首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two xylanase-encoding genes, named xyn11A and xyn10B, were isolated from a genomic library of Cellulomonas pachnodae by expression in Escherichia coli. The deduced polypeptide, Xyn11A, consists of 335 amino acids with a calculated molecular mass of 34,383 Da. Different domains could be identified in the Xyn11A protein on the basis of homology searches. Xyn11A contains a catalytic domain belonging to family 11 glycosyl hydrolases and a C-terminal xylan binding domain, which are separated from the catalytic domain by a typical linker sequence. Binding studies with native Xyn11A and a truncated derivative of Xyn11A, lacking the putative binding domain, confirmed the function of the two domains. The second xylanase, designated Xyn10B, consists of 1,183 amino acids with a calculated molecular mass of 124,136 Da. Xyn10B also appears to be a modular protein, but typical linker sequences that separate the different domains were not identified. It comprises a N-terminal signal peptide followed by a stretch of amino acids that shows homology to thermostabilizing domains. Downstream of the latter domain, a catalytic domain specific for family 10 glycosyl hydrolases was identified. A truncated derivative of Xyn10B bound tightly to Avicel, which was in accordance with the identified cellulose binding domain at the C terminus of Xyn10B on the basis of homology. C. pachnodae, a (hemi)cellulolytic bacterium that was isolated from the hindgut of herbivorous Pachnoda marginata larvae, secretes at least two xylanases in the culture fluid. Although both Xyn11A and Xyn10B had the highest homology to xylanases from Cellulomonas fimi, distinct differences in the molecular organizations of the xylanases from the two Cellulomonas species were identified.  相似文献   

2.
 A gene library of Cellulomonas pachnodae was constructed in Escherichia coli and was screened for endoglucanase activity. Five endoglucanase-positive clones were isolated that carried identical DNA fragments. The gene, designated cel6A, encoding an endoglucanase enzyme, belongs to the glycosyl hydrolase family 6 (cellulase family B). The recombinant Cel6A had a molecular mass of 53 kDa, a pH optimum of 5.5, and a temperature optimum of 50–55 °C. The recombinant endoglucanase Cel6A bound to crystalline cellulose and beech litter. Based on amino acid sequence similarity, a clear cellulose-binding domain was not distinguished. However, the regions in the Cel6A amino acid sequence at the positions 262–319 and 448–473, which did not show similarity to any of the known family-6 glycosyl hydrolases, may be involved in substrate binding. Received: 14 January 1999 / Received revision: 29 March 1999 / Accepted: 6 April 1999  相似文献   

3.
A genomic bank of Cellulomonas flavigena was constructed in E. coli using the pUC18 vector, and over 14000 clones screened for cellulolytic activity. Three different cellulolytic enzyme genes were cloned, one coding for an endo-β-glucanase (pJS10, CMC activity) and two coding for β-glucosidases, each with a distinct substrate specificity (pJS3, X-glu, and pJS4, X-glu and MUC activities). These three inserts have different restriction patterns to each other and the previously isolated cellulolytic enzyme genes from C. fimi and C. uda.  相似文献   

4.
Avicelase assay of gel slices after non-denaturing polyacrylamide gel electrophoresis of concentrated supernatants from Cellulomonas fermentans revealed four active bands. One of them corresponded to the principal active band on CM-cellulose. Among the three others, at least one did not correspond to any active band on CM-cellulose and might reflect the presence of an exoglucanase (EC 3.2.1.91). The active band on CM-cellulose was composed of two endoglucanases (EC 3.2.1.4), called CFA and CFB, which we purified by the means of DEAE-Trisacryl chromatography and high performance liquid chromatography (anion exchange chromatography and gel chromatography). These two monomeric enzymes differ in their molecular weights (40,000 and 57,000 for CFA and CFB, respectively) and in their catalytic constants in the reaction with CM-cellulose (Km were 1.5 g/l and 59 g/l for CFA and CFB, respectively), but have similar modes of action on this substrate and similar substrate specificities.  相似文献   

