首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The main component of senile plaques found in AD brain is amyloid β-peptide (Aβ), and the neurotoxicity and aggregation of Aβ are associated with the formation of β-sheet structure. Experimentally, beta sheet breaker (BSB) peptide fragment Leu-Pro-Phe-Phe-Asp (LPFFD) can combine with Aβ, which can inhibit the aggregation of Aβ. In order to explore why LPFFD can inhibit the formation of β-sheet conformation of Aβ at atomic level, first, molecular docking is performed to obtain the binding sites of LPFFD on the Aβ(1–42) (LPFFD/Aβ(1–42)), which is taken as the initial conformation for MD simulations. Then, MD simulations on LPFFD/Aβ(1–42) in water are carried out. The results demonstrate that LPFFD can inhibit the conformational transition from α-helix to β-sheet structure for the C-terminus of Aβ(1–42), which may be attributed to the hydrophobicity decreasing of C-terminus residues of Aβ(1–42) and formation probability decreasing of the salt bridge Asp23-Lys28 in the presence of LPFFD.  相似文献   

2.
Amyloid beta (Aβ) peptide accumulation has been demonstrated to play a central role in Alzheimer’s disease (AD). Substantial evidence indicates that protein nitrotyrosination contributes to Aβ-dependent neurotoxicity; however, the molecular mechanism is unknown. Recent research has shown that Aβ complexes with heme to form Aβ–heme, and increases the pseudo-peroxidase activity of heme. We found that Aβ–heme uses H2O2 and NO2 to cause nitration of enolase and synaptic proteins more effectively than heme. Thus, the increased peroxidase activity of Aβ–heme may be the molecular link between excess Aβ and the widespread protein nitration in AD. Interestingly, the site of enolase nitration that was catalyzed by Aβ–heme is different from that induced by heme. Moreover, the secondary structural perturbations of Aβ–heme-treated and heme-treated enolase are also different. These observations suggest that Aβ–heme targets specific amino acid sequences in enolase. Furthermore, our data show that Aβ–heme peroxidase activity is independent of the aggregation state of Aβ, suggesting an important role of soluble Aβ in addition to Aβ aggregates and oligomers in AD pathogenesis.  相似文献   

3.
Accumulation of the neurotoxic amyloid β-peptide (Aβ) in the brain is a hallmark of Alzheimer’s disease (AD). Several synthetic Aβ peptides have been used to study the mechanisms of toxicity. Here, we sought to establish comparability between two commonly used Aβ peptides Aβ1-42 and Aβ25-35 on an in vitro model of Aβ toxicity. For this purpose we used organotypic slice cultures of rat hippocampus and observed that both Aβ peptides caused similar toxic effects regarding to propidium iodide uptake and caspase-3 activation. In addition, we also did not observe any effect of both peptides on Akt and PTEN phosphorylation; otherwise the phosphorylation of GSK-3β was increased. Although further studies are necessary for understanding mechanisms underlying Aβ peptide toxicity, our results provide strong evidence that Aβ1-42 and the Aβ25-35 peptides induce neural injury in a similar pattern and that Aβ25-35 is a convenient tool for the investigation of neurotoxic mechanisms involved in AD.  相似文献   

