首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Two distinct types of [3H]IP3 binding were found in canine cardiac microsomes with high (Kd = 21 nM, Bmax = 0.66 pmol/mg) and low affinity (Kd = 230 nM, Bmax = 2.9 pmol/mg). Also found were low affinity [3H]IP4 binding (Kd = 190 nM, Bmax = 4.5 pmol/mg) and high affinity [3H]IP6 binding (Kd = 10 nM, Bmax = 4.9 pmol/mg). The rank order of potency to displace these radioligands indicates that binding of IP3 and IP6 is ligand-specific. Sucrose gradient centrifugation of the detergent-solubilized cardiac microsomes indicates that the molecular size of the cardiac high affinity IP3 receptor is similar to that of the aortic smooth muscle IP3 receptor and smaller than that of the ryanodine receptor which migrates more rapidly. The IP4 and IP6 binding migrates more slowly than the IP3 receptor.  相似文献   

2.
L D McVittie  D R Sibley 《Life sciences》1989,44(23):1793-1802
A phencyclidine (PCP) receptor binding site has been solubilized in an active ligand-binding state from rat cerebral cortical membranes with sodium deoxycholate. Optimal receptor solubilization occurs at a detergent/protein ratio of 0.5 (w/w); for 5 mg protein/ml solubilized with 0.25% sodium deoxycholate, about 60% of the protein and 25% of the receptor is solubilized. Specific binding of either [3H]-N-[1-(2-thienyl)cyclohexyl]piperidine ([3H]TCP) or [3H]MK-801 is measurable by filtration through Sephadex G-50 columns or glass fiber filters; more than 60% of the binding activity is stable after 48 h at 4 degrees C. In the presence of detergent, [3H]TCP binding exhibits a Kd of 250 nM, a Bmax of 0.56 pmol/mg protein, and a pharmacological profile consistent with that of the membrane-bound PCP receptor, although most drugs bind with affinities 2 to 8 fold lower than in membranes. Upon reduction of detergent concentration, binding parameters approximate those for the membrane-bound receptor ([3H]TCP binding: Kd = 48 nM, Bmax = 1.13 pmol/mg protein).  相似文献   

3.
We investigated the effects of benzodiazepines on [3H]muscimol binding to rat brain membranes and on heat inactivation of GABA receptors. Scatchard analysis of [3H]muscimol binding to frozen and 0.05% Triton X-100 treated membranes revealed two components; a higher affinity (Kd=2.2 nM, Bmax=1.2 pmol/mg protein) and a lower affinity component (Kd=15.9 nM, Bmax=4.4 pmol/mg protein). Diazepam and flurazepam (3 μM) increased significantly the specific binding of 40 nM but not of 2 nM [3H]muscimol. This stimulation was attributed to an increase in the affinity of the lower affinity component for GABA receptors. The time course of heat inactivation of GABA receptors revealed rapidly and then slowly denaturating Phases. These observations would suggest that there are multiple GABA receptors with different sensitivities to the heat treatment. Diazepam depressed remarkably the slowly denaturating phase(s). After heat treatment for 50 min, the single component of GABA receptors with Kd of 14.3 nM and Bmax of 0.6 pmol/mg protein survived, whereas in the membranes preincubated with 3 μM diazepam, the Kd and Bmax of the still viable GABA receptors were 14.8 nM and 1.14 pmol/mg protein, respectively. In light of these findings, the stimulation of the lower affinity component of GABA receptors may be related to the protective effect of these drugs against heat inactivation.  相似文献   

