首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Dear Editor, SARS-CoV-2 belongs to the Sarbecovirus subgenus of betacor-onaviruses and other members in this subgenus include SARS-CoV and coronaviruses mainly ...  相似文献   

2.
Human microvascular endothelial cells (HMVEC) grow in monolayers on Transwell filters and restrict permeability between the apical and basolateral media. We show that these cell monolayers are capable of sorting labelled endogenous proteins, including chemokines, growth factors and cytokines, to either the apical or basolateral media. IL-8 and GMCSF were secreted predominantly into the apical medium, whereas MIC-1 was secreted into the basolateral medium. This polarity did not correlate with glycosylation, as IL-8 and MIC-1 are both N-glycosylated, but were sorted to opposite sides of the cell. IL-6 is not glycosylated and did not display significant polarity in secretion. Similarly, the polarity of secretion of endogenous glycoproteins was not related to their glycosylation.  相似文献   

3.
  1. Download : Download high-res image (181KB)
  2. Download : Download full-size image
  相似文献   

4.
BackgroundSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel virus that first occurred in Wuhan in December 2019. The spike glycoproteins and nucleocapsid proteins are the most common targets for the development of vaccines and antiviral drugs.ObjectiveWe herein analyze the rate of evolution along with the sequences of spike and nucleocapsid proteins in relation to the spatial locations of their epitopes, previously suggested to contribute to the immune response caused by SARS-CoV-2 infections.MethodsWe compare homologous proteins of seven human coronaviruses: HCoV-229E, HCoV-OC43, SARS-CoV, HCoV-NL63, HCoV-HKU1, MERS-CoV, and SARS-CoV-2. We then focus on the local, structural order-disorder propensity of the protein regions where the SARS-CoV-2 epitopes are located. ResultsWe show that most of nucleocapsid protein epitopes overlap the RNA-binding and dimerization domains, and some of them are characterized by a low rate of evolutions. Similarly, spike protein epitopes are preferentially located in regions that are predicted to be ordered and well- conserved, in correspondence of the heptad repeats 1 and 2. Interestingly, both the receptor-binding motif to ACE2 and the fusion peptide of spike protein are characterized by a high rate of evolution.ConclusionOur results provide evidence for conserved epitopes that might help develop broad-spectrum SARS-CoV-2 vaccines.  相似文献   

5.
Glycosylation of viral proteins is required for the progeny formation and infectivity of virtually all viruses. It is increasingly clear that distinct glycans also play pivotal roles in the virus's ability to shield and evade the host's immune system. Recently, there has been a great advancement in structural identification and quantitation of viral glycosylation, especially spike proteins. Given the ongoing pandemic and the high demand for structure analysis of SARS-CoV-2 densely glycosylated spike protein, mass spectrometry methodologies have been employed to accurately determine glycosylation patterns. There are still many challenges in the determination of site-specific glycosylation of SARS-CoV-2 viral spike protein. This is compounded by some conflicting results regarding glycan site occupancy and glycan structural characterization. These are probably due to differences in the expression systems, form of expressed spike glycoprotein, MS methodologies, and analysis software. In this review, we recap the glycosylation of spike protein and compare among various studies. Also, we describe the most recent advancements in glycosylation analysis in greater detail and we explain some misinterpretation of previously observed data in recent publications. Our study provides a comprehensive view of the spike protein glycosylation and highlights the importance of consistent glycosylation determination.  相似文献   

6.
The role of macrophages (M phi) and that of splenic dendritic cells (DC) in the allogeneic mixed leukocyte reaction (MLR) in the mouse have been investigated. In contrast with the high stimulatory capacity of DC, we obtained no evidence in favor of the competence of M phi, whether Ia + or Ia-, as an autonomous stimulator of MLR. However, M phi were found to modulate the level of MLR. Thus, M phi amplified the low level MLR to low dose DC and apparently suppressed the high level MLR to high dose DC. Ia + M phi seemed superior to Ia- M phi in the MLR-enhancing effect. M phi syngeneic to the responder and those to the stimulator suggest that M phi are modulators of immune responses triggered through the mediation of DC.  相似文献   

