首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Zhang  Yidan  Zhao  Yuan  Zhang  Jian  Yang  Guofeng 《Neurochemical research》2020,45(11):2560-2572

Alzheimer’s disease (AD) is a common neurodegenerative disease of progressive dementia which is characterized pathologically by extracellular neuritic plaques containing aggregated amyloid beta (Aβ) and intracellular hyperphosphorylated tau protein tangles in cerebrum. It has been confirmed that microglia-specific nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome-mediated chronic neuroinflammation plays a crucial role in the pathogenesis of AD. Stimulated by Aβ deposition, NLRP3 assembles and activates within microglia in the AD brain, leading to caspase-1 activation along with downstream interleukin (IL)-1β secretion, and subsequent inflammatory events. Activation of the NLRP3 inflammasome mediates microglia to exhibit inflammatory M1 phenotype, with high expression of caspase-1 and IL-1β. This leads to Aβ deposition and neuronal loss in the amyloid precursor protein (APP)/human presenilin-1 (PS1) mouse model of AD. However, NLRP3 or caspase-1 deletion in APP/PS1 mice promotes microglia to transform to an anti-inflammatory M2 phenotype, with decreased secretion of caspase-1 and IL-1β. It also results in improved cognition, enhanced Aβ clearance, and a lower cerebral inflammatory response. This result suggests that the NLRP3 inflammasome may be an appropriate target for reducing neuroinflammation and alleviating pathological processes in AD. In the present review, we summarize the generally accepted regulatory mechanisms of NLRP3 inflammasome activation, and explore its role in neuroinflammation. Furthermore, we speculate on the possible roles of microglia-specific NLRP3 activation in AD pathogenesis and consider potential therapeutic interventions targeting the NLRP3 inflammasome in AD.

  相似文献   

2.
The NLRP3 inflammasome is a critical component of the innate immune system. NLRP3 activation is induced by diverse stimuli associated with bacterial infection or tissue damage, but its inappropriate activation is involved in the pathogenesis of inherited and acquired inflammatory diseases. However, the mechanism by which NLRP3 is activated remains poorly understood. In this study, we explored the role of kinases in NLRP3 inflammasome activation by screening a kinase inhibitor library and identified 3,4-methylenedioxy-β-nitrostyrene (MNS) as an inhibitor for NLRP3 inflammasome activation. Notably, MNS did not affect the activation of the NLRC4 or AIM2 (absent in melanoma 2) inflammasome. Mechanistically, MNS specifically prevented NLRP3-mediated ASC speck formation and oligomerization without blocking potassium efflux induced by NLRP3 agonists. Surprisingly, Syk kinase, the reported target of MNS, did not mediate the inhibitory activity of MNS on NLRP3 inflammasome activation. We also found that the nitrovinyl group of MNS is essential for the inhibitory activity of MNS. Immunoprecipitation, mass spectrometry, and mutation studies suggest that both the nucleotide binding oligomerization domain and the leucine-rich repeat domain of NLRP3 were the intracellular targets of MNS. Administration of MNS also inhibited NLRP3 ATPase activity in vitro, suggesting that MNS blocks the NLRP3 inflammasome by directly targeting NLRP3 or NLRP3-associated complexes. These studies identified a novel chemical probe for studying the molecular mechanism of NLRP3 inflammasome activation which may advance the development of novel strategies to treat diseases associated with abnormal activation of NLRP3 inflammasome.  相似文献   

3.
Zhang  Haiju  Yu  Shiqian  Xia  Liping  Peng  Xia  Wang  Shun  Yao  Baozhen 《Neurochemical research》2022,47(3):713-722