4.
Somatostatin-28 (SRIF-28) preferring receptors were solubilized from hamster beta cell insulinoma using the zwitterionic detergent 3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate. The binding of the iodinated [Leu8-D-TRP22-Tyr25]SRIF-28 analog (referred to as 125I[LWY] SRIF-28) to the solubilized fraction was time-dependent, saturable, and reversible. Scatchard analysis of equilibrium binding data indicated that the solubilized extract contained two classes of SRIF-28-binding sites: a high affinity site (Kd = 0.3 nM and Bmax = 1 pmol/mg protein) and a low affinity site (Kd = 13 nM and Bmax = 4.7 pmol/mg protein). The binding of 125I[LWY]SRIF-28 to solubilized SRIF-28 receptors was sensitive to the GTP analog guanosine-5'-O-thiotriphosphate, suggesting that receptors are functionally linked to a G-protein. By anion-exchange chromatography of the solubilized extract followed by chromatography on wheat germ agglutinin, a 46-fold purification of SRIF-28 receptors was obtained. At this stage of purification, only high affinity sites were found (Kd = 1 nM) and the GTP effect was not maintained. A specific protein of 37 kDa was identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis after photoaffinity labeling. We suggest that this protein is the putative SRIF-28 receptor or a subunit thereof.  相似文献   

5.
The binding of [3H]kainate to goldfish brain membrane fragments was investigated. Scatchard analysis revealed a single class of binding sites in Tris-HCl buffer with a Kd of 352 nM and a Bmax of 3.1 pmol/mg wet weight. In Ringer's saline, [3H]kainate bound with a Bmax of 1.8 pmol/mg wet weight and a Kd of 214 nM. Binding in Ringer's saline, but not Tris-HCl buffer, displayed positive cooperativity with a Hill coefficient of 1.15. The [3H]kainate binding sites were solubilized in Ringer's saline using the nonionic detergent n-octyl-beta-D-glucopyranoside. Approximately 30-50% of the total number of membrane-bound binding sites were recovered on solubilization. The Kd of [3H]kainate for solubilized binding sites was approximately 200 nM. The rank order of potency for glutamatergic ligands at inhibiting [3H]kainate binding was identical and the competitive ligands had similar Ki values in both membranes and solubilized extracts. In membrane preparations, [3H]kainate displayed a two component off-rate with koff values of 0.97 min-1 and 0.07 min-1; in solubilized extracts, however, only a single off-rate (koff = 0.52 min-1) was observed. The hydrodynamic properties of n-octyl-beta-D-glucopyranoside solubilized [3H]kainate binding sites was investigated by sucrose density centrifugation. A single well defined peak was detected which yielded a sedimentation coefficient of 8.3 S. The results presented in this report suggest that goldfish brain may provide an ideal system in which to study kainate receptor biochemistry.  相似文献   

6.
Scatchard analysis of saturation curves was performed to compared newborn and adult rat neurotensin receptor using [3H] neurotensin as a tracer. The membrane fraction of newborn rat cerebral cortex has a single population of neurotensin receptor (Kd = 0.13 nM, Bmax = 710 fmol/mg protein), whereas adults have two distinct neurotensin binding sites (high affinity site, Kd1 = 0.13 nM; low affinity site, Kd2 = 20 nM). High affinity neurotensin receptor, solubilized with digitonin, was purified from newborn rat cortex by affinity chromatography. An overall purification of 14,000-fold was achieved. The binding of [3H] neurotensin to the purified receptor is saturable and specific, with a Kd of 0.45 nM. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) in the presence of 2-mercaptoethanol revealed purified material of a single major band of Mr = 55,000.  相似文献   

7.
R S Chang  V J Lotti 《Life sciences》1983,32(22):2603-2609
The beta-adrenergic antagonist, [3H]-dihydroalprenolol ([3H] DHA), binds to membranes prepared from the rat vas deferens in a specific and saturable manner. Scatchard and Hill plot analysis indicates a single class of binding sites with no evidence of cooperative interactions. The specific binding sites have a high affinity (Kd = 0.3 nM) and a maximal occupancy estimated to be 460 fmoles [3H]-DHA bound/g wet tissue weight. Beta-adrenergic agonists and/or antagonists inhibit [3H]-DHA binding to rat vas deferens membranes in a stereospecific manner and with a relative order of potency expected for beta-adrenergic receptors of the beta2 subtype. The receptor affinities of various beta-adrenergic antagonists in the rat vas deferens determined using inhibition of [3H]-DHA binding correlated with their receptor affinities determined physiologically using antagonism of isoproterenol-induced inhibition of neurogenic contractions in-vitro.  相似文献   

