首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Interleukin-1 (IL-1) signaling is dependent on focal adhesions, structures that are enriched with tyrosine kinases and phosphatases. Because the non-receptor tyrosine phosphatase Src homology 2 domain-containing protein tyrosine phosphatase-2 (SHP-2) is enriched in focal adhesions and IL-1-induced ERK activation requires increased Ca(2+), we determined whether SHP-2 modulates IL-1-induced Ca(2+) signaling. In SHP-2-deficient fibroblasts, IL-1-induced Ca(2+) signaling and ERK activation were markedly diminished compared with cells expressing SHP-2. IL-1-induced Ca(2+) release from the endoplasmic reticulum occurred in the vicinity of focal adhesions and was strongly inhibited by the blockage of phospholipase C (PLC) catalytic activity. Immunoprecipitation and immunostaining showed that SHP-2, the endoplasmic reticulum-specific protein calnexin, and PLCgamma1 were associated with focal adhesions; however, these associations and IL-1-induced ERK activation dissipated after cells were plated on non-integrin substrates. IL-1 promoted phosphorylation of SHP-2 and PLCgamma1. IL-1-induced phosphorylation of PLCgamma1 was diminished in SHP-2-deficient cells but was restored by stable transfection with SHP-2. BAPTA/AM (1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis(acetoxymethyl ester)) blocked IL-1-induced phosphorylation of SHP-2 and PLCgamma1, indicating mutually dependent interactive roles for Ca(2+), SHP-2, and PLCgamma1 in IL-1 signaling. We conclude that SHP-2 is critical for IL-1-induced phosphorylation of PLCgamma1 and thereby enhances IL-1-induced Ca(2+) release and ERK activation. Focal adhesions co-localizing with the endoplasmic reticulum may provide molecular staging sites required for ERK activation.  相似文献   

2.
Volume-sensitive outwardly rectifying (VSOR) Cl(-) channels participate in several physiological processes such as regulatory volume decrease, cell cycle regulation, proliferation and apoptosis. Recent evidence points to a significant role of hydrogen peroxide (H(2)O(2)) in VSOR Cl(-) channel activation. The aim of this study was to determine the signalling pathways responsible for H(2)O(2)-induced VSOR Cl(-) channel activation. In rat hepatoma (HTC) cells, H(2)O(2) elicited a transient increase in tyrosine phosphorylation of phospholipase Cgamma1 (PLCgamma1) that was blocked by PP2, a Src-family protein kinases inhibitor. Also, H(2)O(2) triggered an increase in cytosolic [Ca(2+)] that paralleled the time course of PLCgamma1 phosphorylation. The H(2)O(2)-induced [Ca(2+)](i) rise was prevented by the generic phospholipase C (PLC) inhibitor U73122 and the inositol 1,4,5-trisphosphate-receptor (IP(3)R) blocker 2-APB. In line with these results, manoeuvres that prevented PLCgamma1 activation and/or [Ca(2+)](i) rise, abolished H(2)O(2)-induced VSOR Cl(-) currents. Furthermore, in cells that overexpress a phosphorylation-defective dominant mutant of PLCgamma1, H(2)O(2) did not induce activation of VSOR Cl(-) currents. All these H(2)O(2)-induced effects were independent of extracellular Ca(2+). Our findings suggest that activation of PLCgamma1 and subsequent Ca(2+)(i) mobilisation mediate H(2)O(2)-induced VSOR Cl(-) currents, indicating that H(2)O(2) operates via redox-sensitive signalling pathways akin to those activated by osmotic challenges.  相似文献   

3.
Elevation of intracellular Ca2+ at fertilization is essential for the initiation of development in the Xenopus egg, but the pathway between sperm-egg interaction and Ca2+ release from the egg's endoplasmic reticulum is not well understood. Here we show that injection of an inhibitory antibody against the type I IP(3) receptor reduces Ca2+ release at fertilization, indicating that the Ca2+ release requires IP(3). We then examine how IP(3) production is initiated. Xenopus eggs were injected with specific inhibitors of the activation of two phospholipase C isoforms, PLCgamma and PLCbeta. The Src-homology 2 (SH2) domains of PLCgamma were used to inhibit SH2-mediated activation of PLCgamma, and an antibody against G(q) family G-proteins was used to inhibit G(q)-mediated activation of PLCbeta. Though the PLCgamma SH2 domains inhibited platelet-derived growth factor (PDGF)-induced Ca2+ release in eggs with exogenously expressed PDGF receptors, they did not inhibit the Ca2+ rise at fertilization. Similarly, the G(q) family antibody blocked serotonin-induced Ca2+ release in eggs with exogenously expressed serotonin 2C receptors, but not the Ca2+ rise at fertilization. A mixture of PLCgamma SH2 domains and the G(q) antibody also did not inhibit the Ca2+ rise at fertilization. These results indicate that Ca2+ release at fertilization of Xenopus eggs requires type I IP(3)-gated Ca2+ channels, but not SH2 domain-mediated activation of PLCgamma or G(q)-mediated activation of PLCbeta.  相似文献   