7.
Recently, it was observed that reverse-translocated cytosolic PrP and PrP expressed in the cytosol induce rapid death in neurons (Ma, J., Wollmann, R., and Lindquist, S. (2002) Science 298, 1781-1785). In this study, we investigated whether accumulation of prion protein (PrP) in the cytosol is toxic to human neurons in primary culture. We show that in these neurons, a single PrP isoform lacking signal peptide accumulates in the cytosol of neurons treated with epoxomicin, a specific proteasome inhibitor. Therefore, endogenously expressed PrP is subject to the endoplasmic reticulum-associated degradation (ERAD) pathway and is degraded by the proteasome in human primary neurons. In contrast to its toxicity in N2a cells, reverse-translocated PrP (ERAD-PrP) is not toxic even when neurons are microinjected with cDNA constructs to overexpress either wild-type PrP or mutant PrPD178N. We found that ERAD-PrP in human neurons remains detergent-soluble and proteinase K-sensitive, in contrast to its detergent-insoluble and proteinase K-resistant state in N2a cells. Furthermore, not only is microinjection of a cDNA construct expressing CyPrP not toxic, it protects these neurons against Bax-mediated cell death. We conclude that in human neurons, ERAD-PrP is not converted naturally into a form reminiscent of scrapie PrP and that PrP located in the cytosol retains its protective function against Bax. Thus, it is unlikely that simple accumulation of PrP in the cytosol can cause neurodegeneration in prion diseases.  相似文献   

8.
The endo-beta-d-glucuronidase, heparanase, is capable of specifically degrading heparan sulfate, and this activity is associated with the metastatic potential of tumor cells. The predicted amino acid sequence of heparanase includes six putative N-glycosylation sites; however, the precise biochemical role of glycosylated heparanase remains unknown. In this study, we examined the link between glycosylation and the function of heparanase in human tumor cell lines. Heparanase protein was glycosylated at six Asn residues in human tumor cell lines. Treatment with a glycosylation inhibitor demonstrated that glycosylation was not required for the activity of heparanase. However, glycosylation affected the kinetics of endoplasmic reticulum-to-Golgi transport and of secretion of the enzyme.  相似文献   

9.
The role of macrophages (M phi) in the in vitro primary antibody response of murine lymphocytes to sheep erythrocytes was investigated. Peritoneal M phi were activated to express Ia antigens either in vitro or in vivo. Nonactivated Ia- M phi were also examined. We observed that only Ia- M phi but also Ia+ M phi failed to trigger the antibody response, in contrast with splenic dendritic cells (DC) which served as potent and autonomous accessory cells, but that M phi modulated the level of response which was dependent primarily on the DC content of culture. The modulation appeared to incline to suppression rather than enhancement, when M phi were allowed to remain throughout the culture period for 4 days. A highly enhancing capacity of M phi, however, could be revealed by removing M phi 2 days after the initiation of culture, indicating that M phi exerted their suppressive effect more strongly in the late phase than in the early phase of in vitro antibody response. The modulatory activity seemed higher in Ia+ M phi than in Ia- M phi.  相似文献   

10.
We have used site-directed in vitro mutagenesis to alter the codon ACT of human apoCIII gene, specifying Thr-74, to GCT (Ala-74). The normal and mutant apoCIII genes were then placed under the control of the mouse metallothionein 1 promoter in a bovine papilloma virus vector and were used for cell transfection and selection of stable cell lines. Blotting analysis of RNA isolated from several independent cell clones showed that both the normal and mutant genes produced apoCIII mRNA in amounts larger than that found in human fetal liver. Pulse-chase analysis of cell clones expressing the normal and mutant apoCIII genes showed that only the normal apoCIII is modified intracellularly to produce a disialated form (apoCIIIs2). Cell clones expressing the normal apoCIII gene secrete exclusively the disialated form, whereas those expressing the mutant gene secrete the unmodified form. The amount of mutant apoCIII protein produced by C127 cell clones expressing the mutant gene was reduced as compared to that produced by the control cells. Density gradient ultracentrifugation analysis of the secreted apoCIII showed that the flotation properties of the secreted normal and mutant proteins were similar. These findings suggest that the intracellular glycosylation of apoCIII is not required for its intracellular transport and secretion. Furthermore, lack of glycosylation has no effect on the relative affinities of apoCIII for plasma very low density lipoproteins and high density lipoproteins.  相似文献   

