首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The deoxynucleoside triphosphohydrolase SAMHD1 restricts retroviral replication in myeloid cells. Human immunodeficiency virus type 2 (HIV-2) and a simian immunodeficiency virus from rhesus macaques (SIVmac) encode Vpx, a virion-packaged accessory protein that counteracts SAMHD1 by inducing its degradation. SAMHD1 is thought to work by depleting the pool of intracellular deoxynucleoside triphosphates but has also been reported to have exonuclease activity that could allow it to degrade the viral genomic RNA or viral reverse-transcribed DNA. To induce the degradation of SAMHD1, Vpx co-opts the cullin4a-based E3 ubiquitin ligase, CRL4. E3 ubiquitin ligases are regulated by the covalent attachment of the ubiquitin-like protein Nedd8 to the cullin subunit. Neddylation can be prevented by MLN4924, a drug that inhibits the nedd8-activating enzyme. We report that MLN4924 inhibits the neddylation of CRL4, blocking Vpx-induced degradation of SAMHD1 and maintaining the restriction. Removal of the drug several hours postinfection released the block. Similarly, Vpx-containing virus-like particles and deoxynucleosides added to the cells more than 24 h postinfection released the SAMHD1-mediated block. Taken together, these findings support deoxynucleoside triphosphate pool depletion as the primary mechanism of SAMHD1 restriction and argue against a nucleolytic mechanism, which would not be reversible.  相似文献   

3.
The small GTPase Arf-like protein 1 (Arl1) is well known for its role in intracellular vesicular transport at the trans-Golgi network (TGN). In this study, we used differential affinity chromatography combined with mass spectrometry to identify Arf-interacting protein 1b (arfaptin-1b) as an Arl1-interacting protein and characterized a novel function for arfaptin-1 (including the arfaptin-1a and 1b isoforms) in Arl1-mediated retrograde transport. Using a Shiga-toxin subunit B (STxB) transportation assay, we demonstrated that knockdown of arfaptin-1 accelerated the retrograde transport of STxB from the endosome to the Golgi apparatus, whereas Arl1 knockdown inhibited STxB transport compared with control cells. Arfaptin-1 overexpression, but not an Arl1 binding-defective mutant (arfaptin-1b-F317A), consistently inhibited STxB transport. Exogenous arfaptin-1 expression did not interfere with the localization of the Arl1-interacting proteins golgin-97 and golgin-245 to the TGN and vice versa. Moreover, we found that the N-terminal region of arfaptin-1 was involved in the regulation of retrograde transport. Our results show that arfaptin-1 acts as a negative regulator in Arl1-mediated retrograde transport and suggest that different functional complexes containing Arl1 form in distinct microdomains and are responsible for different functions.  相似文献   

4.
5.
Two genes linked to early onset Parkinson''s disease, PINK1 and Parkin, encode a protein kinase and a ubiquitin-ligase, respectively. Both enzymes have been suggested to support mitochondrial quality control. We have reported that Parkin is phosphorylated at Ser65 within the ubiquitin-like domain by PINK1 in mammalian cultured cells. However, it remains unclear whether Parkin phosphorylation is involved in mitochondrial maintenance and activity of dopaminergic neurons in vivo. Here, we examined the effects of Parkin phosphorylation in Drosophila, in which the phosphorylation residue is conserved at Ser94. Morphological changes of mitochondria caused by the ectopic expression of wild-type Parkin in muscle tissue and brain dopaminergic neurons disappeared in the absence of PINK1. In contrast, phosphomimetic Parkin accelerated mitochondrial fragmentation or aggregation and the degradation of mitochondrial proteins regardless of PINK1 activity, suggesting that the phosphorylation of Parkin boosts its ubiquitin-ligase activity. A non-phosphorylated form of Parkin fully rescued the muscular mitochondrial degeneration due to the loss of PINK1 activity, whereas the introduction of the non-phosphorylated Parkin mutant in Parkin-null flies led to the emergence of abnormally fused mitochondria in the muscle tissue. Manipulating the Parkin phosphorylation status affected spontaneous dopamine release in the nerve terminals of dopaminergic neurons, the survivability of dopaminergic neurons and flight activity. Our data reveal that Parkin phosphorylation regulates not only mitochondrial function but also the neuronal activity of dopaminergic neurons in vivo, suggesting that the appropriate regulation of Parkin phosphorylation is important for muscular and dopaminergic functions.  相似文献   