8.
Molecular size of the 5-HT3 receptor solubilized from NCB 20 cells.   总被引:1,自引:0,他引:1       下载免费PDF全文
The 5-HT3 hydroxytryptamine receptor from NCB 20 cells was solubilized and the molecular and hydrodynamic properties of the receptor were investigated. The receptor was identified by binding of the radioligand 3-NN'-[3H]dimethyl-8-azabicyclo[3.2.1]octanyl indol-3-yl carboxylate ester [( 3H]Q ICS 205-930) to NCB 20 membranes (Bmax = 1.19 +/- 0.31 pmol/mg of protein; Kd = 0.43 +/- 0.076 nM) and was optimally solubilized with 0.5% deoxycholate. [3H]Q ICS 205-930 labelled one population of sites in solution (Bmax = 1.11 +/- 0.4 pmol/mg of protein; Kd = 0.48 +/- 0.06 nM; n = 4). The characteristics of [3H]Q ICS 205-930 binding were essentially unchanged by solubilization, and competition for [3H]Q ICS 205-930 binding by a series of 5-HT3 agonists and antagonists was consistent with binding to a 5-HT3 receptor site and was similar to that observed for 5-HT3 receptors solubilized from rat brain [McKernan, Quirk, Jackson & Ragan (1990) J. Neurochem. 54, 924-930]. Some physical properties of the solubilized receptor were investigated. The molecular size (Stokes radius) of the [3H]Q ICS 205-930-binding site was measured by gel-exclusion chromatography in a buffer containing 0.2% Lubrol and 0.5 M-NaCl and was determined as 4.81 +/- 0.15 nm (mean +/- S.E.M.; n = 6). Sucrose-density-gradient centrifugation was also performed under the same detergent and salt conditions to determine the partial specific volume (v) of the detergent-receptor site complex. This was found to be 0.794 ml.g-1. Sucrose-density-gradient centrifugation was carried out in both 1H2O and 2H2O to allow correction for detergent binding to the receptor. The Mr of the 5-HT3 receptor under these conditions was calculated as 249,000 +/- 18,000 (n = 3). The size and physical properties of the 5-HT3 receptor are similar to those observed for members of the family of ligand-gated ion channels.  相似文献   

9.
The specific binding of L-N6-[3H]phenylisopropyladenosine (L-[3H]PIA) to solubilized receptors from rat brain membranes was studied. The interaction of these receptors with relatively low concentrations of L-[3H]PIA (0.5-12.0 nM) in the presence of Mg2+ showed the existence of two binding sites for this agonist, with respective dissociation constant (KD) values of 0.24 and 3.56 nM and respective receptor number (Bmax) values of 0.28 +/- 0.03 and 0.66 +/- 0.05 pmol/mg of protein. In the presence of GTP, the binding of L-[3H]PIA also showed two sites with KD values of 24.7 and 811.5 nM and Bmax values of 0.27 +/- 0.09 and 0.93 +/- 0.28 pmol/mg of protein for the first and the second binding site, respectively. Inhibition of specific L-[3H]PIA binding by 1,3-dipropyl-8-cyclopentylxanthine (DPCPX) (0.1-300 nM) performed with the same preparations revealed two DPCPX binding sites with Ki values of 0.29 and 13.5 nM, respectively. [3H]DPCPX saturation binding experiments also showed two binding sites with respective KD values of 0.81 and 10.7 nM and respective Bmax values of 0.19 +/- 0.02 and 0.74 +/- 0.06 pmol/mg of protein. The results suggest that solubilized membranes from rat brain possess two adenosine receptor subtypes: one of high affinity with characteristics of the A1 subtype and another with lower affinity with characteristics of the A3 subtype of adenosine receptor.  相似文献   