11.
Macrophages constitute a major component of innate immunity and play an essential role in defense mechanisms against external aggressions and in inflammatory responses. Chemerin, a chemoattractant protein, is generated in inflammatory conditions, and recruits cells expressing the G protein-coupled receptor ChemR23, including macrophages. Chemerin was initially expected to behave as a pro-inflammatory agent. However, recent data described more complex activities that are either pro- or anti-inflammatory, according to the disease model investigated. In the present study, peritoneal macrophages were generated from WT or ChemR23(-/-) mice, stimulated with lipopolyssaccharide in combination or not with IFN-γ and the production of pro- (TNF-α, IL-1β and IL-6) and anti-inflammatory (IL-10) cytokines was evaluated using qRT-PCR and ELISA. Human macrophages generated from peripheral blood monocytes were also tested in parallel. Peritoneal macrophages from WT mice, recruited by thioglycolate or polyacrylamide beads, functionally expressed ChemR23, as assessed by flow cytometry, binding and chemotaxis assays. However, chemerin had no effect on the strong upregulation of cytokine release by these cells upon stimulation by LPS or LPS/IFN-γ, whatever the concentration tested. Similar data were obtained with human macrophages. In conclusion, our results rule out the direct anti-inflammatory effect of chemerin on macrophages ex vivo, described previously in the literature, despite the expression of a functional ChemR23 receptor in these cells.  相似文献   

12.
Like most of the RNA viruses, SARS-CoV-2 continuously mutates. Although many mutations have an insignificant impact on the virus properties, mutations in the surface protein, especially those in the receptor-binding domain, may lead to immune or vaccine escape variants, or altered binding activities to both the cell receptor and the drugs targeting such a protein. The current study intended to assess the ability of different variants of interest (VOIs) and variants of concern (VOCs) of SARS-CoV-2 for their affinities of binding to different repurposed drugs. Seven FDA approved drugs, namely, camostat, nafamostat mesylate, fenofibrate, umifenovir, nelfinavir, cefoperazone and ceftazidime, were selected based on their reported in vitro and clinical activities against SARA-CoV-2. The S1 protein subunit from eleven different variants, including the latest highly contiguous omicron variant, were used as targets for the docking study. The docking results revealed that all tested drugs possess moderate to high binding energies to the receptor-binding domain (RBD) of the S1 protein for all different variants. Cefoperazone was found to possess the highest binding energy to the RBD of the S1 protein of all the eleven variants. Ceftazidime was the second-best drug in terms of binding affinity towards the S1 RBD of the investigated variants. On the other hand, fenofibrate showed the least binding affinity towards the RBD of the S1 protein of all eleven variants. The binding affinities of anti-spike drugs varied among different variants. Most of the interacting amino acid residues of the receptor fall within the RBD (438–506).  相似文献   

13.
  1. Download : Download high-res image (210KB)
  2. Download : Download full-size image
  相似文献   

14.
Specific binding of Bordetella pertussis and Neisseria meningitidis endotoxins to human monocytes and murine macrophages was demonstrated. Binding of B. pertussis endotoxin could be inhibited by endotoxins of Salmonella minnesota, Escherichia coli, and Klebsiella pneumoniae, the extent of inhibition being dependent on the origin of the lipopolysaccharides and on the origin of the mononuclear phagocytic cells. The binding of B. pertussis and N. meningitidis endotoxins which was mediated by the polysaccharide region of the endotoxins was serum dependent. The results indicated that the binding of endotoxin was promoted neither by natural antibodies directed against the endotoxin nor by proteins known to combine with endotoxins: immunoglobulins, albumin, or fibronectin; we have provided some evidence that complement components may play a role in the specific binding of endotoxins to the monocyte/macrophage membrane.  相似文献   

15.
Chronic exposure of rat pancreatic islets and INS-1 insulinoma cells to glucosamine (GlcN) produced a reduction of glucose-induced (22.2 mM) insulin release that was associated with a reduction of ATP levels and ATP/ADP ratio compared with control groups. To further evaluate mitochondrial function and ATP metabolism, we then studied uncoupling protein-2 (UCP2), F1-F0-ATP-synthase, and mitochondrial membrane potential, a marker of F1-F0-ATP-synthase activity. UCP2 protein levels were unchanged after chronic exposure to GlcN on both pancreatic islets and INS-1 beta-cells. Due to the high number of cells required to measure mitochondrial F1-F0-ATP-synthase protein levels and mitochondrial membrane potential, we used INS-1 cells, and we found that chronic culture with GlcN increased F1-F0-ATP-synthase protein levels but decreased glucose-stimulated changes of mitochondrial membrane potential. Moreover, F1-F0-ATP-synthase was highly glycosylated, as demonstrated by experiments with N-glycosidase F and glycoprotein staining. Tunicamycin (an inhibitor of protein N-glycosylation), when added with GlcN in the culture medium, was able to partially prevent all these negative effects on insulin secretion, adenine nucleotide content, mitochondrial membrane potential, and protein glycosylation. Thus we suggest that GlcN-induced pancreatic beta-cell toxicity might be mediated by reduced cell energy production. An excessive protein N-glycosylation of mitochondrial F1-F0-ATP-synthase might lead to cell damage and secretory alterations in pancreatic beta-cells.  相似文献   