4.
Soluble oligomers and/or aggregates of Amyloid-β (Aβ) are viewed by many as the principal cause for neurodegeneration in Alzheimer’s disease (AD). However, the mechanism by which Aβ and its aggregates cause neurodegeneration is not clear. The toxicity of Aβ has been attributed to its hydrophobicity. However, many specific mitochondrial cytopathologies e.g., loss of complex IV, loss of iron homeostasis, or oxidative damage cannot be explained by Aβ’s hydrophobicity. In order to understand the role of Aβ in these cytopathologies we hypothesized that Aβ impairs specific metabolic pathways. We focused on heme metabolism because it links iron, mitochondria, and Aβ. We generated experimental evidence showing that Aβ alters heme metabolism in neuronal cells. Furthermore, we demonstrated that Aβ binds to and depletes intracellular regulatory heme (forming an Aβ-heme complex), which provides a strong molecular connection between Aβ and heme metabolism. We showed that heme depletion leads to key cytopathologies identical to those seen in AD including loss of iron homeostasis and loss of mitochondrial complex IV. Aβ-heme exhibits a peroxidase-like catalytic activity, which catalytically accelerates oxidative damage. Interestingly, the amino acids sequence of rodent Aβ (roAβ) and human Aβ (huAβ) is identical except for three amino acids within the hydrophilic region, which is also the heme-binding motif that we identified. We found that huAβ, unlike roAβ, binds heme tightly and forms a peroxidase. Although, roAβ and huAβ equally form fibrils and aggregates, rodents do not develop AD-like neuropathology. These findings led us to propose a new mechanism for mitochondrial dysfunction and huAβ’s neurotoxicity. This mechanism prompted the development of methylene blue (MB), which increased heme synthesis, complex IV, and mitochondrial function. Thus, MB may delay the onset and progression of AD and serve as a lead to develop novel drugs to treat AD.  相似文献   

5.
Summary The amyloid β-peptide, Aβ is toxic to neurons and this toxicity plays a central role in the progression of Alzheimer's disease. The mechanism(s) by which Aβ exerts its toxicity has been hotly debated with several theories postulated. Here we discuss the role of oxidation of the sulfur atom of Met35 in Aβ42 (Met(O)Aβ), a modification that has significant implications for the mechanism of Aβ toxicity. Both Met(O)Aβ and its native form display toxicity to primary neuronal cells in culture which can be rescued by catalase, a H2O2 inhibitor and clioquinol a mild copper chelator. However both native Aβ and Met(O)Aβ differ substantially in primary and secondary structures, solubility, ability to penetrate lipid membranes, and oligomerization profiles. It is clearly evident that metals play an important role in the oxidation of Aβ to Met(O)Aβ via Fenton chemistry and that regulation of this pathway has a potential therapeutic application for the regulation of Alzheimer's disease.  相似文献   

6.
Summary Metal-catalyzed oxidation (MCO) can lead to damage of bio-molecules and is implicated in neurodegenerative diseases, such as Alzheimer's disease (AD). The amino acid residues, tyrosine, histidine and methionine, have been proposed to play important roles in metal mediated oxidative stress and subsequent reactions of amyloid β peptide (Aβ) a major contributor in the pathogenesis of AD. The MCO of Aβ residues, particularly histidine, methionine and tyrosine, and reviewed. MCO of Aβ histidine and tyrosine residues can facilitate oligomerization and may play a role in both amyloid formation and Aβ neurotoxicity. Further work is needed to determine the importance of Aβ oxidation in AD and the role of Aβ oxidation products and oxidative stress in disease progression. The mechanisms of Aβ MCO are complex and multiple reaction products can form. Further study is needed to determine the mechanisms by which Aβ MCO occursin vivo. In addition, new analytical methods are required to monitor the formation of Aβ MCO products formed during AD. The copper-H2O2 redox system provides a chemical model by which Aβ MCO can be studiedin vitro and can be used to produce oxidatively modified amino acid residues for use as standards in developing new analytical methods to monitor Aβ MCO.  相似文献   

7.
Alzheimer’s disease is characterized pathologically by senile plaques in the brain. The major component of senile plaques is amyloid-β (Aβ), which is cleaved from Alzheimer’s Aβ protein precursor (AβPP). Recently, information regarding the cytoplasmic tail of AβPP has started to emerge, opening up various insights into the physiological roles of AβPP and its pathological role in Alzheimer’s disease. The cytoplasmic domain of AβPP shares the evolutionarily conserved GYENPTY motif, which binds to a number of adaptor proteins containing the phosphotyrosine interaction domain (PID). Among the PID-containing proteins, this article focuses on four groups of adaptor proteins of AβPP: Fe65, X11, mDab1, and c-Jun N-terminal kinase-interacting protein 1b/islet-brain 1. These two authors contributed equally to this study.  相似文献   