Epilepsy (SE) is a common and serious neurological disease. NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome participates in the pathogenesis of SE, while its underlying mechanism is still unclear. Here, we attempted to explore the mechanism of action of NLRP3 inflammasome in SE. SE mouse model was constructed by administration of kainic acid (KA). Astrocytes were treated with KA to mimic SE cell model. MCC950 (NLRP3 inhibitor) and Z-YVAD-FMK (Caspase-1 inhibitor) were used to treat astrocytes to inhibit the activity of NLRP3 and Caspase-1. Nissl staining was performed to examine the morphology of neuron. Western blot, enzyme-linked immunosorbent assay and immunofluorescence staining were performed to assess protein expression. SE mouse model exhibited an increase of neuronal loss, and an up-regulation of Cleaved-Caspase-1, IL-1β and IL-18 in hippocampus. The levels of GFAP+ADK+ cells were significantly increased in SE mice. MCC950 or Z-YVAD-FMK abolished these impacts conferred by KA in SE mice. Moreover, KA treatment enhanced the expression of NLRP3, Cleaved-Caspase-1, IL-1β and IL-18 in astrocytes, which was rescued by knockdown of NLRP3 or Caspase-1. Additionally, CREB, p-CREB, REST were up-regulated, and SP1 was down-regulated in the KA-treated SE mice and KA-treated astrocytes. Inhibition of NLRP3 or Caspase-1 rescued these proteins expression in KA-treated astrocytes. CREB or REST silencing reduced adenosine kinase (ADK) expression, while SP1 knockdown enhanced ADK expression in KA-treated astrocytes. In conclusion, NLRP3 inflammasome activation enhances ADK expression to accelerate SE in mice through regulating CREB/REST/SP1 signaling pathway. Thus, inhibition of NLRP3 inflammasome may be a treatment for SE.

  相似文献   

4.
BackgroundNeuropathic pain has been shown to be modulated by the activation of the chemokine C-X-C motif ligand 12 (CXCL12)/chemokine CXC receptor 4 (CXCR4) dependent nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome. Loganin, an iridoid glycoside, was proven to prevent neuropathic pain, but its underlying mechanisms related to NLRP3 activation are still unknown.PurposeThis study investigated the underlying mechanisms of loganin's effect on chronic constriction injury (CCI)-induced NLRP3 inflammasome activation in the spinal cord.MethodsSprague-Dawley rats were randomly divided into four groups: sham, CCI, sham + loganin, and CCI + loganin. Loganin (5 mg/kg/day) was administered intraperitoneally starting the day after surgery. Paw withdrawal threshold (PWT) and latency (PWL) were assessed before CCI and on days 1, 3, 7 and 14 after CCI. Spinal cords were collected for western blots and immunofluorescence studies.ResultsLoganin prevented CCI-attenuated PWT and PWL, suggesting improved mechanical allodynia and thermal hyperalgesia. The expression of CXCL12, CXCR4, thioredoxin-interacting protein (TXNIP), NLRP3 inflammasome (NLRP3, ASC, and caspase-1), IL-1β, and IL-18 were enhanced on day 7 after CCI, and all were reduced after loganin treatment. Dual immunofluorescence also showed that increased CXCL12, CXCR4, and NLRP3 were colocalized with NeuN (neuronal marker), GFAP (astrocyte marker), and Iba1 (microglial marker) on day 7 in the ipsilateral spinal dorsal horn (SDH). These immunoreactivities were attenuated in loganin-treated rats. Moreover, loganin decreased the assembly of NLRP3/ASC inflammasome after CCI in the ipsilateral SDH. Loganin appears to attenuate CCI-induced neuropathic pain by suppressing CXCL12/CXCR4-mediated NLRP3 inflammasome.ConclusionOur findings suggest that loganin might be a suitable candidate for managing CCI-provoked neuropathic pain.  相似文献   

5.
BackgroundKai Xin San (KXS) was widely applied for the treatment of depression for thousands of years. However, the underlying antidepressant mechanism of KXS remains not clear.PurposeThis study aimed to investigate whether NLRP3 inflammasome and autophagy are involved in inflammation-induced depression and antidepressant mechanism of KXS.MethodsWistar rats were exposed to chronic unpredictable mild stress (CUMS) for 6 weeks, and KXS (3, 5, and 10 g/kg/d) was administrated during the last 2 weeks of CUMS procedure. The effects of KXS on depressive-like behaviors, neuroinflammation, NLRP3 inflammasome activation, and autophagy were investigated in CUMS rats. Rat astrocytes were employed to further explore the potential mechanism of KXS in regulating NLRP3 inflammasome and autophagy. Autophagy inhibitor 3-methyladenine (3-MA, 5 mM) was used in vitro to elucidate the role of autophagy in the antidepressant mechanism of KXS.ResultsIn vivo, KXS improved depressive-like behaviors of CUMS rats in sucrose preference test, open field test and forced swimming test. Moreover, KXS inhibited the neuroinflammation induced by CUMS and promoted autophagy in prefrontal cortex of rats. The results in vitro further validated the anti-inflammatory and proautohapgic effects of KXS. More importantly, autophagy inhibitor 3-MA diminished the inhibitory effect of KXS on NLRP3 inflammasome activation in rat astrocytes.ConclusionKXS ameliorated CUMS-induced depressive behaviors in rats and inhibited the NLRP3 inflammasome-mediated inflammation in vivo and in vitro. These effects might be regulated by KXS-induced autophagy.  相似文献   

