首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Gastric mucosal damage was produced in rats by the intragastric administration of 96% ethanol or 0.6 M HCl, according to the method of Robert et al. Vitamin A or beta-carotene, in doses of 10 mg/kg, given intragastrically 30 min before the administration of the necrotizing agents. The animals were killed 1 hr after the administration of the necrotizing agents. The following experimental parameters were studied, without and with application of vitamin A and beta-carotene; number of gastric lesions (ulcers); severity of gastric mucosal lesions (ulcers); gastric mucosal superoxide dismutase (SOD) activity. It was found that; vitamin A and beta-carotene, in doses of 10 mg/kg, are able to prevent significantly both the number and severity of gastric mucosal lesions (ulcers) produced by the application of 96% ethanol or 0.6 M HCl; the significant increase of ethanol-induced gastric mucosal SOD activity can be inhibited by the application of vitamin A and beta-carotene; vitamin A and beta-carotene are capable of preventing the development of gastric mucosal lesions (ulcers) produced by the intragastric administration of 0.6 M HCl, while these agents fail to compensate for the HCl-induced decrease of gastric mucosal SOD activity. It has been suggested that; vitamin A and beta-carotene are gastric cytoprotective agents; the ulcer preventive effects of vitamin A and beta-carotene are partly dependent on their scavanger behaviour.  相似文献   

2.
Gastric mucosal damage was produced by the intragastric administration of 96% ethanol or 0.6 M HCl. The cytoprotective doses of prostacyclin (PGI2) (5 micrograms/kg), atropine (0.025 mg/kg) or cimetidine (2.5 mg/kg) were given intraperitoneally 30 min before the administration of the necrotizing agents. The animals were killed 1 hr later. The number and severity of gastric mucosal lesions (ulcer) were recorded. At the time of the sacrifice of the animals, superoxide dismutase (SOD) was prepared from the gastric fundic mucosa and its activity was measured. It was found that PGI2 (5 micrograms/kg), atropine (0.025 mg/kg) and cimetidine (2.5 mg/kg) significantly decreased the number and severity of gastric mucosal lesions (ulcers) produced by the intragastric administration of 96% ethanol a 0.6 M HCl, PGI2, atropine, cimetidine, given in cytoprotective doses, significantly mounted the ethanol-induced increase of gastric mucosal SOD activity; PGI2, atropine, cimetidine, given them in cytoprotective doses significantly shunted the HCl-induced decrease of gastric mucosal SOD activity. It has been concluded that; chemically different cytoprotective agents (PGI2, atropine, cimetidine) give rise to similar tendencies in the changes of gastric mucosal SOD activity; both the significant decrease (in the ethanol-model) and the significant increase (in the HCl-model) of this enzyme seem to be involved in the development of gastric mucosal protection by PGI2, atropine and cimetidine.  相似文献   

3.
BACKGROUND: Our laboratory group observed earlier that the gastric mucosal cytoprotective effect of prostacyclin (PGI(2)) disappeared after surgical vagotomy in rats. Similarly to this, the beta-carotene induced gastric cytoprotection disappeared in adrenalectomized rats too. AIMS: In these studies we aimed to investigate the possible role of vagal nerve and adrenals in the development of gastric mucosal lesions induced by exogenously administered chemicals (ethanol, HCl, NaOH, NaCl and indomethacin), and on the effects of cytoprotective and antisecretory drugs (atropine, cimetidine), and scavengers (vitamin A and beta-carotene). METHODS: The observations were carried out in fasted CFY strain rats. The gastric mucosal lesions were produced by intragastric (i.g.) administration of narcotising agents (96% ethanol; 0.6 M HCl; 0.2 M NaOH; 25% NaCl) or subcutaneously (s.c.) administered indomethacin (20 mg/kg) in intact, surgically bilaterally vagatomized, and adrenalectomized rats without or with glucocorticoid supplementation (Oradexon, 0.6 mg/kg given i.m. for 1 week). The gastric mucosal protective effect of antisecretory doses of atropine (0.1-0.5-1.0 mg/kg i.g.) and cimetidine (10-25-50 mg/kg i.g.), and vitamin A and beta-carotene (0.01-0.1-1.0-10 mg/kg i.g.) was studied. The number and severity of mucosal gastric lesions was numerically or semiquantitatively measured. In other series of observations the gastric acid secretion and mucosal damage were studied in 24 h pylorus-ligated rats without and with acute bilateral surgical vagotomy. RESULTS: It was found that: (1) the chemical-induced gastric mucosal damage was enhanced in vagotomized and adrenalectomized rats, meanwhile the endogenous secretion of gastric acid, and the development of mucosal damage can be prevented by surgical vagotomy; (2) the gastric cyto- and general protection produced by the drugs and scavengers disappeared in vagotomized and adrenalectomized rats; (3) the gastric mucosal protective effects of drugs and of scavengers returned after sufficient glucocorticoid supplementation of the rats. CONCLUSION: It has been concluded that the intact vagal nerve and adrenals have a key role in the gastric mucosal integrity, and in drugs- and scavengers-induced gastric cyto- and general mucosal protection.  相似文献   