5.
To play an essential role in C4 photosynthesis, the maize C4 phosphoenolpyruvate carboxylase gene (PPCZm1) acquired many new expression features, such as leaf specificity, mesophyll specificity, light inducibility and high activity, that distinguish the unique C4 PPC from numerous non-C4 PPC genes in maize. We present here the first investigation of the developmental, cell-specific, light and metabolic regulation of the homologous C4 PPCZm1 promoter in stable transgenic maize plants. We demonstrate that the 1.7 kb of the 5-flanking region of the PPCZm1 gene is sufficient to direct the C4-specific expression patterns of -glucuronidase (GUS) activity, as a reporter, in stable transformed maize plants. In light-grown shoots, GUS expression was strongest in all developing and mature mesophyll cells in the leaf, collar and sheath. GUS activity was also detected in mesophyll cells in the outer husks of ear shoots and in the outer glumes of staminate spikelets. We did not observe histological localization of GUS activity in light- or dark-grown callus, roots, silk, developing or mature kernels, the shoot apex, prop roots, or pollen. In addition, we used the stable expressing transformants to conduct and quantify physiological induction studies. Our results indicate that the expression of the C4 PPCZm1-GUS fusion gene is mesophyll-specific and influenced by development, light, glucose, acetate and chloroplast biogenesis in transgenic maize plants. These studies suggest that the adoption of DNA regulatory elements for C4-specific gene expression is a crucial step in C4 gene evolution.  相似文献   

6.
Two genes encoding the predominant polypeptides of Bacillus thuringiensis subsp. thompsoni cuboidal crystals were cloned in Escherichia coli and sequenced. The polypeptides have electrophoretic mobilities of 40 and 34 kDa, with the deduced amino acid sequences predicting molecular masses of 35,384 and 37,505 Da, respectively. No statistically significant similarities were detected between the 40- or 34-kDa crystal protein and any other characterized B. thuringiensis crystal protein, nor were they detected between the 40- and 34-kDa crystal proteins. A 100-MDa plasmid carries both crystal protein genes, which appear to be part of an operon, with the 40-kDa gene 64 nucleotides upstream of the 34-kDa gene. Both crystal proteins are synthesized in approximately the same amounts. Even though small compared with other crystal proteins, the 34-kDa crystal protein has insecticidal activity against lepidopteran larvae (Manduca sexta). The 40-kDa polypeptide appears to have no insecticidal activity, but it could have a role in crystal structure.  相似文献   

7.
8.
A novel phytase gene ( phyL) was cloned from Bacillus licheniformis by multiple steps of degenerate and inverse PCR. The coding region of the phyL gene was 1,146 bp in size and a promoter region of approximately 300 bp was identified at the upstream sequence. This gene, together with a phytase gene ( 168phyA) identified in the B. subtilis strain 168 genome by a homology search, was cloned and over-expressed in B. subtilis using a phi105MU331 prophage vector system. Up to 35 units of phytase/ml were secreted into the culture media; and mature enzymes of around 44-47 kDa were purified for characterization. Both phytases exhibited broad temperature and pH optima and showed high thermostability. Of the two, the phytase encoded by phyL exhibited higher thermostability, even at a lower calcium concentration, as it was able to recover 80% of its original activity after denaturation at 95 degrees C for 10 min. With their neutral pH optima and good temperature stabilities, these Bacillus phytases are good candidates for animal feed applications and transgenic studies.  相似文献   