6.
Multiple sclerosis (MS) is a chronic inflammatory autoimmune disease in the central nervous system (CNS). The NLRP3 inflammasome is considered an important regulator of immunity and inflammation, both of which play a critical role in MS. However, the underlying mechanism of NLRP3 inflammasome activation is not fully understood. Here we identified that the TRPV1 (transient receptor potential vanilloid type 1) channel in microglia, as a Ca2+ influx-regulating channel, played an important role in NLRP3 inflammasome activation. Deletion or pharmacological blockade of TRPV1 inhibited NLRP3 inflammasome activation in microglia in vitro. Further research revealed that TRPV1 channel regulated ATP-induced NLRP3 inflammasome activation through mediating Ca2+ influx and phosphorylation of phosphatase PP2A in microglia. In addition, TRPV1 deletion could alleviate mice experimental autoimmune encephalomyelitis (EAE) and reduce neuroinflammation by inhibiting NLRP3 inflammasome activation. These data suggested that the TRPV1 channel in microglia can regulate NLRP3 inflammasome activation and consequently mediate neuroinflammation. Meanwhile, our study indicated that TRPV1–Ca2+–PP2A pathway may be a novel regulator of NLRP3 inflammasome activation, pointing to TRPV1 as a potential target for CNS inflammatory diseases.Subject terms: Neuroimmunology, Neuroimmunology  相似文献   

7.

Background

Despite decades of intense research efforts, actions of acute opioids are not fully understood. Increasing evidence suggests that in addition to well-documented antinociceptive effects opioids also produce paradoxical hyperalgesic and excitatory effects on neurons. However, most studies focus on the pronociceptive actions of chronic opioid exposure. Matrix metalloproteinase 9 (MMP-9) plays an important role in neuroinflammation and neuropathic pain development. We examined MMP-9 expression and localization in dorsal root ganglia (DRGs) after acute morphine treatment and, furthermore, the role of MMP-9 in modulating acute morphine-induced analgesia and hyperalgesia in mice.

Results

Subcutaneous morphine induced a marked up-regulation of MMP-9 protein in DRGs but not spinal cords. Morphine also increased MMP-9 activity and mRNA expression in DRGs. MMP-9 up-regulation peaked at 2 h but returned to the baseline after 24 h. In DRG tissue sections, MMP-9 is expressed in small and medium-sized neurons that co-express mu opioid receptors (MOR). In DRG cultures, MOR agonists morphine, DAMGO, and remifentanil each increased MMP-9 expression in neurons, whereas the opioid receptor antagonist naloxone and the MOR-selective antagonist D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 (CTAP) suppressed morphine-induced MMP-9 expression. Notably, subcutaneous morphine-induced analgesia was enhanced and prolonged in Mmp9 knockout mice and also potentiated in wild-type mice receiving intrathecal injection of MMP-9 inhibitors. Consistently, intrathecal injection of specific siRNA targeting MMP-9 reduced MMP-9 expression in DRGs and enhanced and prolonged morphine analgesia. Subcutaneous morphine also produced heat hyperalgesia at 24 h, but this opioid-induced hyperalgesia was not enhanced after MMP-9 deletion or inhibition.

Conclusions

Transient MMP-9 up-regulation in DRG neurons can mask opioid analgesia, without modulating opioid-induced hyperalgesia. Distinct molecular mechanisms (MMP-9 dependent and independent) control acute opioid-induced pronociceptive actions (anti-analgesia in the first several hours and hyperalgesia after 24 h). Targeting MMP-9 may improve acute opioid analgesia.  相似文献   