4.
Capsaicin desensitization was used as a tool to reveal the role of neurogenic inflammation in the gastric mucosal lesions induced by intragastric application of four different noxious chemical agents (96% ethanol, 0.6 M HCl, 0.2 M NaOH, 25% NaCl). In capsaicin desensitized rats the number of lesions did not differ from that of the controls one hour after the application. There was, however, a significant reduction in the severity of the mucosal damage. These findings provide the first evidence for the participation of neurogenic inflammation in the gastric mucosal damage induced by aggressive chemicals. Gastrocytoprotection induced by prostacyclin (PGI2, 5 micrograms/kg), atropine (25 micrograms/kg) or cimetidine (2.5 mg/kg) was not inhibited in capsaicin desensitized rats. The number of lesions was not altered, while the severity of damage was more effectively reduced in the desensitized group. These findings indicate that the cytoprotective effect of these drugs is not mediated through capsaicin-sensitive sensory-efferent local tissue reactions.  相似文献   

5.
The effects of different doses (0.01-0.1-1.0-10.0/mg/kg-1) of beta-carotene were studied on gastric secretory responses of 4 hr pylorus-ligated rats: development of gastric mucosal damage (as assessed by number and severity of lesions) produced by intragastric administration of 0.6 M HCl; tissue level of adenosine triphosphate (ATP), adenosine diphosphate (ADP), adenosine monophosphate (AMP), adenylate pool (ATP + ADP + AMP), ratio of ATP X ADP-1, "energy charge" (ATP + 0.5 ADP X X (ATP + ADP + AMP)-1) (during the development of gastric mucosal damage by 0.6 M HCl and of gastric cytoprotection by beta-carotene. It was found that beta-carotene did not decrease the gastric secretory responses of 4 hr pylorus-ligated rats; The development of gastric mucosal damage could be decreased dose-dependently by the administration of beta-carotene; the ATP transformation could be decreased by beta-carotene; the tissue levels of cAMP and AMP could be increased significantly and dose-dependently by beta-carotene; the ratio of ATP X ADP-1 could be increased significantly and dose-dependently by beta-carotene; the values of adenylate pool and "energy charge" remained unchanged.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The aim of this study was to evaluate the effects of intragastrically given pectin-induced physicochemical properties and actions on active gastric acid secretion and on the development of ethanol- and aspirin-induced gastric mucosal lesions. The observations were carried out on CFY-strain rats, fasted for 24 h before the experiments with water ad libitum. The observations were carried out in two experimental series. A) The gastric mucosal lesions were produced by intragastrically given 96% ethanol or aspirin prepared with 0.2 M HCl. Different doses of pectin (100, 50 and 25 mg x kg(-1), respectively) were administered intragastrically 30 min before giving necrotizing agents. The number of gastric lesions was noted 1 h after the administration, while the severity of gastric mucosal lesions was scored by semi-quantitative scale. B) The effects of pectin were studied on the volume and H+ secretion of the stomach in 4-h pylorus-ligated rats. It has been found that: 1) the gastric mucosal lesions could be produced in 100% of rats by the application of both necrotizing agents. 2) Pectin in doses of 50-100 mg x kg(-1) increased the number of gastric mucosal lesions in both models, while no increase was produced by the application of 25-mg x kg(-1) dose. 3) The severity of mucosal lesions increased significantly after the administration of all doses of pectin. 4) The pectin-induced increase of gastric lesions (number) showed a dose-response effect. 5) The pectin produced a significant increase in the volume of gastric secretion and gastric H+ secretion. It has been concluded that: a) pectin-induced physicochemical changes are able to enhance the aggression to gastric mucosa produced by ethanol and aspirin; b) a positive correlation exists between the linkage of H+ to pectin and significant active metabolic response in the rat stomach; c) pectin alone stimulates the active metabolic process of the gastric H+ secretion.  相似文献   