16.
17.
C-reactive protein (CRP) is the prototypic marker of inflammation and a strong predictor of cardiovascular events in humans. There are questions regarding the validity of the biological effects reported for CRP, in spite of adherence to rigorous control measures minimizing endotoxin [lipopolysaccharide (LPS)] contamination in these in vitro studies. In this study, we addressed the key question of endotoxin contamination in CRP preparations using Toll-like receptor 4 (TLR4) knockdown endothelial cells. Human aortic endothelial cells (HAECs) transfected with prevalidated TLR4 small interfering RNA (siRNA) and scrambled siRNA controls were challenged with pleural fluid-derived CRP or LPS for 12-16 h. Secreted interleukin-6 (IL-6), IL-1beta, IL-8, and plasminogen activator inhibitor-1 (PAI-1) levels and endothelial Nitric oxide synthase (eNOS) activity were determined. TLR4 knockdown in HAECs significantly decreased LPS-induced IL-1beta, IL-6, and IL-8, whereas the stimulatory effects of CRP were similar in both scrambled control and TLR4 knockdown cells. Furthermore, CRP significantly stimulated PAI-1 levels in both control and TLR4-transfected cells and inhibited eNOS activity, whereas LPS effects were negated in TLR4-transfected cells. The data presented cogently demonstrate and further confirm that the biological effects of CRP on HAECs are independent of LPS and thus are attributable to native protein per se. This is the first study to positively authenticate the significance of earlier in vitro reports on CRP biological effects.  相似文献   

18.
It is well documented that activated macrophages, but not nonactivated ones, kill tumor cells in vitro without damaging normal cells. We, however, have previously shown that embryo-derived teratocarcinoma cells (F9, P19, PCC4) are efficiently killed by nonactivated macrophages as well as by activated ones. Whereas other tumor cells are killed extracellularly by macrophages, we found that F9 teratocarcinoma cells are phagocytosed alive by macrophages and subsequently killed intracellularly by a process dependent on intact lysosomal function. Neither the H-2 antigens nor the mRNAs for the alpha-chain and beta 2-microglobulin are detectable in embryo-derived teratocarcinoma cells. An obvious explanation for this unique killing is that the nonactivated macrophages recognize and kill these cells due to their lack of class I MHC antigen expression, assuming that class I MHC gene products on the target cells switch off the cytolytic machinery of nonactivated macrophages. Our present findings demonstrate that there is no correlation between H-2 antigen expression on tumor cells and their susceptibility to killing by macrophages. Retinoic acid-differentiated F9 cells and P19 cells expressing H-2 antigen after exposure to MAF (IFN-gamma) were sensitive to the killing by nonactivated macrophages. Hybrids that arose from fusion of P19 teratocarcinoma cells with embryonal normal fibroblasts (C57BL/6), which displayed the morphology of embryonal carcinoma stem cells and expressed H-2 antigens, were also sensitive to the killing by nonactivated macrophages. On the other hand, the H-2-negative testicular 402AX teratocarcinoma cells and K1735P melanoma cells were both resistant to the killing by nonactivated macrophages. We concluded that the unique killing of embryo-derived teratocarcinoma cells by nonactivated murine macrophages is not related to a lack of H-2 antigen expression.  相似文献   

19.
《Cell research》2021,(1):17-24
Infection with severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)has caused a pandemic worldwide.Currently,however,no effective drug or vaccine is avai...  相似文献   

20.
Phospholipid transfer protein (PLTP) in plasma promotes phospholipid transfer from triglyceride-rich lipoproteins to HDL and plays a major role in HDL remodeling. Recent in vivo observations also support a key role for PLTP in cholesterol metabolism. Our immunohistochemical analysis of human carotid endarterectomy samples identified immunoreactive PLTP in areas that colocalized with CD68-positive macrophages, suggesting that PLTP could be produced locally by intimal macrophages. Using RT-PCR, Western blot analysis with a monoclonal anti-PLTP antibody, and a PLTP activity assay, we observed PLTP mRNA and protein expression in human macrophages. In adherent peripheral blood human macrophages, this PLTP expression was increased by culture with granulocyte macrophage colony-stimulating factor. Incubation of macrophages with acetylated-LDL induced an increase in PLTP mRNA and protein expression that paralleled cholesterol loading. PLTP expression was observed in elicited mouse peritoneal macrophages and in cultured Raw264.7 cells as well. Thus, this study demonstrates that PLTP is expressed by macrophages, is regulated by cholesterol loading, and is present in atherosclerotic lesions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号