8.
It is well known that sleep disorders are harmful to people's health and performance, and growing evidence suggests that sleep deprivation (SD ) can trigger neuroinflammation in the brain. The nucleotide‐binding domain and leucine‐rich repeat protein‐3 (NLRP 3) inflammasome is reported to be relevant to the neuroinflammation induced by SD , but the regulatory signaling that governs the NLRP 3 inflammasome in SD is still unknown. Meanwhile, whether the regulatory action of antidepressants in astrocytes could affect the neuroinflammation induced by SD also remains obscure. In this study, we were the first to discover that the antidepressant fluoxetine, a type of specific serotonin reuptake inhibitor widely used in clinical practice, could suppress the neuroinflammation and neuronal apoptosis induced by SD . The main findings from this study are as follows: (i) SD stimulated the expression of activated NLRP 3 inflammasomes and the maturation of IL ‐1β/18 via suppressing the phosphorylation of STAT 3 in astrocytes; (ii) SD decreased the activation of AKT and stimulated the phosphorylation of GSK ‐3β, which inhibited the phosphorylation of STAT 3; (iii) the NLRP 3 inflammasome expression stimulated by SD was partly mediated by the P2X7 receptor; (iv) an agonist of STAT 3 could significantly abolish the expression of NLRP 3 inflammasomes induced by an agonist of the P2X7 receptor in primary cultured astrocytes; (v) the administration of fluoxetine could reverse the stimulation of NLRP 3 inflammasome expression and function by SD through elevating the activation of STAT 3. In conclusion, our present research suggests the promising possibility that fluoxetine could ameliorate the neuronal impairment induced by SD .

  相似文献   

9.

Background

A subset of the population receiving opioids for the treatment of acute and chronic clinical pain develops a paradoxical increase in pain sensitivity known as opioid-induced hyperalgesia. Given that opioid analgesics are one of few treatments available against clinical pain, it is critical to determine the key molecular mechanisms that drive opioid-induced hyperalgesia in order to reduce its prevalence. Recent evidence implicates a splice variant of the mu opioid receptor known as MOR-1K in the emergence of opioid-induced hyperalgesia. Results from human genetic association and cell signaling studies demonstrate that MOR-1K contributes to decreased opioid analgesic responses and produces increased cellular activity via Gs signaling. Here, we conducted the first study to directly test the role of MOR-1K in opioid-induced hyperalgesia.

Methods and Results

In order to examine the role of MOR-1K in opioid-induced hyperalgesia, we first assessed pain responses to mechanical and thermal stimuli prior to, during, and following chronic morphine administration. Results show that genetically diverse mouse strains (C57BL/6J, 129S6, and CXB7/ByJ) exhibited different morphine response profiles with corresponding changes in MOR-1K gene expression patterns. The 129S6 mice exhibited an analgesic response correlating to a measured decrease in MOR-1K gene expression levels, while CXB7/ByJ mice exhibited a hyperalgesic response correlating to a measured increase in MOR-1K gene expression levels. Furthermore, knockdown of MOR-1K in CXB7/ByJ mice via chronic intrathecal siRNA administration not only prevented the development of opioid-induced hyperalgesia, but also unmasked morphine analgesia.

Conclusions

These findings suggest that MOR-1K is likely a necessary contributor to the development of opioid-induced hyperalgesia. With further research, MOR-1K could be exploited as a target for antagonists that reduce or prevent opioid-induced hyperalgesia.  相似文献   

10.
Central nervous system (CNS) inflammation and autophagy dysfunction are known to be involved in the pathology of neurodegenerative diseases. Manganese (Mn), a neurotoxic metal, has the potential to induce microglia-mediated neuroinflammation as well as autophagy dysfunction. NLRP3 (NLR family, pyrin domain containing 3)- CASP1 (caspase 1) inflammasome-mediated neuroinflammation in microglia has specific relevance to neurological diseases. However, the mechanism driving these phenomena remains poorly understood. We demonstrate that Mn activates the NLRP3-CASP1 inflammasome pathway in the hippocampus of mice and BV2 cells by triggering autophagy-lysosomal dysfunction. The autophagy-lysosomal dysfunction is induced by lysosomal damage caused by excessive Mn accumulation, damaging the structure and normal function of these organelles. Additionally, we show that the release of lysosomal CTSB (cathepsin B) plays an important role in Mn-induced NLRP3-CASP1 inflammasome activation, and that the increased autophagosomes in the cytoplasm are not the main cause of NLRP3-CASP1 inflammasome activation. The accumulation of proinflammatory cytokines, such as IL1B (interleukin 1 β) and IL18 (interleukin 18), as well as the dysfunctional autophagy pathway may damage hippocampal neuronal cells, thus leading to hippocampal-dependent impairment in learning and memory, which is associated with the pathogenesis of Alzheimer disease (AD).  相似文献   