7.
The biochemical background of ethanol-(ETOH) induced gastric mucosal damage was studied in rats with intact vagus and after acute surgical vagotomy. Observations were carried out on Sprague-Dawley (CFY) strain rats of both sexes. Gastric mucosal lesions were produced by intragastric administration of 1 ml 96% ethanol. Bilateral truncal surgical vagotomy was carried out 30 min before ETOH administration. The number and severity of gastric mucosal lesions was noted 1 h after ETOH administration. Biochemical measurements (gastric mucosal level of ATP, ADP, AMP, cAMP and lactate) were carried out from the total homogenized gastric mucosa. The adenylate pool (ATP + ADP + AMP), energy charge ((ATP + 0.5 ADP)/(ATP + ADP + AMP)) and ratio of ATP/ADP were calculated. It was found that: 1) ATP transformation into ADP increased, while ATP transformation in cAMP decreased in ethanol-treated animals with intact vagus nerve, while these transformations were quite the opposite in vagotomized animals; 2) no significant changes were found in the tissue level of lactate: and 3) the extent of biochemical changes was significantly less after surgical vagotomy. It is concluded that an intact vagus is basically necessary for the metabolic adaptation of gastric mucosa.  相似文献   

8.
《Journal of Physiology》1997,91(3-5):189-197
There exists a considerable controversy in the literature with regard to the effect of either opiate receptor blockade or that of morphine in different gastric and intestinal ulcer models in the rat. We performed experiments to evaluate the effects of naloxone and morphine on gastric acid secretion and gastric mucosal damage in different experimental models of gastric mucosal injury, namely in indomethacin-, HCl (0.6N)- and ethanol (96%)-models. We found that: 1) 10 mg/kg naloxone ip given twice, effectively protected gastric mucosa against indomethacin (30 mg/kg ip) and against the acid-dependent injury caused by 0.6 N HCl (1 mL ig), but not against the non acid-dependent injury caused by 96% ethanol (1 mL ig); 2) morphine (10 + 10 mg/kg ip) increased ulcers in the HCl-model, but had no effect in the two other models; 3) this ulcer-aggravating effect of morphine in the HCl-model was blocked by pretreatment of 2 mg/kg ip naloxone; and 4) both naloxone (5 + 5 and 10 + 10 mg/kg ip) significantly decreased gastric acid secretion in 1-h pylorus ligated rats. We conclude that: 1) naloxone dose-dependently protects against the indomethacin- and HCl-, but not against the ethanol-induced gastric mucosal damage; 2) morphine aggravates the HCl-induced ulcerogenesis; and 3) both opiod receptor agonist and antagonist decrease gastric acid secretion.  相似文献   

9.
In pylorus-ligated rats subcutaneous (sc) pentagastrin (325.5 nmol/kg) or histamine (54.3 μmol/kg), but not the cholinergic linergic agent bethanechol (7.6 or 15.2 μmol/kg), increased gastric mucosal injury by sc indomethacin (55.8 μmol/kg). Intragastric (ig) administration of 0.15 or 0.3 N HCl greatly potentiated injury by sc indomethacin with widespread ulceration, intragastric bleeding and even perforation. The gastric mucosal damage produced by indomethacin plus 0.3 N HCl was reduced by ig capsaicin (3.1–25.1 μM), ig resiniferatoxin (0.38-6.1 μM), by sc atropine (0.15-1.2 μmol/kg) and to a lesser extent by ig prostacyclin (40–267 μM) or sc cimetidine (198.2 μmol/kg). The protective effect of capsaicin or resiniferatoxin was not prevented by atropine or cimetidine treatment. Capsaicin (6.5 mM) enhanced gastric injury by sc or ig indomethacin. Results indicate the importance of early vascular events in the pathogenesis of mucosal injury induced by indomethacin in the stomach and suggest a role for gastric acid in potentiation of such injury. Results further strengthen the idea of a protective role for capsaicin-sensitive sensory nerves in the stomach.  相似文献   