6.
Curcumin is a molecule found in turmeric root that has anti-inflammatory, antioxidant, and anti-tumor properties and has been widely used as both an herbal drug and a food additive to treat or prevent neurodegenerative diseases. To explore whether curcumin is able to ameliorate HIV-1-associated neurotoxicity, we treated a murine microglial cell line (N9) and primary rat cortical neurons with curcumin in the presence or absence of neurotoxic HIV-1 gp120 (V3 loop) protein. We found that HIV-1 gp120 profoundly induced N9 cells to produce reactive oxygen species (ROS), tumor necrosis factor-α (TNF-α) and monocyte chemoattractant protein-1 (MCP-1). HIV-1 gp120 also induced apoptosis of primary rat cortical neurons. Curcumin exerted a powerful inhibitory effect against HIV-1 gp120-induced neuronal damage, reducing the production of ROS, TNF-α and MCP-1 by N9 cells and inhibiting apoptosis of primary rat cortical neurons. Curcumin may exert its biological activities through inhibition of the delayed rectification and transient outward potassium (K+) current, as curcumin effectively reduced HIV-1 gp120-mediated elevation of the delayed rectification and transient outward K+ channel current in neurons. We conclude that HIV-1 gp120 increases ROS, TNF-α and MCP-1 production in microglia, and induces cortical neuron apoptosis by affecting the delayed rectification and transient outward K+ channel current. Curcumin reduces production of ROS and inflammatory mediators in HIV-1-gp120-stimulated microglia, and protects cortical neurons against HIV-1-mediated apoptosis, most likely through inhibition of HIV-1 gp120-induced elevation of the delayed rectification and transient outward K+ current.  相似文献   