11.
《Journal of lipid research》2017,58(6):1080-1090
The nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 (NLRP3) inflammasome has been implicated in podocyte injury and glomerular sclerosis during hyperhomocysteinemia (hHcys). However, it remains unclear whether the NLRP3 inflammasome can be a therapeutic target for treatment of hHcys-induced kidney injury. Given that DHA metabolites-resolvins have potent anti-inflammatory effects, the present study tested whether the prototype, resolvin D1 (RvD1), and 17S-hydroxy DHA (17S-HDHA), an intermediate product, abrogate hHcys-induced podocyte injury by targeting the NLRP3 inflammasome. In vitro, confocal microscopy demonstrated that 17S-HDHA (100 nM) and RvD1 (60 nM) prevented Hcys-induced formation of NLRP3 inflammasomes, as shown by reduced colocalization of NLRP3 with apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) or caspase-1. Both DHA metabolites inhibited Hcys-induced caspase-1 activation and interleukin-1β production. However, DHA had no significant effect on these Hcys-induced changes in podocytes. In vivo, DHA lipoxygenase metabolites substantially inhibited podocyte NLRP3 inflammasome formation and activation and consequent glomerular sclerosis in mice with hHcys. Mechanistically, RvD1 and 17S-HDHA were shown to suppress Hcys-induced formation of lipid raft redox signaling platforms and subsequent O2·− production in podocytes. It is concluded that inhibition of NLRP3 inflammasome activation is one of the important mechanisms mediating the beneficial action of RvD1 and 17S-HDHA on Hcys-induced podocyte injury and glomerular sclerosis  相似文献   

12.
Lysosome rupture triggers NLRP3 inflammasome activation in macrophages. However, the underlying mechanism is not fully understood. Here we showed that the TAK1-JNK pathway, a MAPK signaling pathway, is activated through lysosome rupture and that this activation is necessary for the complete activation of the NLRP3 inflammasome through the oligomerization of an adapter protein, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC). We also revealed that the activation of the TAK1-JNK pathway is sustained through Ca2+ ions and that calcium/calmodulin-dependent protein kinase type II functions upstream of the TAK1-JNK pathway and specifically regulates lysosome rupture-induced NLRP3 inflammasome activation. These data suggest a novel role for the TAK1-JNK pathway as a critical regulator of NLRP3 inflammasome activation.  相似文献   

13.
Amyloid β (Aβ)‐induced chronic inflammation is believed to be a key pathogenic process in early‐stage age‐related macular degeneration (AMD). Nucleotide oligomerization domain (NOD)‐like receptor family, pyrin domain containing 3 (NLRP3) inflammasome activation triggered by Aβ is responsible for retinal pigment epithelium (RPE) dysfunction in the onset of AMD; however, the detailed molecular mechanism remains unclear. In this study, we investigated the involvement of NADPH oxidase‐ and mitochondria‐derived reactive oxygen species (ROS) in the process of Aβ1–40‐induced NLRP3 inflammasome activation in LPS‐primed ARPE‐19 cells. The results showed that Aβ1–40 could induce excessive ROS generation, MAPK/NF‐κB signaling activation and subsequently NLRP3 inflammasome activation in LPS‐primed ARPE‐19 cells. Furthermore, the inductive effect of Aβ1–40 on NLRP3 inflammasome activation was mediated in a manner dependent on NADPH oxidase‐ and mitochondria‐derived ROS. Our findings may provide a novel insight into the molecular mechanism by which Aβ contributes to the early‐stage AMD.  相似文献   