9.
10.
Molecular cloning and characterization of two rat renal kallikrein genes   总被引:1,自引:0,他引:1  
Y P Chen  J Chao  L Chao 《Biochemistry》1988,27(19):7189-7196
Kallikreins compose a multigene family coding for a subgroup of serine proteases, which are involved in the processing of bioactive peptides. Two rat kallikrein-related genes, RSKG-7 (rat submandibular gland kallikrein gene 7) and RSKG-3, have been cloned and their sequences analyzed. RSKG-7 is approximately 4200 bases in length and consists of five exons and four introns. The 5' end region contains the variant CATAT box and TTTAAA box; the 3' end region contains the polyadenylation signal AATAAA. This gene encodes a putative 28,935-dalton preproenzyme of 261 amino acids (aa). The active enzyme consists of 237 aa and is preceded by a deduced signal peptide of 18 aa and a profragment of 6 aa. RSKG-3 is highly homologous to RSKG-7 in terms of its sequence and structure; it encodes a 28,730-dalton prepropeptide consisting of a signal peptide of 18 aa, a profragment of 6 aa, and an active peptide of 235 aa. Sequence comparisons of RSKG-7, RSKG-3, and other kallikrein-related enzymes reveal the key amino acid residues needed for both serine protease activity (His/Asp/Ser) and kallikrein-like cleavage specificity at basic amino acids. Northern blot analyses using specific oligonucleotide probes demonstrate that, among the 12 tissues studied, RSKG-7 and RSKG-3 are expressed in the rat kidney and submandibular gland. Castration of male rats results in a decrease in submandibular gland RSKG-7 mRNA, which can be restored to the normal level by treatment with thyroxine or testosterone. On the other hand, neither castration nor hormonal manipulation affects RSKG-7 mRNA levels in the kidney.  相似文献   

11.
12.
Cellulase genes have been reported not only from fungi, bacteria and plant, but also from some invertebrate animals. Here, two cellulase (endo-β-1,4-glucanase, EC 3.2.1.4) genes, eg27I and eg27II, were cloned from the freshwater snail Ampullaria crossean cDNA using degenerate primers. The nucleotide sequences of the two genes shared 94.5% identity. The open reading frames of both genes consisted of 588 bp, encoding 195 amino acids. Both EG27I and EG27II belong to the glycoside hydrolase family 45, and each lacks a carbohydrate-binding module. The presence of introns demonstrated a eukaryotic origin of the EG27 gene, and, in addition, successful cloning of EG27 cDNA supported endogenous production of EG27 cellulase by Ampullaria crossean. Investigation of the EG27 cDNA from A. crossean will provide further information on GHF45 cellulases.  相似文献   

13.
Two soluble alpha-mannosidases, E-I and E-II, were purified from C. albicans yeast cells by a three-step procedure consisting of size exclusion and ion exchange chromatographies in Sepharose CL6B and Mono Q columns, respectively, and preparative nondenaturing electrophoresis. E-I and E-II migrated as monomeric polypeptides of 54.3 and 93.3 kDa in SDS-PAGE, respectively. Some biochemical properties of purified enzymes were investigated by using 4-methylumbelliferyl-alpha-D-mannopyranoside and p-nitrophenyl-alpha-D-mannopyranoside as substrates. Hydrolysis of both substrates by either enzyme was optimum at pH 6.0 with 50 mM Mes-Tris buffer and at 42 degrees C. Apparent Kmvalues for hydrolysis of 4-methylumbelliferyl-alpha-D-mannopyranoside and p-nitrophenyl-alpha-D-mannopyranoside by E-I were 0.83 microM and 2. 4 mM, respectively. Corresponding values for E-II were 0.25 microM and 1.86 mM. Swansonine and deoxymannojirimicin strongly inhibited the hydrolysis of 4-methylumbelliferyl-alpha-D-mannopyranoside by both enzymes. On the contrary, hydrolysis of p-nitrophenyl-alpha-D-mannopyranoside by E-I and E-II was slightly stimulated or not affected, respectively, by both inhibitors. E-I and E-II did not depend on metal ions although activity of the latter was slightly stimulated by Mn2+and Ca2+in the range of 0.5-2 mM. At the same concentrations, Mg2+was slightly inhibitory of both enzymes. Substrate specificity experiments revealed that both E-I and E-II preferentially cleaved alpha-1,6 and alpha-1,3 linkages, respectively.  相似文献   