8.
The molecular mechanisms of Alzheimer’s disease (AD) are not fully understood. Extensive evidence from experimental models has involved the overgeneration and accumulation of toxic amyloid β peptides (Aβ) in the onset and progression of the disease. The amyloidogenic processing of amyloid precursor protein into pathogenic Aβ fragments is thought to occur in specific domains of the plasma membrane and favored by cholesterol enrichment. Intracellular Aβ accumulation is known to induce oxidative stress, predominantly via mitochondria targeting of toxic Aβ. Recent evidence using mouse models of cholesterol loading has demonstrated that the specific mitochondrial cholesterol pool sensitizes neurons to Aβ-induced oxidant cell death and caspase-independent apoptosis due to selective mitochondrial GSH (mGSH) depletion induced by cholesterol-mediated perturbation of mitochondrial membrane dynamics. mGSH replenishment by permeable precursors such as glutathione ethyl ester protected against Aβ-mediated neurotoxicity and inflammation. Thus, these novel data expand the pathogenic role of cholesterol in AD indicating that in addition to fostering Aβ generation, mitochondrial cholesterol determines Aβ neurotoxicity via mGSH regulation.  相似文献   

9.
Alzheimer’s disease is characterised by regional neuronal degeneration, synaptic loss, and the progressive deposition of the 4 kDa β-amyloid peptide (Aβ) in senile plaques and accumulation of tau protein as neurofibrillary tangles. Aβ derives from the larger precursor molecule, amyloid precursor protein (APP) by proteolytic processing via β- and γ-secretases. While APP expression is well documented in neurons and astrocytes, the case for oligodendrocytes is less clear. The latter cell type is reported to express different isoforms of APP, and we have confirmed this observation by immunocytochemistry in cultures of differentiated rat cortical oligodendrocytes. Moreover, by means of a sensitive electrochemiluminescent immunoassay employing Aβ C-terminal specific antibodies, mature oligodendrocytes are shown to secrete the 40 and 42 amino acid Aβ species (Aβ40 and Aβ42). Secretion of Aβ peptides was reduced by incubating oligodendrocytes with α- and β-secretase inhibitors, or a γ-secretase inhibitor. Disturbances of APP processing and/or synthesis in oligodendrocytes may account for some myelin disorders observed in Alzheimer’s disease and other senile dementias.  相似文献   

10.
The aberrant expression and activation of transglutaminase 2 (TG2), the ubiquitous enzyme which catalyzes calcium-dependent protein cross-linking reactions, has been reported in many inflammatory diseases. Chronic inflammation, mediated by prolonged activation of brain-resident immunocompetent cells, appears to be involved in the pathogenesis of several age-related diseases, such as Alzheimer’s disease. Given that increased TG2 expression has been observed in AD brains, this study was aimed to characterize the role of TG2 in THP-1 monocytes stimulated with amyloid-beta (Aβ). Aβ1–42 treatment dose-dependently increased TG2 expression in THP-1 cells. In particular, a fivefold up-regulation of TG2, compared with control cells, was observed in the presence of 0.5 μM Aβ1–42. At the same concentration, Aβ1–42 was able to promote monocyte maturation as suggested by increased expression of the cell surface antigen CD14 as well as the adhesion-promoting factor fibronectin. The stimulation of THP-1 cells with Aβ1–42 also led to a significant up-regulation of tumor necrosis factor α (TNF-α) and matrix metalloproteinase 9 (MMP-9). Interestingly, THP-1 cell transfection with small interfering RNA directed against TG2 was able to reduce Aβ1–42 increased levels of all the examined markers of monocyte maturation (CD14, fibronectin), and activation (TNF-α, MMP-9). These results indicate that TG2 up-regulation is required for the functional THP-1 monocyte activation induced by Aβ1–42. This work suggests that TG2 inhibition may represent a therapeutic target to ameliorate the inflammation and progression in Alzheimer’s disease.  相似文献   