14.
Inflammation has emerged as a critical biological process contributing to hypertensive cardiac remodeling. Effective pharmacological treatments targeting the cardiac inflammatory response, however, are still lacking. Prior studies suggested that the serum- and glucocorticoid-inducible kinase (SGK1) plays a key role in inflammation and cardiac remodeling. Recently, a highly selective SGK1 inhibitor, EMD638683, was developed, though whether EMD638683 can prevent hypertension-induced cardiac fibrosis and the mechanisms by which this inhibitor may alter the disease process remain unknown. Using a murine Angiotension II (Ang II) infusion-induced hypertension model we found that EMD638683 treatment inhibited cardiac fibrosis and remodeling, with significant abatement of cardiac inflammation. EMD638683 was shown to suppress Ang II infusion-induced interleukin (IL)-1β release, and substantially reduce nucleotide-binding oligomerization domain-like receptor with pyrin domain 3 (NLRP3) expression and caspase-1 activation in cardiac tissues. In vitro experiments revealed that EMD638683 ameliorated Ang II-stimulated IL-1β secretion in macrophages by blocking NLRP3 inflammasome activation. By reducing IL-1β production in macrophages, the transformation of fibroblasts to myofibroblasts was inhibited. The effects of EMD638683 on cardiac fibrosis were abolished by supplementation with exogenous IL-1β. Administration of the NLRP3 inflammasome inhibitor MCC950 indicated that EMD638683 attenuated Ang II-induced cardiac inflammation and fibrosis by inhibiting the NLRP3 inflammasome/IL-1β secretion axis. These findings indicate that the SGK1 inhibitor EMD638683 can negatively regulate NLRP3 inflammasome activation, and may represent a promising approach to the treatment of hypertensive cardiac damage.  相似文献   

15.
Ditubyl phthalate (DBP), one of the most widely used plasticizers, can migrate out to contaminate our bodies and environment. A number of studies have showed that DBP is closely related to liver pathological changes and diseases. Inflammasomes are multiprotein complexes composed of procaspase and pattern recognition receptors such as Nucleotide oligomerization domain (NOD) like receptor family, pyrin domain containing 3 (NLRP3). Activation of NLRP3 inflammasome is implicated in the pathogeneses of liver damage. The aim of this study was to determine the effects of DBP on NLRP3 inflammasome. We found that DBP triggered the activation of NLRP3 inflammasome in hepatocyte cell lines. By using Ca‐074‐Me, N‐acetylcysteine and KN‐62, we observed that the P2X7 receptor participated in the DBP‐induced activation of NLRP3 inflammasome. DBP could also trigger the ATP release. In conclusion, we demonstrated that DBP is one of the activator of NLRP3 inflammasome and may play an important role in liver damage.  相似文献   

16.
The activation of the NLRP3 inflammasome signaling pathway plays an important role in the neuroinflammation in Alzheimer’s disease (AD). In this study, we investigated the effects of JC-124, a rationally designed NLRP3 inflammasome inhibitor, on AD-related deficits in CRND8 APP transgenic mice (TgCRND8). We first demonstrated increased formation and activation of NLRP3 inflammasome in TgCRND8 mice compared to non-transgenic littermate controls, which was inhibited by the treatment with JC-124. Importantly, JC-124 treatment led to decreased levels of Aβ deposition and decreased levels of soluble and insoluble Aβ1–42 in the brain of CRND8 mice which was accompanied by reduced β-cleavage of APP, reduced activation of microglia but enhanced astrocytosis. Oxidative stress was decreased and synaptophysin was increased in the CRND8 mice after JC-124 treatment, demonstrating a neuroprotective effect. Overall, these data demonstrated beneficial effects of JC-124 as a specific NLRP3 inflammasome inhibitor in AD mouse model and supported the further development of NLRP3 inflammasome inhibitors as a viable option for AD therapeutics.  相似文献   

17.
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), exhibits a wide spectrum of clinical presentations, ranging from asymptomatic cases to severe pneumonia or even death. In severe COVID-19 cases, an increased level of proinflammatory cytokines has been observed in the bloodstream, forming the so-called “cytokine storm”. Generally, nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 (NLRP3) inflammasome activation intensely induces cytokine production as an inflammatory response to viral infection. Therefore, the NLRP3 inflammasome can be a potential target for the treatment of COVID-19. Hence, this review first introduces the canonical NLRP3 inflammasome activation pathway. Second, we review the cellular/molecular mechanisms of NLRP3 inflammasome activation by SARS-CoV-2 infection (e.g., viroporins, ion flux and the complement cascade). Furthermore, we describe the involvement of the NLRP3 inflammasome in the pathogenesis of COVID-19 (e.g., cytokine storm, respiratory manifestations, cardiovascular comorbidity and neurological symptoms). Finally, we also propose several promising inhibitors targeting the NLRP3 inflammasome, cytokine products and neutrophils to provide novel therapeutic strategies for COVID-19.  相似文献   