7.
The mammalian target of rapamycin (mTOR) complex 1 (mTORC1) functions as a rapamycin-sensitive environmental sensor that promotes cellular biosynthetic processes in response to growth factors and nutrients. While diverse physiological stimuli modulate mTORC1 signaling, the direct biochemical mechanisms underlying mTORC1 regulation remain poorly defined. Indeed, while three mTOR phosphorylation sites have been reported, a functional role for site-specific mTOR phosphorylation has not been demonstrated. Here we identify a new site of mTOR phosphorylation (S1261) by tandem mass spectrometry and demonstrate that insulin-phosphatidylinositol 3-kinase signaling promotes mTOR S1261 phosphorylation in both mTORC1 and mTORC2. Here we focus on mTORC1 and show that TSC/Rheb signaling promotes mTOR S1261 phosphorylation in an amino acid-dependent, rapamycin-insensitive, and autophosphorylation-independent manner. Our data reveal a functional role for mTOR S1261 phosphorylation in mTORC1 action, as S1261 phosphorylation promotes mTORC1-mediated substrate phosphorylation (e.g., p70 ribosomal protein S6 kinase 1 [S6K1] and eukaryotic initiation factor 4E binding protein 1) and cell growth to increased cell size. Moreover, Rheb-driven mTOR S2481 autophosphorylation and S6K1 phosphorylation require S1261 phosphorylation. These data provide the first evidence that site-specific mTOR phosphorylation regulates mTORC1 function and suggest a model whereby insulin-stimulated mTOR S1261 phosphorylation promotes mTORC1 autokinase activity, substrate phosphorylation, and cell growth.The mammalian target of rapamycin (mTOR), an evolutionarily conserved serine/threonine protein kinase, senses and integrates signals from diverse environmental cues (14, 31, 50, 74). mTOR associates with different partner proteins to form functionally distinct signaling complexes (4). The immunosuppressive drug rapamycin acutely inhibits signaling by mTOR complex 1 (mTORC1) (22), which contains mTOR, mLST8/GβL, raptor, and PRAS40 (24, 33, 34, 54, 67). Rapamycin fails to acutely inhibit signaling by mTORC2, which contains mTOR, mLST8/GβL, rictor, mSin1, and PRR5/Protor (18, 32, 47, 55, 73, 76). mTORC1 promotes various biosynthetic processes, including protein synthesis, cell growth (an increase in cell mass and size), and cell proliferation (an increase in cell number) (14, 40, 74). During growth factor (e.g., insulin) and nutrient (e.g., amino acids and glucose) sufficiency, mTORC1 phosphorylates the translational regulators p70 ribosomal protein S6 kinase 1 (S6K1) and eukaryotic initiation factor 4E binding protein 1 (4EBP1) to coordinately upregulate protein biosynthesis (40). Both S6K1 and 4EBP1 contain a TOR signaling motif, which mediates their interaction with raptor and thus facilitates their recruitment to the mTOR kinase (10, 44, 57, 58). In addition to regulating protein synthesis, mTORC1-mediated phosphorylation of S6K1 and 4EBP also promotes cell growth and cell cycle progression (15, 16). While more recently identified and thus less well characterized than mTORC1, mTORC2 mediates the phosphorylation of AGC kinase family members (e.g., Akt [also known as protein kinase B, PKB], PKCα, and SGK1) on their hydrophobic motifs and modulates the organization of the actin cytoskeleton (20, 26, 32, 55, 56).The insulin pathway represents the best-characterized activator of mTORC1 signaling to date, and thus many signaling intermediates that link insulin receptor activation to mTORC1 have been identified (12, 31). Complementary work using Drosophila melanogaster genetics and mammalian cell culture identified TSC1 (hamartin) and TSC2 (tuberin) as upstream negative regulators of mTORC1 (27). Inactivation of either the TSC1 or TSC2 genes, whose protein products heterodimerize to form a tumor suppressor complex, causes the development of benign tumors in diverse organs in both humans and rodents, a disease known as tuberous sclerosis complex (TSC) (36). TSC2 contains a GTPase-activating protein domain that acts on Rheb, a Ras-like GTP binding protein that activates mTORC1 (27). Thus, in TSC-deficient cells, constitutive Rheb-GTP leads to chronically high mTORC1 signaling. While the mechanism by which Rheb-GTP activates mTORC1 remains incompletely understood, Rheb coimmunoprecipitates with mTOR and directly activates mTORC1 kinase activity in vivo and in vitro when GTP bound (2, 38, 54). Rheb has been reported to augment the activity of PLD1, an enzyme that catalyzes the production of the lipid second messenger phosphatidic acid, which contributes to the mitogenic activation of mTORC1 signaling (13, 62). Additionally, Rheb-GTP was reported to induce the dissociation of the endogenous mTOR inhibitor FKBP38 (3), although aspects of this model have been questioned (72). Insulin/phosphatidylinositol 3-kinase (PI3K) signaling reduces the inhibitory effect of TSC on mTORC1 via Akt-mediated phosphorylation of TSC2 (29, 42, 64). Additionally, Ras-regulated signaling via mitogen-activated protein kinase (MAPK) and RSK also inhibits TSC via PI3K/Akt-independent phosphorylation of TSC2 (39, 51, 63). In contrast, glucose deprivation enhances TSC''s inhibitory effect on mTORC1 signaling via AMP-activated protein kinase (AMPK)-mediated phosphorylation of TSC2 (on different sites) (30). Thus, TSC functions as a central nexus of diverse physiological signals to fine-tune mTORC1 signaling depending on environmental conditions (27). While the mechanism by which amino acids promote mTORC1 signaling has remained elusive, compelling new data reveal that the Rag GTPases link amino acid sensing to mTORC1 activation (35, 52, 53). During amino acid sufficiency, GTP-bound Rag heterodimers bind raptor and recruit mTORC1 to an endomembrane compartment that contains the mTORC1 activator Rheb; thus, amino acid sufficiency may function to prime mTORC1 for subsequent growth factor-mediated activation via a dynamic subcellular redistribution mechanism (52).Despite the well-characterized regulation of mTORC1 signaling by growth factors (e.g., insulin), nutrients (e.g., amino acids and glucose), and cellular stress (e.g., hypoxia) and the identification of numerous signaling mediators of these pathways, the direct molecular mechanisms by which cellular signals modulate mTORC1 action remain obscure (31). While three phosphorylation sites (P-sites) on mTOR have been reported to date (T2446, S2448, and S2481), no function has yet been ascribed to any site (7, 43, 49, 59). Here we identify S1261 as a novel mTOR phosphorylation site in vivo in cultured mammalian cells and provide the first evidence that site-specific mTOR phosphorylation regulates mTORC1 function. We show that insulin signals via the PI3K/TSC/Rheb pathway in an amino acid-dependent and rapamycin-insensitive manner to promote mTOR S1261 phosphorylation, which regulates mTORC1 autokinase activity, biochemical signaling to downstream substrates, and cell growth to increased cell size, a major cellular function of mTORC1. Elucidation of the molecular mechanisms underlying mTORC1 regulation will enable us to better understand how mTORC1 senses environmental stimuli to control cellular physiology. As aberrantly upregulated mTORC1 signaling likely contributes to cancer, insulin-resistant diabetes, and cardiovascular diseases, understanding mTORC1 regulation may aid in the development of novel therapeutics for these prevalent human diseases (11, 21, 28).  相似文献   

8.
Abstract: Opioids have been found to modulate the immune system by regulating the function of immunocompetent cells. Several studies suggest that the interaction between immune and opioid systems is not unidirectional, but rather reciprocal, in nature. In the CNS, one cellular target of immune system activation is the astrocytes. These glial cells have been shown to produce the opioid peptide, proenkephalin, to express the μ-, δ-, and κ-opioid receptors, and to respond to the immune factor interleukin-1β (IL1β) with an increased proenkephalin synthesis. To characterize more completely the astrocytic opioid response to immune factor stimulation, we examined the effect of IL1β (1 ng/ml) on the μ-receptor mRNA expression in primary astrocyte-enriched cultures derived from rat (postnatal day 1–2) cortex, striatum, cerebellum, hippocampus, and hypothalamus. A 24-h treatment with IL1β produced a 70–80% increase in the μ-receptor mRNA expression in the striatal, cerebellar, and hippocampal cultures but had no effect on this expression in the cortical and hypothalamic cultures. This observation represents one of the few demonstrated increases in levels of the μ-receptor mRNA in vitro or in vivo, since the cloning of the receptor. The enhanced μ-receptor mRNA expression, together with the previous observation that IL1β stimulates proenkephalin synthesis in astrocytes, supports the IL1β-mediated regulation of an astroglial opioid peptide and receptor in vitro, a phenomenon that may be significant in the modulation of the gliotic response to neuronal damage. Therefore, the astroglial opioid "system" may be important in the IL1β-initiated, coordinated response to CNS infection, trauma, or injury.  相似文献   