4.
In non-excitable cells, receptor-activated Ca2+ signalling comprises initial transient responses followed by a Ca2+ entry-dependent sustained and/or oscillatory phase. Here, we describe the molecular mechanism underlying the second phase linked to signal amplification. An in vivo inositol 1,4,5-trisphosphate (IP3) sensor revealed that in B lymphocytes, receptor-activated and store-operated Ca2+ entry greatly enhanced IP3 production, which terminated in phospholipase Cgamma2 (PLCgamma2)-deficient cells. Association between receptor-activated TRPC3 Ca2+ channels and PLCgamma2, which cooperate in potentiating Ca2+ responses, was demonstrated by co-immunoprecipitation. PLCgamma2-deficient cells displayed diminished Ca2+ entry-induced Ca2+ responses. However, this defect was canceled by suppressing IP3-induced Ca2+ release, implying that IP3 and IP3 receptors mediate the second Ca2+ phase. Furthermore, confocal visualization of PLCgamma2 mutants demonstrated that Ca2+ entry evoked a C2 domain-mediated PLCgamma2 translocation towards the plasma membrane in a lipase-independent manner to activate PLCgamma2. Strikingly, Ca2+ entry-activated PLCgamma2 maintained Ca2+ oscillation and extracellular signal-regulated kinase activation downstream of protein kinase C. We suggest that coupling of Ca2+ entry with PLCgamma2 translocation and activation controls the amplification and co-ordination of receptor signalling.  相似文献   

5.
A thiol-reactive membrane-associated protein (TRAP) binds covalently to the cytoplasmic domain of the human insulin receptor (IR) beta-subunit when cells are treated with the homobifunctional cross-linker reagent 1,6-bismaleimidohexane. Here, TRAP was found to be phospholipase C gamma1 (PLCgamma1) by mass spectrometry analysis. PLCgamma1 associated with the IR both in cultured cell lines and in a primary culture of rat hepatocytes. Insulin increased PLCgamma1 tyrosine phosphorylation at Tyr-783 and its colocalization with the IR in punctated structures enriched in cortical actin at the dorsal plasma membrane. This association was found to be independent of PLCgamma1 Src homology 2 domains, and instead required the pleckstrin homology (PH)-EF-hand domain. Expression of the PH-EF construct blocked endogenous PLCgamma1 binding to the IR and inhibited insulin-dependent phosphorylation of mitogen-activated protein kinase (MAPK), but not AKT. Silencing PLCgamma1 expression using small interfering RNA markedly reduced insulin-dependent MAPK regulation in HepG2 cells. Conversely, reconstitution of PLCgamma1 in PLCgamma1-/- fibroblasts improved MAPK activation by insulin. Our results show that PLCgamma1 is a thiol-reactive protein whose association with the IR could contribute to the activation of MAPK signaling by insulin.  相似文献   

6.
Phospholipase Cgamma2 (PLCgamma2) plays a critical role in the functions of the B cell receptor in B cells and of the FcRgamma chain-containing collagen receptor in platelets. Here we report that PLCgamma2 is also expressed in mast cells and monocytes/macrophages and is activated by cross-linking of Fc(epsilon)R and Fc(gamma)R. Although PLCgamma2-deficient mice have normal development and numbers of mast cells and monocytes/macrophages, we demonstrate that PLCgamma2 is essential for specific functions of Fc(epsilon)R and Fc(gamma)R. While PLCgamma2-deficient mast cells have normal mitogen-activated protein kinase activation and cytokine production at mRNA levels, the mutant cells have impaired Fc(epsilon)R-mediated Ca(2+) flux and inositol 1,4,5-trisphosphate production, degranulation, and cytokine secretion. As a physiological consequence of the effect of PLCgamma2 deficiency, the mutant mice are resistant to IgE-mediated cutaneous inflammatory skin reaction. Macrophages from PLCgamma2-deficient mice have no detectable Fc(gamma)R-mediated Ca(2+) flux; however, the mutant cells have normal Fc(gamma)R-mediated phagocytosis. Moreover, PLCgamma2 plays a nonredundant role in Fc(gamma)R-mediated inflammatory skin reaction.  相似文献   