11.
The pathogenesis of Alzheimer’s disease (AD) has been strongly associated with the accumulation of amyloid beta (Aβ) peptides in brain, and immunotherapy targeting Aβ provides potential for AD prevention. A clinical trial in which AD patients were immunized with Aβ42 peptide was stopped when 6% of participants showed meningoencephalitis, apparently due to an inflammatory Th1 immune response. Previously, we and other have shown that Aβ42 DNA vaccination via gene gun generates a Th2 cellular immune response, which was shown by analyses of the respective antibody isotype profiles. We also determined that in vitro T cell proliferation in response to Aβ42 peptide re-stimulation was absent in DNA Aβ42 trimer-immunized mice when compared to Aβ42 peptide-immunized mice. To further characterize this observation prospectively and longitudinally, we analyzed the immune response in wild-type mice after vaccination with Aβ42 trimer DNA and Aβ42 peptide with Quil A adjuvant. Wild-type mice were immunized with short-term (1–3× vaccinations) or long-term (6× vacinations) immunization strategies. Antibody titers and isotype profiles of the Aβ42 specific antibodies, as well as cytokine profiles and cell proliferation studies from this longitudinal study were determined. Sufficient antibody titers to effectively reduce Aβ42, but an absent T cell proliferative response and no IFNγ or IL-17 secretion after Aβ42 DNA trimer immunization minimizes the risk of inflammatory activities of the immune system towards the self antigen Aβ42 in brain. Therefore, Aβ42 DNA trimer immunization has a high probability to be effective and safe to treat patients with early AD.  相似文献   

12.
Metal ions such as zinc and copper can have dramatic effects on the aggregation kinetics of and the structures formed by several amyloidogenic peptides/proteins. Depending on the identity of the amyloidogenic peptide/protein and the conditions, Zn(II) and Cu(II) can promote or inhibit fibril formation, and in some cases these metal ions have opposite effects. To better understand this modulation of peptide aggregation by metal ions, the impact of Zn(II) binding to three amyloidogenic peptides (Aβ14-23, Aβ11-23, and Aβ11-28) on the formation and structure of amyloid-type fibrils was investigated. Zn(II) was able to accelerate fibril formation for all three peptides as measured by thioflavin T fluorescence and transmission electron microscopy. The effects of Zn(II) on Aβ11-23 and Aβ11-28 aggregation were very different compared with the effects of Cu(II), showing that these promoting effects were metal-specific. X-ray absorption spectroscopy suggested that the Zn(II) binding to Aβ11-23 and Aβ11-28 is very different from Cu(II) binding, but that the binding is similar in the case of Aβ14-23. A model is proposed in which the different coordination chemistry of Zn(II) compared with Cu(II) explains the metal-specific effect on aggregation and the difference between peptides Aβ14-23 and Aβ11-23/Aβ11-28.  相似文献   

13.
Mei Z  Yan P  Situ B  Mou Y  Liu P 《Neurochemical research》2012,37(3):622-628
The deposition of amyloid β-protein (Aβ) fibrils into plaques within the brain parenchyma and along cerebral blood vessels is a hallmark of Alzheimer’s disease (AD). Aβ42 oligomers and fibrils cause the breakdown of neural circuits, neuronal death and eventually dementia. Drugs that inhibit Aβ42 aggregation may be a novel direction in AD drug discovery. Cryptotanshinone (CTS), an active component of the medicinal herb Salvia miltiorrhiza, has been shown to improve learning and memory in several pharmacological models of AD. However, the effects of CTS on the Aβ aggregation and toxicity are unclear. The current work shows the effectiveness of CTS on the inhibition of Aβ42 aggregation and toxicity to human neuroblastoma cells. In this study, we demonstrated that CTS can inhibit Aβ42 spontaneous aggregation using thioflavin T fluorescence assay and transmission electron microscopy. Furthermore, we investigated the effects of CTS on Aβ-induced oxidative cell death in cultured SH-SY5Y cells. MTT and lactate dehydrogenase assays showed that CTS reduced the cytotoxicity induced by Aβ42. CTS also dramatically reduced Aβ42-induced cellular apoptosis and increased level of reactive oxygen species in these cells. Our study suggests that CTS may be useful in the inhibition or prevention of AD development and progression.  相似文献   