10.
C A Nelson  K B Seamon 《Life sciences》1988,42(14):1375-1383
The binding of [3H]forskolin to proteins solubilized from bovine brain membranes was studied by precipitating proteins with polyethylene glycol and separating [3H]forskolin bound to protein from free [3H]forskolin by rapid filtration. The Kd for [3H]forskolin binding to solubilized proteins was 14 nM which was similar to that for [3H]forskolin binding sites in membranes from rat brain and human platelets. Forskolin analogs competed for [3H]forskolin binding sites with the same rank potency in both brain membranes and in proteins solubilized from brain membranes. [3H]forskolin bound to proteins solubilized from membranes with a Bmax of 38 fmol/mg protein which increased to 94 fmol/mg protein when GppNHp was included in the binding assay. In contrast, GppNHp had no effect on [3H]forskolin binding to proteins solubilized from membranes preactivated with GppNHp. Solubilized adenylate cyclase from non-preactivated membranes had a basal activity of 130 pmol/mg/min which was increased 7-fold by GppNHp. In contrast, adenylate cyclase from preactivated membranes had a basal activity of 850 pmol/mg/min which was not stimulated by GppNHp or forskolin. Thus, the number of high affinity binding sites for [3H]forskolin in solubilized preparations correlated with the activation of adenylate cyclase by GppNHp via the guanine nucleotide binding protein (GS).  相似文献   

11.
We have demonstrated specific, high affinity binding of a biologically active Tyr23-monoiodinated derivative of ACTH, [125I][Phe2,Nle4]ACTH 1-24, in rat brain homogenates. Similarly, in metabolically inhibited and noninhibited rat whole brain slices there is a specific "binding-sequestration" process that is dependent on time, protein concentration, and pH. In homogenates, binding curves were best described by a two-site model and provided the following parameters: Kd1 = 0.65 +/- 0.47 nM, Bmax1 = 21 +/- 41 fmol/mg protein; Kd2 = 97 +/- 48 nM, Bmax2 = 3.5 +/- 1.8 pmol/mg protein. In metabolically viable brain slices, concentration-competition curves of [125I][Phe2,Nle4]ACTH 1-24 binding-sequestration can be described by three components (Kd1 = 14 +/- 24 nM, Bmax1 = 50 +/- 95 fmol/mg protein; Kd2 = 2.4 +/- 1.9 microM, Bmax2 = 44 +/- 49 pmol/mg protein; Kd3 = 0.16 +/- 1.0 mM, Bmax3 = 5.3 +/- 54 nmol/mg protein). Metabolic inhibition, by removal of glucose and addition of 100 microM ouabain, abolishes the lowest affinity, highest capacity binding-sequestrian component only (Kd1 = 7.1 +/- 14 nM, Bmax1 = 8.7 +/- 16 fmol/mg protein; Kd2 = 7.4 +/- 4.49 microM, Bmax2 = 37 +/- 27 pmol/mg protein). The two binding-sequestration parameter estimates obtained from metabolically inhibited tissue slices are not significantly different from those of the two higher affinity components obtained with noninhibited tissue. Thus, metabolic inhibition permits demonstration of ACTH receptor binding only, unconfounded by sequestration or internalization of ligand:receptor complexes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Opiate binding sites and endogenous opioids in Bufo viridis oocytes   总被引:1,自引:0,他引:1  
Binding sites with high affinity for [3H]naloxone, but not for [3H]morphine and [3H] (D-Ala2, D-Leu5) enkephalin, have been found in membranes of Bufo viridis oocytes. The binding is reversible and saturable. Bound [3H]naloxone is easily displaced both by unlabeled naloxone and bremazocine, much worse by morphine and SKF 10,047; (D-Ala2, D-Leu5) enkephalin and beta-endorphin practically fail to displace [3H]naloxone. Scatchard analysis is consistent with the existence of two classes of binding sites with Kd 15 nM and 10(3) nM. The number of binding sites with high affinity for naloxone is 16 pmol/mg protein of homogenized oocytes which is 20-50-fold higher than in, toad or rat brain. Oocyte extract displaces [3H]naloxone bound with oocytes' membranes and inhibits electrically evoked contractions of the rabbit vas deferens. This inhibition is reversed by naloxone. It is suggested that compounds similar to opiate kappa-agonists exist in oocytes. It cannot be ruled out that they participate via specific receptors in the regulation of oocyte maturation and egg development.  相似文献   