7.
8.
Recovery from swelling of hepatocytes and selected other epithelia is triggered by intracellular Ca(2+) release from the endoplasmic reticulum, which leads to fluid and electrolyte efflux through volume-sensitive K(+) and Cl(-) channels. The aim of this study was to determine the mechanisms responsible for swelling-mediated hepatocellular Ca(2+) mobilization. Swelling of HTC rat hepatoma cells, evoked by exposure to hypotonic medium, elicited transient increases in intracellular levels of inositol 1,4,5-trisphosphate (IP(3)) and cytosolic [Ca(2+)]. The latter was attenuated by inhibition of phospholipase C (PLC) with and by IP(3) receptor blockade with 2-aminoethoxydiphenyl borate, but it was unaffected by ryanodine, an inhibitor of intracellular Ca(2+)-induced Ca(2+) release channels. Hypotonic swelling was associated with a transient increase in tyrosine phosphorylation of PLCgamma, with kinetics that paralleled the increases in intracellular IP(3) levels and cytosolic [Ca(2+)]. Confocal imaging of HTC cells exposed to hypotonic medium revealed a swelling-induced association of tyrosine-phosphorylated PLCgamma with the plasma membrane. These findings suggest that activation of PLCgamma by hepatocellular swelling leads to the generation of IP(3) and stimulates discharge of Ca(2+) from the endoplasmic reticulum via activation of IP(3) receptors. By extension, these data support the concept that tyrosine phosphorylation of PLCgamma represents a critical step in adaptive responses to hepatocellular swelling.  相似文献   

9.
The initiation of Ca(2+) release from internal stores in the egg is a hallmark of egg activation. In sea urchins, PLCgamma activity is necessary for the production of IP(3), which leads to the initial rise in Ca(2+). To examine the possible function of a tyrosine kinase in activating PLCgamma at fertilization, sea urchin eggs were treated with the specific Src kinase inhibitor PP1 or microinjected with recombinant Src-family SH2-domain proteins, which act as dominant interfering inhibitors of Src-family kinase function. Both modes of inhibiting Src-family kinases resulted in a specific and dose-dependent delay in the onset of Ca(2+) release from the endoplasmic reticulum at fertilization. The rise in cytoplasmic pH at fertilization also was inhibited by microinjection of Src-family SH2-domain proteins. Further, an antibody directed against Src-type kinases recognized a protein of ca. M(r) 57K that was enriched in the membrane fraction of eggs. The kinase activity of this protein was stimulated rapidly and transiently at fertilization, as measured by autophosphorylation and by phosphorylation of an exogenous substrate. Together, these data indicate that a Src-type tyrosine kinase is necessary for the initiation of Ca(2+) release from the egg ER at fertilization and identify a Src-type p57 protein as a candidate in the signaling pathway leading to this Ca(2+) release.  相似文献   

10.
Previous studies demonstrated that ionizing radiation activates the epidermal growth factor receptor (EGFR), as measured by Tyr autophosphorylation, and induces transient increases in cytosolic free [Ca2+], [Ca2+]f. The mechanistic linkage between these events has been investigated in A431 squamous carcinoma cells with the EGFR Tyr kinase inhibitor, AG1478. EGFR autophosphorylation induced by radiation at doses of 0.5-5 Gy or EGF concentrations of 1-10 ng/ml is inhibited by >75% at 100 nM AG1478. Activation of EGFR enhances IP3 production as a result of phospholipase C (PLC) activation. At the doses used, radiation stimulates Tyr phosphorylation of both, PLCgamma and erbB-3, and also mediates the association between erbB-3 and PLCgamma not previously described. The increased erbB-3 Tyr phosphorylation is to a significant extent due to transactivation by EGFR as >70% of radiation- and EGF-induced erbB-3 Tyr phosphorylation is inhibited by AG 1478. The radiation-induced changes in [Ca2+]f are dependent upon EGFR, erbB-3 and PLCgamma activation since radiation stimulated IP3 formation and Ca2+ oscillations are inhibited by AG1478, the PLCgamma inhibitor U73122 or neutralizing antibody against an extracellular epitope of erbB-3. These results demonstrate that radiation induces qualitatively and quantitatively similar responses to EGF in stimulation of the plasma membrane-associated receptor Tyr kinases and immediate downstream effectors, such as PLCgamma and Ca2+.  相似文献   