14.
15.
Three xylanases (Xyl1, Xyl2 and Xyl3) were purified and characterized from the culture supernatant of Cellulomonas flavigena grown on sugar cane bagasse. The enzymes were purified by affinity chromatography and gel filtration and had masses of 63 kDa, 17 kDa and 35 kDa, respectively, as measured by SDS-PAGE. All enzymes were active against 4-O-methyl-D-glucuronoxylan and xylan but had no cellulase activity with CM-cellulose, an important characteristics in biobleaching processes. © Rapid Science Ltd. 1998  相似文献   

16.
Summary Six major components exhibiting endo-1,4-\-d-glucanase activity were partially purified from culture filtrates of a newly isolated Cellulomonas sp. using ion-exchange chromatography. Molecular weights (44,000 to 140,000), pH optima (6.0 to 7.0), temperature optima (40 to 50°C), half-life, energy of activation, K mand other kinetic parameter investigations indicate the existence of 6 different endoglucanases.Further support for this assumption comes from inhibition studies, whereby glucose inhibited the enzyme activities between 15 and 50% at a concentration of 0.034% (1.65 mM) and cellobiose between 0 and 50% at a concentration of 0.1% (2.92 mM). Of all the metals (Hg2+, Co2+, Cu2+, Ca2+, Mg2+, Zn2+, Fe3+) tested, only Hg2+ exhibited a 55% inhibition at 5.0 mM.  相似文献   

17.
D Schmitt  K Callan    W Gruissem 《Plant physiology》1996,112(2):767-777
The prenylation of membrane-associated proteins involved in the regulation of eukaryotic cell growth and signal transduction is critically important for their subcellular localization and biological activity. In contrast to mammalian cells and yeast, however, the function of protein prenylation in plants is not well understood and only a few prenylated proteins have been identified. We partially purified and characterized farnesyl-protein transferase from tomato (Lycopersicon esculentum, LeFTase) to analyze its biochemical and molecular properties. Using Ras- and G gamma-specific peptide substrates and competition assays we showed that tomato protein extracts have both farnesyl-protein transferase and geranylgeranyl-protein transferase 1 activities. Compared with the heterologous synthetic peptide substrates, the plant-specific CaaX sequence of the ANJ1 protein is a less efficient substrate for LeFTase in vitro. LeFTase activity profiles and LeFTase beta-subunit protein (LeFTB) levels differ significantly in various tissues and are regulated during fruit development. Partially purified LeFTase requires Zn2+ and Mg2+ for enzymatic activity and has an apparent molecular mass of 100 kD Immunoprecipitation experiments using anti-alpha LeFTB antibodies confirmed that LeFTB is a component of LeFTase but not of tomato geranylgeranyl-protein transferase 1. Based on their conserved bio-chemical activities, we expect that prenyltransferases are likely integrated with the sterol biosynthesis pathway in the control of plant cell growth.  相似文献   

18.
利用同源克隆技术从六倍体普通小麦中获得了两个不同的双脱氢抗坏血酸还原酶(TaDHAR)基因的cDNA克隆。器官表达模式分析表明,这两个TaDHAR基因(暂时命名为TaDHAR1和TaDHAR2)在小麦根、茎、叶、幼穗以及开花后10d、20d和30d的种子中均有表达,为组成型表达基因。原生质体表达实验表明,两个基因的产物均可能定位在细胞质中。在细菌中表达并提纯了两个基因的重组蛋白。体外生化测定表明两个重组蛋白均具有将双脱氢抗坏血酸还原成抗坏血酸的能力,其最适pH为7.5,在37oC时的活性比25oC高,但25oC条件下pH6.0和7.0时,两个DHAR蛋白的活性显著不同。本研究的结果为进一步揭示TaDHAR基因在小麦抗坏血酸代谢中的生理作用奠定了基础。  相似文献   

19.
20.
Three extracellular cellulases have been purified from cultures of Cellulomonas. One was found in solution in the cell-free supernatant and two others were found to be bound to the cellulose added as a carbon source. The free enzyme and one of the cellulose-bound enzymes bind to Sephadex. The two cellulose-bound enzymes are glycosylated. The three enzymes behave as endocellulases towards soluble carboxymethyl-cellulose and have little activity on cellulose powder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号