14.
Background Elevated plasma homocysteine and amyloid β (Aβ) have been associated with Alzheimer’s disease (AD). We investigated the cross-sectional association between these biomarkers. Methods We used linear regression to relate plasma homocysteine and Aβ adjusting for age, gender, creatinine, APOE-ε4, and ethnic group in 327 persons aged 78 ± 6.6 years. Results Plasma homocysteine correlated with age, serum creatinine, plasma Aβ40 and Aβ42, and was inversely correlated with serum vitamin B12, and folate. Aβ42, but not Aβ40, was related to later development of dementia. Homocysteine was related to higher Aβ40 levels (coefficient = 2.0; P < 0.0001) and this association was attenuated after adjustment for creatinine (coefficient = 1.0; P < 0.0001). The crude association between homocysteine and Aβ42 was weaker (coefficient = 0.5; P = 0.01) and became non-significant after adjustment for creatinine (coefficient = 0.4; P = 0.06). These associations were unrelated to ethnicity, the presence of APOE-ε4 or dementia. Analyses by quartiles of homocysteine showed that these association were driven primarily by the fourth quartile. Conclusions Plasma homocysteine is directly related to Aβ40. The association with Aβ42 is not significant. These results seem to indicate that homocysteine is related to aging but not specifically to AD. Special issue dedicated to John P. Blass.  相似文献   

15.

Background  

Self-assembly of the amyloid-β peptide (Aβ) has been implicated in the pathogenesis of Alzheimer's disease (AD). As a result, synthetic molecules capable of inhibiting Aβ self-assembly could serve as therapeutic agents and endogenous molecules that modulate Aβ self-assembly may influence disease progression. However, increasing evidence implicating a principal pathogenic role for small soluble Aβ aggregates warns that inhibition at intermediate stages of Aβ self-assembly may prove detrimental. Here, we explore the inhibition of Aβ1–40 self-assembly by serum albumin, the most abundant plasma protein, and the influence of this inhibition on Aβ1–40 activation of endothelial cells for monocyte adhesion.  相似文献   

16.
Pathogenesis of Alzheimer’s disease (AD), which is characterised by accumulation of extracellular deposits of β-amyloid peptide (Aβ) in the brain, has recently been linked to vascular disorders such as ischemia and stroke. Aβ is constantly produced in the brain from amyloid precursor protein (APP) through its cleavage by β- and γ-secretases and certain Aβ species are toxic for neurones. The brain has an endogenous mechanism of Aβ removal via proteolytic degradation and the zinc metalloproteinase neprilysin (NEP) is a critical regulator of Aβ concentration. Down-regulation of NEP could predispose to AD. By comparing the effects of hypoxia and oxidative stress on expression and activity of the Aβ-degrading enzyme NEP in human neuroblastoma NB7 cells and rat primary cortical neurones we have demonstrated that hypoxia reduced NEP expression at the protein and mRNA levels as well as its activity. On contrary in astrocytes hypoxia increased NEP mRNA expression. Special issue dedicated to Dr. Moussa Youdim.  相似文献   

17.
Amyloid beta-protein (Aβ) is the major component of senile plaques and cerebrovascular amyloid deposits in individuals with Alzheimer’s disease. Aβ is known to increase free radical production in neuronal cells, leading to oxidative stress and cell death. Recently, considerable attention has been focused on dietary antioxidants that are able to scavenge reactive oxygen species (ROS), thereby offering protection against oxidative stress. Walnuts are rich in components that have anti-oxidant and anti-inflammatory properties. The inhibition of in vitro fibrillization of synthetic Aβ, and solubilization of preformed fibrillar Aβ by walnut extract was previously reported. The present study was designed to investigate whether walnut extract can protect against Aβ-induced oxidative damage and cytotoxicity. The effect of walnut extract on Aβ-induced cellular damage, ROS generation and apoptosis in PC12 pheochromocytoma cells was studied. Walnut extract reduced Aβ-mediated cell death assessed by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) reduction, and release of lactate dehydrogenase (membrane damage), DNA damage (apoptosis) and generation of ROS in a concentration-dependent manner. These results suggest that walnut extract can counteract Aβ-induced oxidative stress and associated cell death.  相似文献   