11.
Erythropoietin (Epo) stimulates a significant increase in the intracellular calcium concentration ([Ca(2+)](i)) through activation of the murine transient receptor potential channel TRPC2, but TRPC2 is a pseudogene in humans. TRPC3 expression increases on normal human erythroid progenitors during differentiation. Here, we determined that erythropoietin regulates calcium influx through TRPC3. Epo stimulation of HEK 293T cells transfected with Epo receptor and TRPC3 resulted in a dose-dependent increase in [Ca(2+)](i), which required extracellular calcium influx. Treatment with the phospholipase C (PLC) inhibitor U-73122 or down-regulation of PLCgamma1 by RNA interference inhibited the Epo-stimulated increase in [Ca(2+)](i) in TRPC3-transfected HEK 293T cells and in primary human erythroid precursors, demonstrating a requirement for PLC. TRPC3 associated with PLCgamma, and substitution of predicted PLCgamma Src homology 2 binding sites (Y226F, Y555F, Y648F, and Y674F) on TRPC3 reduced the interaction of TRPC3 with PLCgamma and inhibited the rise in [Ca(2+)](i). Substitution of Tyr(226) alone with phenylalanine significantly reduced the Epo-stimulated increase in [Ca(2+)](i) but not the association of PLCgamma with TRPC3. PLC activation results in production of inositol 1,4,5-trisphosphate (IP(3)). To determine whether IP(3) is involved in Epo activation of TRPC3, TRPC3 mutants were prepared with substitution or deletion of COOH-terminal IP(3) receptor (IP(3)R) binding domains. In cells expressing TRPC3 with mutant IP(3)R binding sites and Epo receptor, interaction of IP(3)R with TRPC3 was abolished, and Epo-modulated increase in [Ca(2+)](i) was reduced. Our data demonstrate that Epo modulates TRPC3 activation through a PLCgamma-mediated process that requires interaction of PLCgamma and IP(3)R with TRPC3. They also show that TRPC3 Tyr(226) is critical in Epo-dependent activation of TRPC3. These data demonstrate a redundancy of TRPC channel activation mechanisms by widely different agonists.  相似文献   

12.
Tyrosine phosphorylation of phospholipase Cgamma2 (PLCgamma2) is a crucial activation switch that initiates and maintains intracellular calcium mobilization in response to B cell antigen receptor (BCR) engagement. Although members from three distinct families of non-receptor tyrosine kinases can phosphorylate PLCgamma in vitro, the specific kinase(s) controlling BCR-dependent PLCgamma activation in vivo remains unknown. Bruton's tyrosine kinase (Btk)-deficient human B cells exhibit diminished inositol 1,4,5-trisphosphate production and calcium signaling despite a normal inducible level of total PLCgamma2 tyrosine phosphorylation. This suggested that Btk might modify a critical subset of residues essential for PLCgamma2 activity. To evaluate this hypothesis, we generated site-specific phosphotyrosine antibodies recognizing four putative regulatory residues within PLCgamma2. Whereas all four sites were rapidly modified in response to BCR engagement in normal B cells, Btk-deficient B cells exhibited a marked reduction in phosphorylation of the Src homology 2 (SH2)-SH3 linker region sites, Tyr(753) and Tyr(759). Phosphorylation of both sites was restored by expression of Tec, but not Syk, family kinases. In contrast, phosphorylation of the PLCgamma2 carboxyl-terminal sites, Tyr(1197) and Tyr(1217), was unaffected by the absence of functional Btk. Together, these data support a model whereby Btk/Tec kinases control sustained calcium signaling via site-specific phosphorylation of key residues within the PLCgamma2 SH2-SH3 linker.  相似文献   