10.
The aim of this study was to evaluate the effects of intragastrically given pectin-induced physicochemical properties and actions on active gastric acid secretion and on the development of ethanol- and aspirin-induced gastric mucosal lesions. The observations were carried out on CFY-strain rats, fasted for 24 h before the experiments with water ad libitum. The observations were carried out in two experimental series. A) The gastric mucosal lesions were produced by intragastrically given 96% ethanol or aspirin prepared with 0.2 M HCl. Different doses of pectin (100, 50 and 25 mg.kg–1, respectively) were administered intragastrically 30 min before giving necrotizing agents. The number of gastric lesions was noted 1 h after the administration, while the severity of gastric mucosal lesions was scored by semi-quantitative scale. B) The effects of pectin were studied on the volume and H+ secretion of the stomach in 4-h pylorus-ligated rats. It has been found that: 1) the gastric mucosal lesions could be produced in 100% of rats by the application of both necrotizing agents. 2) Pectin in doses of 50–100 mg.kg–1 increased the number of gastric mucosal lesions in both models, while no increase was produced by the application of 25-mg.kg–1 dose. 3) The severity of mucosal lesions increased significantly after the administration of all doses of pectin. 4) The pectin-induced increase of gastric lesions (number) showed a dose-response effect. 5) The pectin produced a significant increase in the volume of gastric secretion and gastric H+ secretion. It has been concluded that: a) pectin-induced physicochemical changes are able to enhance the aggression to gastric mucosa produced by ethanol and aspirin; b) a positive correlation exists between the linkage of H+ to pectin and significant active metabolic response in the rat stomach; c) pectin alone stimulates the active metabolic process of the gastric H+ secretion.  相似文献   

11.
It has been observed earlier that gastric cytoprotection produced by PGI2, beta-carotene, small doses of atropine or cimetidine has failed in surgically vagotomized rats. This phenomenon may be in connection with endogenous prostaglandins (PGs) and glutathione (GSH) level of the gastric mucosa. The aims of the study were to evaluate the effect of vagus nerve on the gastric mucosal 6-keto-PGF1 alpha, PGE2 and glutathione after intragastric 96% ethanol (ETOH) treatment. The observations were carried out on CFY rats. The gastric mucosal damage was produced by intragastric administration of 1 ml 96% ETOH. Acute bilateral surgical vagotomy (ASV) was carried out 30 min prior to ETOH application. The animals were sacrificed 1, 5, 15 or 60 min after ETOH installation. The number and the severity of gastric mucosal lesions were noted and 6-keto-PGF1 alpha, PGE2 an GSH contents of gastric mucosa were measured. It has been found that: 1. the number and the severity of gastric mucosal lesions were increased after ASV compared to those with intact vagal nerve, 2. 96% ETOH treatment increased both the gastric mucosal PGs and GSH levels, 3. 6-keto-PGF1 alpha peaked at 5 min PGE2 and GSH peaked at 15 min after ETOH treatment, 4. ASV decreased the gastric mucosal PGs content and delayed the peaks of PGE2 and GSH. It has been concluded that the decreased content of PGs and the delayed GSH increase may play a pathological role in the failure of gastric cytoprotection of rats after ASV.  相似文献   

12.
Vascular factors play an important role in the pathogenesis and prevention of acute gastric mucosal lesions. Endothelin-3 (ET-3), a potent vasoactive peptide, was infused intra-arterially to induce gastric microvascular and hemorrhagic mucosal lesions, and to enhance the damaging effects of dilute HCl and ethanol. ET-3 antibody was injected intravenously to decrease hemorrhagic mucosal lesions induced by ethanol. Locally infused ET (0.01, 0.1, and 1.0 nmol.100 g-1.min-1 for up to 15 min) was followed in some cases by intragastric dilute ethanol or HCl, which alone caused no or only mild vascular and mucosal lesions. Monastral blue was used to visualize and quantify vascular injury. ET-3 produced dose-dependent vascular lesions that affected the walls of mucosal capillaries and venules and induced mucosal congestion and focal endothelial labeling in vessels of the gastric muscular layers. The highest dose of ET induced hemorrhagic gastric mucosal lesions, mortality, and periods of hyper- and hypotension in the rat. Medium and low doses of ET-3 caused vascular injury, and dose-dependently potentiated the vascular and hemorrhagic mucosal lesions caused by dilute HCl and ethanol. Indomethacin slightly enhanced damage induced by ET and 50% ethanol, suggesting a limited mediatory role of prostaglandins in the ET-induced mucosal lesions. Anti-ET-3 serum dose-dependently decreased but did not abolish the hemorrhagic gastric mucosal lesions induced by 75% ethanol. Thus, ET-3 causes endothelial damage in capillaries and venules of rat stomach and predisposes to mucosal damage even after exposure to dilute ethanol or HCl. ET is more potent than leukotrienes and histamine and thus may play an important role in the mechanisms of acute gastric mucosal injury and protection where the vascular network appears to be a major target.  相似文献   

