathway which most probably is not identical to basal K+/K+ exchange. K o + o +
  • o + o 2+ reduce furosemide-resistant Rb+ inward leakage relative to choline o + .  相似文献   

  • 16.
    Summary It is shown that the ouabain-resistant (OR) furosemide-sensitive K+(Rb+) transport system performs a net efflux of K+ in growing mouse 3T3 cells. This conclusion is based on the finding that under the same assay conditions the furosemidesensitive K+(Rb+) efflux was found to be two- to threefold higher than the ouabain-resistant furosemide-sensitive K+(Rb+) influx. The oubain-resistant furosemide-sensitive influxes of both22Na and86Rb appear to be Cl dependent, and the data are consistent with coupled unidirectional furosemide-sensitive influxes of Na+, K+ and Cl with a ratio of 1 1 2. However, the net efflux of K+ performed by this transport system cannot be coupled to a ouabain-resistant net efflux of Na+ since the unidirectional ouabain-resistant efflux of Na+ was found to be negligible under physiological conditions. This latter conclusion was based on the fact that practically all the Na+ efflux appears to be ouabainsensitive and sufficient to balance the Na+ influx under such steady-state conditions. Therefore, it is suggested that the ouabain-resistant furosemide-sensitive transport system in growing cells performs a facilitated diffusion of K+ and Na+, driven by their respective concentration gradients: a net K+ efflux and a net Na+ influx.  相似文献   

    17.
    ATP and adenylylimidodiphosphate (AdoPP[NH]P) bind to (Na+ + K+)-ATPase in the absence of Mg2+ (EDTA present) with a homogeneous but 15-fold different affinity, the Kd values being 0.13 μM and 1.9 μM, respectively. The binding capacities of the two nucleotides are nearly equal and amount to 3.9 and 4 nmol/mg protein or 1.7 and 1.8 mol/mol (Na+ + K+)-ATPase, respectively. The Kd value for ATP is equal to the Km for phosphorylation by ATP (0.05–0.25 μM) and the binding capacity is equivalent to the phosphorylation capacity of 1.8 mol/mol (Na+ + K+)-ATPase. Hence, the enzyme contains two high-affinity nucleotide binding and phosphorylating sites per molecule, or one per α-subunit. Additional low-affinity nucleotide binding sites are elicited in the presence of Mg2+, as shown by binding studies with the non-phosphorylating (AdoPP[NH]P). The Kd and binding capacity for AdoPP[NH]P at these sites is dependent on the Mg2+ concentration. The Kd increases from 0.06 mM at 0.5 mM Mg2+ to a maximum of 0.26 mM at 2 mM Mg2+ and the binding capacity from 1.5 nmol/mg protein at 0.5 mM Mg2+ to 3.3 nmol/mg protein at 4 mM Mg2+. Extrapolation of a double reciprocal plot of binding capacity vs. total Mg2+ concentration yields a maximal binding capacity at infinite Mg2+ concentration of 3.8 nmol/mg protein or 1.7 mol/mol (Na+ + K+)-ATPase. The Kd for Mg2+ at the sites, where it exerts this effect, is 0.8 mM. The Kd for the high-affinity sites increases from 1.5–1.9 μM in the absence of Mg2+ to a maximum of 4.2 μM at 2 mM Mg2+ concentration. The binding capacity of these sites (1.8 mol/mol enzyme) is independent of the Mg2+ concentration. Hence, Mg2+ induces two low-affinity non-phosphorylating nucleotide binding sites per molecule (Na+ + K+)-ATPase in addition to the two high-affinity, phosphorylating nucleotide binding sites.  相似文献   