13.
The NF-kappaB activation pathway induced by T cell costimulation uses various molecules including Vav1 and protein kinase C (PKC)theta. Because Vav1 inducibly associates with further proteins including phospholipase C (PLC)gamma1 and Src homology 2 domain-containing leukocyte phosphoprotein of 76 kDa (SLP-76), we investigated their role for NF-kappaB activation in Jurkat leukemia T cell lines deficient for expression of these two proteins. Cells lacking SLP-76 or PLCgamma1 failed to activate NF-kappaB in response to T cell costimulation. In contrast, replenishment of SLP-76 or PLCgamma1 expression restored CD3/CD28-induced IkappaB kinase (IKK) activity as well as NF-kappaB DNA binding and transactivation. PKCtheta activated NF-kappaB in SLP-76- and PLCgamma1-deficient cells, showing that PKCtheta is acting further downstream. In contrast, Vav1-induced NF-kappaB activation was normal in SLP-76(-) cells, but absent in PLCgamma1(-) cells. CD3/CD28-stimulated recruitment of PKCtheta and IKKgamma to lipid rafts was lost in SLP-76- or PLCgamma1-negative cells, while translocation of Vav1 remained unaffected. Accordingly, recruitment of PKCtheta to the immunological synapse strictly relied on the presence of SLP-76 and PLCgamma1, but synapse translocation of Vav1 identified in this study was independent from both proteins. These results show the importance of SLP-76 and PLCgamma1 for NF-kappaB activation and raft translocation of PKCtheta and IKKgamma.  相似文献   

14.
In this report we have studied the role of phosphatidylinositol 3'-kinase (PI3-K) and tyrosine phosphatase activation on platelet activation by Convulxin (Cvx). Wortmannin, a specific PI3-K inhibitor, and phenylarsine oxide (PAO), a sulfhydryl reagent that inhibits tyrosine phosphatase (PTPase), block Cvx-induced platelet aggregation, granule secretion, inositol phosphate production, and increase in [Ca2+]i. However, PAO does not inhibit Cvx-induced tyrosine phosphorylation of platelet proteins, including Syk and PLCgamma2, but blocked collagen-induced platelet aggregation as well as tyrosine phosphorylation of PLCgamma2. In contrast, Cvx-induced PLCgamma2 tyrosyl phosphorylation was partially inhibited by wortmannin. We conclude that (i) although Cvx and collagen activate platelets by a similar mechanism, different regulatory processes are specific to each agonist; (ii) mechanisms other than tyrosine phosphorylation regulate PLCgamma2 activity; and (iii) besides protein tyrosine kinases, PI3-K (and PTPase) positively modulate platelet activation by both Cvx and collagen, and this enzyme is required for effective transmission of GPVI-Fc receptor gamma chain signal to result in full activation and tyrosine phosphorylation of PLCgamma2 in Cvx-stimulated platelets.  相似文献   

15.
Adult and neonatal immunocompetent cells exhibit important functional distinctions, including differences in cytokine production and susceptibility to tolerance induction. We have investigated the molecular features that characterize the immune response of cord blood-derived T lymphocytes compared with that of adult T lymphocytes. Our findings demonstrate that phospholipase C (PLC) isozymes, which play a pivotal role in the control of protein kinase C activation and Ca2+ mobilization, are differently expressed in cord and adult T lymphocytes. PLCbeta1 and delta1 are expressed at higher levels in cord T cells, while PLCbeta2 and gamma1 expression is higher in adult T lymphocytes. PLCdelta2 and gamma2 appear to be equally expressed in both cell types. In addition, a functional defect in PLC activation via CD3 ligation or pervanadate treatment, stimuli that activate tyrosine kinases, was observed in cord blood T cells, whereas treatment with aluminum tetrafluoride (AlF4-), a G protein activator, demonstrated a similar degree of PLC activation in cord and adult T cells. The impaired PLC activation of cord blood-derived T cells was associated with a a very low expression of the Src kinase, Lck, along with a reduced level of ZAP70. No mitogenic response to CD3 ligation was observed in cord T cells. However, no signaling defect was apparent downstream of PLC activation, as demonstrated by the mitogenic response of cord T cells to the pharmacologic activation of protein kinase C and Ca2+ by treatment with PMA and ionomycin. Thus, neonatal cord blood-derived T cells show a signaling immaturity associated with inadequate PLCgamma activation and decreased Lck expression.  相似文献   