13.
The aims of this study were as follows: 1. to analyse the effects of drugs with different subcellular mechanisms on the PGI2-induced gastric cytoprotection in a non acid dependent (ethanol-induced) gastric ulcer model; 2. to identify the affinity and intrinsic activity curves on the PGI2-induced gastric cytoprotection; 3. to evaluate the main cellular mechanisms of PGI2-induced gastric mucosal defence. The observations were carried out on both sexes of CFY-strain rats, weighing 180 to 210 g. The gastric mucosal damage was produced by intragastric administration of 96% ethanol. The animals were killed at 1 hr after administration of ethanol, and the number and severity of gastric mucosal lesions (ulcers) was noted. Atropine, actinomycin D, cimetidine, mannomustine, dinitrophenol, epinephrine, pentagastrin, histamine, ouabain, tetracycline were given intraperitoneally (in different doses) at 30 min before administration of ethanol. The effects of these drugs were tested on the PGI2-induced (5 micrograms/kg was given intragastrically) gastric cytoprotection. It has been found that: 1. atropine, actinomycin D, cimetidine, epinephrine, ouabain, tetracycline and mannomustine inhibited the PGI2-induced gastric cytoprotection; 2. histamine, pentagastrin and 2,4-dinitrophenol enhanced the PGI2-induced gastric cytoprotection; 3. the molar concentrations of these drugs modifying the PGI2-induced gastric cytoprotection differed significantly. It has been concluded that: 1. the drugs stimulating or inhibiting the cell functions are capable to modify the extent of PGI2-induced gastric cytoprotection; 2. different subcellular mechanisms (oxidative phosphorylation, increased synthesis of proteins, ribonucleic and deoxyribonucleic acids, modifications of membrane-bound ATP-dependent energy systems) are involved in the development of PGI2-induced gastric cytoprotection.  相似文献   

14.
An essential role for an intact vagal nerve has been proven in the development of gastric mucosal cyto- and general protection. On the other hand, chemically-induced (ethanol, HCl, indomethacin) gastric mucosal damage is enhanced after acute surgical vagotomy. The aims of this paper were to study the possible mechanisms of the vagal nerve in the development of gastric mucosal defense. The following questions were addressed: 1) effect of surgical vagotomy on the development of ethanol- (ETOH), HCl-, and indomethacin (IND)-induced gastric mucosal damage; 2) changes in the gastric mucosal defense by scavengers, prostacyclin and other compounds (small doses of atropine and cimetidine: 3) changes in the gastric mucosal vascular permeability due to chemicals; 4) effect of indomethacin in the ETOH and HCl models with and without surgical vagotomy; 5) changes in the gastric mucosal content of prostacyclin and PGE2 in the ETOH and HCl models after surgical vagotomy; and 6) changes in the role of SH-groups in gastric mucosal defense after surgical vagotomy. It was found that: 1) the gastric mucosal damage produced by chemicals (ETOH, HCl, and indomethacin) was enhanced after surgical vagotomy; 2) the cyto- and general gastric protective effects of β-carotene, prostacyclin, and small doses of atropine and cimetidine disappeared after surgical vagotomy; 3) the vascular permeability due to chemicals (ETOH, HCl, indomethacin) significantly increased after surgical vagotomy in association with an increase in both number and severity of gastric mucosal lesions; 4) IND alone (in animals with an intact vagus) did not produce gastric mucosal lesions (in 1-h experiments), but it aggravated ETOH-induced gastric mucosal damage (both its number and severity); 5) the gastric mucosal levels of prostacyclin and PGE2 decreased after surgical vagotomy; 6) IND application (after surgical vagotomy) decreased further the tissue levels of prostacyclin and PGE2 in association with an increase of gastric mucosal damage; and 7) the gastric mucosal protective effects of SH-groups were abolished by surgical vagotomy.  相似文献   