13.
Binding of native adenine nucleotides to rat liver and adipose plasma membranes was studied under steady-state conditions using EDTA/Na for inhibition of ecto-nucleotidase activity. [3H]-labelled ATP, ADP and AMP are able to interact with specific binding sites with respective Kd values of 88 +/- 9, 278 +/- 29 and 495 +/- 40 nmol/l for liver membranes; and of 64 +/- 7, 231 +/- 36 and 2050 +/- 290 nmol/l for adipose membranes. The nucleotide-binding capacity (Bmax) varied from 15 to 18 pmol/mg protein in the case of [3H]ATP and [3H]ADP-binding studies and from 22 to 26 pmol/mg protein for [3H]AMP-binding sites. Both 2-MeSATP and ADP inhibited [3H]ATP-binding to membranes with respective IC50 values of 60 +/- 7 and 285 +/- 30 nM. Other purinergic agents suramin, Reactive blue 2, alpha,beta-MeATP and beta,gamma-MeATP were less potent competitors of [3H]ATP binding, whereas AMP, adenosine, GTP, UTP, and CTP did not cause any displacement effect at concentrations of 10(-6)-10(-5) M. It is suggested that the described ATP/ADP-binding sites are linked to G protein-coupled P2Y receptors, whereas AMP-binding sites may represent a substrate-binding component of the membrane ecto-5'-nucleotidase.  相似文献   

14.
Binding of [3H]GBR12935 to homogenates of mouse and rat striatum and kidney was studied. [3H]GBR12935 bound to both tissue preparations with high affinity (mouse striatum Kd = 2.4 +/- 0.4 nM, n = 4; mouse kidney Kd = 3.8 +/- 0.9 nM, n = 4), in a saturable (striatal Bmax = 1.5 +/- 0.4 pmol/mg protein; kidney Bmax = 4.9 +/- 0.5 pmol/mg protein) and reversible manner. Saturation experiments revealed the presence of a single class of high affinity binding sites in both tissues of both species. Mouse kidney appeared to possess a greater density of [3H]GBR12935 binding sites than the striatum while the reverse situation prevailed for the rat. Although two dopamine uptake inhibitors, namely GBR12909 and benztropine, displaced [3H]GBR12935 binding from striatal and kidney homogenates with a similar affinity in both tissues of these species, unlabelled mazindol, (+/-)cocaine, nomifensine and amfonelic acid were significantly (P < 0.001-0.02) more potent inhibitors of [3H]GBR12935 binding in the striatum than in the kidney. While the pharmacological profile of [3H]GBR12935 binding in the rodent striatum compared well with that of the dopamine transporter reported previously, the pharmacology in the kidney was considerably different to that in the striatum. GBR12909 (1-30 mg/kg, i.p.), a close analog of GBR12935, induced significant antidiuretic and antinatriuretic effects in spontaneously hypertensive rats. These data suggest that while [3H]GBR12935 labels the dopamine uptake sites in the brain, it does not appear to label similar sites in the kidney. The mechanism of action of GBR12909 on sodium and water excretion remains to be determined.  相似文献   

15.
1. The binding characteristics of gastric mucosal prostaglandin (PG) E2 (PGE2) receptor were investigated using mucosal cell membranes from rat stomach. The binding was found to be dependent upon PGE2 and membrane protein concentration, the time of incubation and the pH of the mixture, being highest at pH 3.0. 2. Scatchard analysis of the binding data revealed a curvilinear plot with high affinity binding (Kd = 2 nM; Bmax = 0.106 pmol/mg protein) and low affinity binding (Kd = 319 nM; Bmax = 2.262 pmol/mg protein) sites. 3. Competitive displacement study indicated that the receptor was specific for PGs of the E series, as PGF2 alpha and 6-keto-PGF1 alpha failed to displace the PGE2. 4. The study is the first report to provide biochemical parameters of specific PGE receptors in rat gastric mucosa.  相似文献   