18.
This study aims to discuss the effect of preventing pathological changes and cognitive degeneration of Tg2576 mice by inoculating the subunit fragment of Aβ vaccine. Thirty-two Tg2576 mice were randomly divided into four groups, each having eight mice: Group I, the control group, inoculated with adjuvants; Group II, the Aβ42 group, inoculated with Aβ42 vaccine; Group III, the Aβ1–15 group, inoculated with Aβ1–15 vaccine; and Group IV, the Aβ36–42 group, inoculated with Aβ36–42 vaccine. The titer of the serum antibody against Aβ42 (Group II) was significantly higher than that of the control group (Group I), and a low level of antibodies could be detected in the brain homogenate in the three vaccine-inoculated groups. Morris water maze test showed that the Aβ42 group, Aβ1–15 group and Aβ36–42 group were obviously improved compared with the control group. The cultured splenocytes sampled from each group were induced by Con A or their respective antigens, and the cell proliferation of the three vaccine-inoculated groups was significantly higher than that of the control group. In the Aβ42 group, IL2 and IFN-γ were relatively low and IL4 and IL10 were relatively high. By contrast, IL4 and IL10 were much higher in the Aβ1–15 group and IL2 and IFN-γ were much higher in the Aβ36–42 group. The immunohistochemical test showed a large number of senile plaques in the brain cortex and hippocampus of the mice in the control group, no senile plaque in the brain of the Aβ1–15 group and Aβ42 group mice, and a small number of senile plaques in the brain of the Aβ36–42 group mice. The results suggest that the subunit fragment of Aβ1–15 vaccine could prevent not only cognitive and behavioral degeneration but also Aβ deposition and formation of senile plaques in Tg2576 mice.  相似文献   

19.
Aggregation of the amyloid β-peptide (Aβ) into insoluble fibrils is a key pathological event in Alzheimer’s disease. Cu(II) and Zn(II) ions were reported to be able to induce Aβ aggregation at nearly physiological concentrations in vitro. In this study, the binding modes of Cu(II) and Zn(II) in this process were explored by molecular modeling. In the pre-associated Aβ, Nτ atom of imidazole ring of His14, O atom of carbonyl of main-chain and two O atoms of water occupied the four ligand positions of the complex. While in the aggregated form of Aβ, the His13(N)–Metals–His14(N) bridges were formed through metal cross-linking action. These results would be helpful to put insight on revealing the formation mechanism of pathogenic Aβ aggregates in brain.  相似文献   

20.
1. The leucine-rich glioma inactivated (LGI) family of genes encodes a leucine-rich repeat (LRR) protein, proteins that are thought to be specifically involved in protein–protein and protein–matrix interactions. Since amyloid beta peptide (Aβ) has been previously shown to induce the expression of another LRR-encoding gene in neural cells, we assessed how Aβ affects LGI gene expression in rat primary cerebral cortical cultures and astrocyte cultures. Both RT-PCR and Western Blotting analyses revealed that Aβ robustly induced the expression of LGI3 in rat astrocyte cultures. 2. Western Blotting analyses also showed that both glial fibrillary acidic protein (GFAP) and apolipoprotein E (ApoE) significantly increased coincidentally with the Aβ-induced upregulation of LGI3. Immunocytochemistry showed that LGI3 colocalized with Aβ at plasma membranes and also with internalized Aβ in astrocytes. These findings suggest that activated LGI3 may be involved in the astroglial response against Aβ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号