15.
《Life sciences》1995,57(1):PL13-PL18
The present study demonstrated the cytoprotective abilities of low concentrations of ethanol, NaCl and HCl, against the gastric mucosal damage caused by 100% ethanol, and the contributions of the physical and chemical properties of these mild irritants to their protective actions. The results have shown the differential protective effects of ethanol (10–40%), NaCl (2.5–12.5%) and HCl (0.15–0.45M), with the optimal cytoprotective concentrations being 20% ethanol, 5% NaCl and 0.3M HCl, respectively. Solutions of KCl and NaCl with similar osmolarity, and H2SO4 and HCl of similar acidity and osmolarity, all showed similar protective potentials as compared to the osmotic agent mannitol, which possessed a concentration- and tonicity-dependent protective action against 100% ethanol-induced mucosal damage. Same concentration of methanol, propan-2-ol and ethanol, having similar osmolarity with deionized water, exerted indifferent protective effects. It is therefore concluded that adaptive cytoprotection induced by low concentrations of NaCl and HCl could depend on their physical properties, while that of ethanol could act through its unique chemical property.  相似文献   

16.
Sialic acids occupy terminal positions on gastric mucus glycoprotein where they contribute to the high viscosity of mucin. Desialylation of mucus may lead to degradation of the mucus and eventually to the breakdown of the gastric mucus barrier. The effect of a variety of damaging agents (0.1 M HCl, 2 mg ml(-1) pepsin and 2 M NaCl) on sialic acid profile was determined in pylorus-ligated rats. The relationship between sialic acid, galactose, pyruvate and the extent of gastric mucosal damage were studied. Instillation of pepsin significantly increased total sialic acid, galactose and macroscopic mucosal lesions in the stomach. Instillation of 0.1 M HCl reduced the total sialic acid but this decrease was not significant. Acidity led to a significant increase in the amount of free sialic acid in the gastric instillates and the macroscopic lesions induced by acid was not significantly different from the control animals (0.15 M NaCl). 2 M NaCl induced the macroscopic lesions in the stomach and also free sialic acid in the instillates. Pepsin potentiates the action of 2 M NaCl. In all the agents examined with the exception of acid, it was observed that an increase in free sialic acid and galactose was accompanied by gastric mucosal erosion and elevation of pyruvate concentration. It is concluded that gastric acidity alone is not inherently damaging and that resistance of gastric mucosa to destructive agents may be dependent on the integrity of the sialic acids.  相似文献   

17.
We have observed that removal of the salivary glands is associated with an increase in the susceptibility to gastric mucosal damage in the rat. In the present study, we have examined the effect of sialoadenectomy on ethanol-induced mucosal hemorrhagic damage and myeloperoxidase (MPO) activity. Hemorrhagic damage and MPO activity in response to intragastric 50% w/v ethanol were greater in sialoadenectomized rats when compared with sham-operated animals. Pretreatment with 16,16-dimethylprostaglandin E2 (0.3 micrograms/kg s.c.) reduced damage and MPO activity in both sialoadenectomized and sham control rats receiving 50% ethanol. The reduction in these parameters was greater in control than in sialoadenectomized rats. Pretreatment with epidermal growth factor (5 micrograms/kg s.c.) significantly reduced MPO activity but did not significantly affect the extent of damage. These data suggest that sialoadenectomy is associated with an increase in mucosal inflammation in animals given ethanol. However, in some situations tissue inflammation (as indicated by MPO activity) was reduced, while the proportion of gastric mucosa exhibiting hemorrhagic damage was not changed.  相似文献   

18.
Lam EK  Tai EK  Koo MW  Wong HP  Wu WK  Yu L  So WH  Woo PC  Cho CH 《Life sciences》2007,80(23):2128-2136
The gastric mucosa is frequently exposed to different exogenous and endogenous ulcerative agents. Alcoholism is one of the risk factors for the development of mucosal damage in the stomach. This study aimed to assess if a probiotic strain Lactobacillus rhamnosus GG (LGG) is capable of protecting the gastric mucosa from acute damage induced by intragastric administration of ethanol. Pre-treatment of rats with LGG at 10(9) cfu/ml twice daily for three consecutive days markedly reduced ethanol-induced mucosal lesion area by 45%. LGG pre-treatment also significantly increased the basal mucosal prostaglandin E(2) (PGE(2)) level. In addition, LGG attenuated the suppressive actions of ethanol on mucus-secreting layer and transmucosal resistance and reduced cellular apoptosis in the gastric mucosa. It is suggested that the protective action of LGG on ethanol-induced gastric mucosal lesions is likely attributed to the up-regulation of PGE(2), which could stimulate the mucus secretion and increase the transmucosal resistance in the gastric mucosa. All these would protect mucosal cells from apoptosis in the stomach.  相似文献   