    18.
    Voltage-gated potassium (K+) channels are multi-ion pores. Recent studies suggest that, similar to calcium channels, competition between ionic species for intrapore binding sites may contribute to ionic selectivity in at least some K+ channels. Molecular studies suggest that a putative constricted region of the pore, which is presumably the site of selectivity, may be as short as one ionic diameter in length. Taken together, these results suggest that selectivity may occur at just a single binding site in the pore. We are studying a chimeric K+ channel that is highly selective for K+ over Na+ in physiological solutions, but conducts Na+ in the absence of K+. Na+ and K+ currents both display slow (C-type) inactivation, but had markedly different inactivation and deactivation kinetics; Na+ currents inactivated more rapidly and deactivated more slowly than K+ currents. Currents carried by 160 mM Na+ were inhibited by external K+ with an apparent IC50 <30 μM. K+ also altered both inactivation and deactivation kinetics of Na+ currents at these low concentrations. In the complementary experiment, currents carried by 3 mM K+ were inhibited by external Na+, with an apparent IC50 of ∼100 mM. In contrast to the effects of low [K+] on Na+ current kinetics, Na+ did not affect K+ current kinetics, even at concentrations that inhibited K+ currents by 40–50%. These data suggest that Na+ block of K+ currents did not involve displacement of K+ from the high affinity site involved in gating kinetics. We present a model that describes the permeation pathway as a single high affinity, cation-selective binding site, flanked by low affinity, nonselective sites. This model quantitatively predicts the anomalous mole fraction behavior observed in two different K+ channels, differential K+ and Na+ conductance, and the concentration dependence of K+ block of Na+ currents and Na+ block of K+ currents. Based on our results, we hypothesize that the permeation pathway contains a single high affinity binding site, where selectivity and ionic modulation of gating occur.  相似文献   

    19.
    Summary To investigate the voltage dependence of the Na/K pump, current-voltage relations were determined in prophasearrested oocytes ofXenopus laevis. All solutions contained 5mm Ba2– and 20mm tetraethylammonium (TEA) to block K channels. If. in addition, the Na+/K+ pump is blocked by ouabain, K+-sensitive currents no larger than 50 nA/cm2 remain. Reductions in steady-state current (on the order of 700 nA/cm2) produced by 50 m ouabain or dihydro-ouabain or by K+ removal, therefore, primarily represent current generated by the Na/K pump. In Na-free solution containing 5mm K+, Na+/K+ pump current is relatively voltage independent over the potential range from –160 to +40 mV. If external [K+] is reduced below 0.5mm, negative slopes are observed over this entire voltage range. Similar results are seen in Na+- and Ca2+-free solutions in the presence of 2mm Ni2+, an experimental condition designed to prevent Na+/Ca2+ exchange. The occurrence of a negative slope can be explained by the voltage dependence of the apparent affinity for activation of the Na+/K+ pump by external K+, consistent with the existence of an external ion well for K binding. In 90mm Na+, 5mm K+ solution, Na+/K+ pump current-voltage curves at negative membrane potentials have a positive slope and can be described by a monotonically increasing sigmoidal function. At an extracellular [K+] of 1.3mm, a negative slope was observed at positive potentials. These findings suggest that in addition to a voltage-dependent step associated with Na+ translocation, a second voltage-dependent step that is dependent on external [K+], possibly external K+ binding, participates in the overall reaction mechanism of the Na+/K+ pump.  相似文献   

    20.
    We have previously reported the isolation by gel filtration and anionic exchange HPLC of two brain Na+, K+-ATPase inhibitors, II-A and II-E, and kinetics of enzyme interaction with the latter. In the present study we evaluated the kinetics of synaptosomal membrane Na+, K+-ATPase with II-A and found that inhibitory activity was independent of ATP (2–8 mM), Na+ (3.1–100 mM), or K+ (2.5–40 mM) concentration. Hanes-Woolf plots showed that II-A decreases Vmax in all cases; KM value decreased for ATP but remained unaltered for Na+ and K+, indicating respectively uncompetitive and noncompetitive interaction. However, II-A became a stimulator at 0.3 mM K+ concentration. It is postulated that brain endogenous factor II-A may behave as a sodium pump modulator at the synaptic region, an action which depends on K+ concentration.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号