16.
Hyaluronan (HA) is a large nonsulfated glycosaminoglycan and an important regulator of angiogenesis, in particular, the growth and migration of vascular endothelial cells. We have identified some of the key intermediates responsible for induction of mitogenesis and wound recovery. Treatment of bovine aortic endothelial cells with oligosaccharides of hyaluronan (o-HA) resulted in rapid tyrosine phosphorylation and plasma membrane translocation of phospholipase Cgamma1 (PLCgamma1). Cytoplasmic loading with inhibitory antibodies to PLCgamma1, Gbeta, and Galpha(i/o/t/z) inhibited activation of extracellular-regulated kinase 1/2 (ERK1/2). Treatment with the Galpha(i/o) inhibitor, pertussis toxin, reduced o-HA-induced PLCgamma1 tyrosine phosphorylation, protein kinase C (PKC) alpha and beta1/2 membrane translocation, ERK1/2 activation, mitogenesis, and wound recovery, suggesting a mechanism for o-HA-induced angiogenesis through G-proteins, PLCgamma1, and PKC. In particular, we demonstrated a possible role for PKCalpha in mitogenesis and PKCbeta1/2 in wound recovery. Using antisense oligonucleotides and the Ras farnesylation inhibitor FTI-277, we showed that o-HA-induced bovine aortic endothelial cell proliferation, wound recovery, and ERK1/2 activation were also partially dependent on Ras activation, and that o-HA-stimulated tyrosine phosphorylation of the adapter protein Shc, as well as its association with Sos1. Binding of Src to Shc was required for its activation and for Ras-dependent activation of ERK1/2, cell proliferation, and wound recovery. Neither Src nor Ras activation was inhibited by pertussis toxin, suggesting that their activation was independent of heterotrimeric G-proteins. However, the specific Src kinase inhibitor PP2 inhibited Gbeta subunit co-precipitation with PLCgamma1, suggesting a possible role for Src in activation of PLCgamma1 and interaction between two distinct o-HA-induced signaling pathways.  相似文献   

17.
We demonstrate that the differential effects Cbl and oncogenic 70Z/3 Cbl have on Ca(2+)/Ras-sensitive NF-AT reporters is partially due to their opposing ability to regulate phospholipase Cgamma1 (PLCgamma1) activation as demonstrated by analysis of the activation of an NF-AT reporter construct and PLCgamma1-mediated inositol phospholipid (PI) hydrolysis. Cbl over-expression resulted in reduced T cell receptor-induced PI hydrolysis, in the absence of any effect on PLCgamma1 tyrosine phosphorylation. In contrast, expression of 70Z/3 Cbl led to an increase in basal and OKT3-induced PLCgamma1 phosphorylation and PI hydrolysis. These data indicate that Cbl and 70Z/3 Cbl differentially regulate PLCgamma1 phosphorylation and activation. The implications of these data on the mechanism of Cbl-mediated signaling regulation are discussed.  相似文献   

18.
Growth hormone binds to its membrane receptor (GHR), whereby it regulates many cellular functions, including proliferation, differentiation and chemotaxis. However, although the activation of growth hormone-mediated signalling is well understood, the precise mechanism responsible for its regulation has not been elucidated. Here, we demonstrate that phospholipase Cgamma1 (PLCgamma1) modulates the action of growth hormone-mediated signalling by interacting with tyrosine kinase Jak2 (janus kinase 2) in a growth hormone-dependent manner. In the absence of PLCgamma1 (PLCgamma1(-/-)), growth hormone-induced JAK2 and STAT5 phosphorylation significantly increased in mouse embryonic fibroblasts (MEFs). Furthermore, the re-expression of PLCgamma1 reduced growth hormone-induced Jak2 activation. Growth hormone-induced Jak2 phosphorylation was enhanced by siRNA-specific knockdown of PLCgamma1. Interestingly, PLCgamma1 physically linked Jak2 and protein tyrosine phosphatase-1B (PTP-1B) by binding to both using different domains, and this process was implicated in the modulation of cytokine signalling through Jak2. In addition, in PLCgamma1(-/-) MEFs, growth hormone-dependent c-Fos activation was upregulated and growth hormone-induced proliferation was potentiated. These results suggest that PLCgamma1 has a key function in the regulation of growth hormone-mediated signalling by negatively regulating Jak2 activation.  相似文献   

19.
Release of Ca(2+) from intracellular stores at fertilization of mammalian eggs is mediated by inositol 1,4,5-trisphosphate (IP3), but the mechanism by which the sperm initiates IP3 production is not yet understood. We tested the hypothesis that phospholipase C (PLC) activity introduced into the mouse egg as a consequence of sperm-egg fusion is responsible for causing Ca(2+) release. We demonstrated that microinjecting purified, recombinant PLCgamma1 protein into mouse eggs caused Ca(2+) oscillations like those seen at fertilization. However, the PLC activity in the minimum amount of purified PLCgamma1 protein needed to elicit Ca(2+) release when injected into eggs was approximately 500-900 times the PLC activity contained in a single sperm. This indicates that a single mouse sperm does not contain enough PLC activity to be responsible for causing Ca(2+) release at fertilization. We also examined whether phosphatidylinositol 3-kinase (PI3K) could have a role in this process, and found that several inhibitors of PI3K-mediated signaling had no effect on Ca(2+) release at fertilization.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号