19.
BACKGROUND: The exposure of gastric mucosa to damaging factors, such as ethanol, water restraint stress, or ischemia followed by reperfusion, produces pathological changes: inflammatory process, hemorrhagic erosions, even acute ulcers. The base of these changes is a disturbance of protective mechanisms and disrupture of gastric mucosal barrier. Previous studies pointed out the role of disturbances of gastric blood flow, mucus secretion and involvement of prostaglandins and nitric oxide formation in the pathomechanism of gastric mucosa lesions. The role of reactive oxygen species (ROS) in these processes has been little studied. Aim: The purpose of our present investigations is to explain the participation of ROS in acute gastric mucosal damage by various irritants. MATERIAL AND METHODS: Experiments were carrying out on 80 male Wistar rats. To assess gastric blood flow (GBF) laser Doppler flowmeter was used. The area of gastric lesions was established by planimetry. The levels of proinflammatory cytokines were measured by ELISA technique. The colorimetric assays were used to determine of malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE) as well as superoxide dismutase (SOD) activity. RESULTS: We demonstrated that 3.5 h of water immersion and restraint stress (WRS), 30 min of gastric ischemia followed by 60 min of reperfusion or intragastric administration of 100% ethanol, all resulted in appearance of acute gastric mucosal lesions accompanied by a significant decrease of gastric blood flow. These lesions are also accompanied by the significant increase of proinflammatory cytokines including interleukin-1 beta (IL-1beta) and tumor necrosis factor alpha (TNFalpha) plasma level. Biological effects of ROS were estimated by measuring tissue level of MDA and 4-HNE, the products of lipid peroxydation by ROS, as well as the activity of SOD, the scavanger of ROS. It was established that 3.5 h of WRS, ischemia-reperfusion and 100% ethanol lead to significant increase of MDA and 4-HNE mucosal level, accompanied by a decrease of SOD activity (significant in WRS and ethanol application). CONCLUSIONS: The pathogenesis of experimental mucosal damage in rat stomach includes the generation of ROS that seem to play an important role, namely due to generation of lipid peroxides, accompanied by impairment of antioxidative enzyme activity of cells.  相似文献   

20.
J Puurunen  H Karppanen 《Life sciences》1975,16(10):1513-1520
The effect of ethanol on the secretion of gastric acid and the content of cyclic AMP of the gastric mucosa was studied in rats. Intravenously, ethanol (10 to 800 mg/kg) had no effect on the output of acid. Upon local application into the stomach, ethanol (1 to 10%) caused a concentration-dependent inhibition of the output of gastric acid. The effect was evident within 5 min. At the concentration of 1 %,ethanol decreased the rate of acid secretion maximally by about 30%. At the concentration of 3 %, the maximal inhibition was about 70 %. At the concentration of 10 %, ethanol caused a total cessation of the output of acid within 20 to 60 min.Five and 25 min after the administration of 10 % ethanol into the stomach, the gastric mucosal content of cyclic AMP was decreased by approximately 50 %. Also in vitro, the mucosal content of cyclic AMP was decreased by ethanol within 5 min. The decrease was about 30 % with 2.5 % ethanol, approximately 60 % with 10 % ethanol, and approximately 45 % with 20 % ethanol. Alcohol inhibited the activity of the cyclic AMP phosphodiesterase of the gastric mucosa in a competitive manner. The Ki-value was 0.16 M which would correspond to an alcohol concentration of 9.1 % (v/v). Ethanol caused a concentration-dependent inhibition of the activity of the gastric mucosal adenyl cyclase. By 0.166 M (9.4 %) alcohol the inhibition was nearly 100 %.It is concluded that the ethanol-induced decrease of cyclic AMP in the gastric mucosa is due to a decreased formation of the nucleotide. The accompanying inhibition of the output of acid by ethanol is consistent with the view that cyclic AMP is an intracellular regulator of the gastric acid secretion. In view of the role of cyclic AMP in the control of the integrity of the cells, it is suggested that the ethanol-induced damage of gastric mucosa might also be, at least partly, due to the decreased mucosal content of cyclic AMP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号