16.
Abstract

A method for measuring [3H]-AMPA binding in rat cortex membranes is described. Specific binding was saturable and accounted for 95% of total binding at 5 nM of [3H]-AMPA. Non linear curve fitting of [3H]-AMPA saturation isotherms suggested the presence of two binding sites: the high affinity site showed a pKd of 8.26 ± 0.07 (Kd = 5.49 nM) and a Bmax of 0.19 ± 0.03 pmol/mg protein, whereas the low affinity site indicated a pKd of 7.28 ± 0.05 (Kd = 52 nM) and a Bmax of 1.30 ± 0.23 pmol/mg protein. The pharmacological profile of [3H]-AMPA binding has been determined by studying a series of compounds in binding displacement experiments: Quisqualate was the most potent inhibitor of [3H]-AMPA binding (IC50 = 9.7 nM), followed by AMPA (19 nM), CNQX, DNQX and L-Glutamate (272–373 nM). Kainate was a moderate displacer (6.2 μM); Ibotenic acid and glycine were very weak inhibitors (74 and 92 μM, respectively). CPP, GAMS and L-Aspartic acid showed IC50-values of over 400 μM and MK-801, DL-AP5 and NMDA were almost inactive at the maximal concentration used in our experiments.  相似文献   

17.
The total membrane fraction of human platelets was found to contain high affinity sites of L-[3H]glutamic acid binding (Kd = 100 nM, Bmax = 1.06 pmol/mg protein). The pH optimum for binding is at pH approximately 6.9 Na+ (1-150 mM) inhibit glutamate binding by platelet membranes (IC50 = 12 mM). Ca2+ (50-100 microM) stimulate the binding by 10-20% and inhibit it by 20-30% at concentrations of 1-5 mM. Monoclonal antibodies to the glutamate receptor strongly suppress the L-[3H]glutamate binding by platelet membranes (IC50 = 300 nm). The presence in human platelets of a glutamate-sensitive receptor complex similar to the central nervous system glutamate receptor is postulated.  相似文献   

18.
Characterization of gingival epithelium epidermal growth factor receptor   总被引:1,自引:0,他引:1  
The binding characteristics of gingival epithelium epidermal growth factor (EGF) receptor were investigated using epithelial cell membranes from bovine gingiva. The binding of [125I]EGF was found to be time and protein concentration dependent, reversible, and specific. Unlabeled EGF competed for [125I]EGF binding with IC50 of 0.25nM and maximum displacement of 93% at 0.81nM. Scatchard analysis of the binding data inferred the presence of two binding sites, one of high affinity (Kd = 3.3 nM and Bmax = 47.3fmol/mg protein) and the other of a low affinity (Kd = 1.6 microM and Bmax = 1.9pmol/mg protein). Crosslinking of [125I]EGF to gingival membranes followed by polyacrylamide gel electrophoresis and autoradiography revealed a receptor protein of 170kDa.  相似文献   

19.
Characterization of temperature-sensitive [3H]serotonin (5-HT) binding sites (1 and 4 nM Kd sites) revealed complex inhibition by neuroleptics and serotonin antagonists. There was no simple correlation with affinities for S1 and S2 receptors. In vivo pretreatment (48 h before) with mianserin did not alter Bmax or Kd for the 1 nM Kd [3H]5-HT site, although [3H]ketanserin (S2) densities were decreased by 50%. This suggested that possible S2 components of [3H]5-HT binding must be negligeable, even though ketanserin competed with high affinity (IC50 = 3 nM) for a portion of the 1 nM Kd [3H]5-HT site. Low concentrations of mianserin inhibited the 1 nM Kd [3H]5-HT site in a non-competitive manner, as shown by a decrease in Bmax with no change in Kd after in vitro incubation. The complex inhibition data may therefore represent indirect interactions through another site.  相似文献   

20.
[3H]prostaglandin E2 (PGE2) binding receptors exist in rabbit alveolar bone cell membranes. The presence of high (Kd = 3.9 X 10(-9) M) and low (Kd = 8.8 X 10(-8) M) affinity binding sites of [3H]PGE2 was demonstrated. The saturation values of [3H]PGE2 for high and low affinity binding sites were 0.13 pmol/mg protein and 1.22 pmol/mg protein, respectively. The digestion of the membranes with pronase, phospholipase C, D and neuraminidase led to a decrease of [3H]PGE2 binding but phospholipase A2 did not.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号