18.
Diabetic encephalopathy is one of the most common complications of diabetes. Inflammatory events during diabetes may be an important mechanism of diabetic encephalopathy. Inflammasome is a multiprotein complex consisting of Nod-like receptor proteins (NLRPs), apoptosis-associated speck-like protein (ASC), and caspase 1 or 5, which functions to switch on the inflammatory process and the release of inflammatory factors. The present study hypothesized that the formation and activation of NLRP1 inflammasome turns on neuroinflammation and neuron injury during hyperglycemia. The results demonstrated that the levels of interleukin-1 beta (IL-1β) were increased in the cortex of streptozocin (STZ)-induced diabetic rats. The levels of mature IL-1β and IL-18 were also elevated in culture medium of neurons treated with high glucose (50 mM). The expression of three essential components of the NLRP1 inflammasome complex, namely, NLRP1, ASC, and caspase 1, was also upregulated in vivo and in vitro under high glucose. Silencing the ASC gene prevented the caspase-1 activation, and inhibiting caspase 1 activity blocked hyperglycemia-induced release of inflammatory factors and neuron injury. Moreover, we found that pannexin 1 mediated the actvitation of NLRP1 inflammasome under high glucose. These results suggest that hyperglycemia induces neuroinflammation through activation of NLRP1 inflammasome, which represents a novel mechanism of diabetes-associated neuron injury.  相似文献   

19.
Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease (AD). Genetic predisposition and immune dysfunction are involved in the pathogenesis of PD. Notably, peripheral inflammatory disorders and neuroinflammation are associated with PD neuropathology. Type 2 diabetes mellitus (T2DM) is associated with inflammatory disorders due to hyperglycaemia-induced oxidative stress and the release of pro-inflammatory cytokines. Particularly, insulin resistance (IR) in T2DM promotes the degeneration of dopaminergic neurons in the substantia nigra (SN). Thus, T2DM-induced inflammatory disorders predispose to the development and progression of PD, and their targeting may reduce PD risk in T2DM. Therefore, this narrative review aims to find the potential link between T2DM and PD by investigating the role of inflammatory signalling pathways, mainly the nuclear factor kappa B (NF-κB) and the nod-like receptor pyrin 3 (NLRP3) inflammasome. NF-κB is implicated in the pathogenesis of T2DM, and activation of NF-κB with induction of neuronal apoptosis was also confirmed in PD patients. Systemic activation of NLRP3 inflammasome promotes the accumulation of α-synuclein and degeneration of dopaminergic neurons in the SN. Increasing α-synuclein in PD patients enhances NLRP3 inflammasome activation and the release of interleukin (IL)-1β followed by the development of systemic inflammation and neuroinflammation. In conclusion, activation of the NF-κB/NLRP3 inflammasome axis in T2DM patients could be the causal pathway in the development of PD. The inflammatory mechanisms triggered by activated NLRP3 inflammasome lead to pancreatic β-cell dysfunction and the development of T2DM. Therefore, attenuation of inflammatory changes by inhibiting the NF-κB/NLRP3 inflammasome axis in the early T2DM may reduce future PD risk.  相似文献   

20.
Dysregulation of NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome is involved in many chronic inflammatory diseases, including gouty arthritis. Activation of the NLRP3 inflammasome requires priming and activation signals: the priming signal controls the expression of NLRP3 and interleukin (IL)-1β precursor (proIL-1β), while the activation signal leads to the assembly of the NLRP3 inflammasome and to caspase-1 activation. Here, we reported the effects of the alcoholic extract of Taiwanese green propolis (TGP) on the NLRP3 inflammasome in vitro and in vivo. TGP inhibited proIL-1β expression by reducing nuclear factor kappa B activation and reactive oxygen species (ROS) production in lipopolysaccharide-activated macrophages. Additionally, TGP also suppressed the activation signal by reducing mitochondrial damage, ROS production, lysosomal rupture, c-Jun N-terminal kinases 1/2 phosphorylation and apoptosis-associated speck-like protein oligomerization. Furthermore, we found that TGP inhibited the NLRP3 inflammasome partially via autophagy induction. In the in vivo mouse model of uric acid crystal-induced peritonitis, TGP attenuated the peritoneal recruitment of neutrophils, and the levels of IL-1β, active caspase-1, IL-6 and monocyte chemoattractant protein-1 in lavage fluids. As a proof of principle, in this study, we purified a known compound, propolin G, from TGP and identified this compound as a potential inhibitor of the NLRP3 inflammasome. Our results indicated that TGP might be useful for ameliorating gouty inflammation via inhibition of the NLRP3 inflammasome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号