9.
The trefoil peptides (TFF1, TFF2 and TFF3) are a family of small highly conserved proteins that play an essential role in epithelial regeneration within the gastrointestinal tract, where they are mainly expressed. TFF1 expression is strongly induced after mucosal injury and it has been proposed that tff1 functions as a gastric tumor suppressor gene. Several studies confirm that tff1 expression is frequently lost in gastric cancer because of deletions, mutations or methylation of the tff1 promoter. Infection by Helicobacter pylori (H. pylori) results in chronic gastritis and it can lead to the development of gastric or duodenal ulcers. Moreover, it is known that there is a strong link to the development of gastric cancer. It has been shown that H. pylori interacts with the dimeric form of TFF1 and that the rough form of lipopolysaccharide mediates this interaction. We have previously reported that the carboxy-terminus of TFF1 is able to specifically bind copper ions (Cu) and that Cu binding favours the homodimerization of the peptide, thus enhancing its motogenic activity. Here, we report that the Cu-TFF1 cuprocomplex promotes adherence of H. pylori to epithelial cells. Adherence of H. pylori to gastric adenocarcinoma cells, AGS AC1 cells, induced to hyper-express TFF1 was enhanced compared to noninduced cells. Copper further promoted this interaction. A H. pylori mutant unable to bind TFF1 did not show enhanced infection of induced cells. Cu treatment induced a thickening of the mucus layer produced by the colorectal adenocarcinoma mucus secreting, goblet cells, HT29-E12 and promoted H. pylori colonisation. Finally, SPR analysis shows that the C-terminus of TFF1, involved in the binding of copper, is also able to selectively bind H. pylori RF-LPS.  相似文献   

10.
《Cell reports》2020,30(8):2501-2511.e5
  1. Download : Download high-res image (90KB)
  2. Download : Download full-size image
  相似文献   

11.
12.
13.
Surface antigen variation in Mycoplasma agalactiae, the etiologic agent of contagious agalactia in sheep and goats, is governed by site-specific recombination within the vpma multigene locus encoding the Vpma family of variable surface lipoproteins. This high-frequency Vpma phase switching was previously shown to be mediated by a Xer1 recombinase encoded adjacent to the vpma locus. In this study, it was demonstrated in Escherichia coli that the Xer1 recombinase is responsible for catalyzing vpma gene inversions between recombination sites (RS) located in the 5′-untranslated region (UTR) in all six vpma genes, causing cleavage and strand exchange within a 21-bp conserved region that serves as a recognition sequence. It was further shown that the outcome of the site-specific recombination event depends on the orientation of the two vpma RS, as direct or inverted repeats. While recombination between inverted vpma RS led to inversions, recombination between direct repeat vpma RS led to excisions. Using a newly developed excision assay based on the lacZ reporter system, we were able to successfully demonstrate under native conditions that such Xer1-mediated excisions can indeed also occur in the M. agalactiae type strain PG2, whereas they were not observed in the control xer1-disrupted VpmaY phase-locked mutant (PLMY), which lacks Xer1 recombinase. Unless there are specific regulatory mechanisms preventing such excisions, this might be the cost that the pathogen has to render at the population level for maintaining this high-frequency phase variation machinery.Members of the bacterial class Mollicutes, which are generally referred to as mycoplasmas, are considered among the simplest self-replicating prokaryotes carrying minimal genomes. Even having lost many biosynthetic pathways during a reductive evolution, mycoplasmas represent important pathogens of humans, animals, and plants, as they are equipped with sophisticated molecular mechanisms allowing them to spontaneously change their cell surface repertoire to persist in immunocompetent hosts (25).The important ruminant pathogen Mycoplasma agalactiae causes contagious agalactia in sheep and goats and exhibits antigenic diversity by site-specific DNA rearrangements within a pathogenicity island-like gene locus (9, 10, 26). The so-called vpma locus constitutes a family of six distinct but related genes that encode major immunodominant membrane lipoproteins, the Vpmas (variable proteins of Mycoplasma agalactiae) (10, 11). These surface-associated proteins vary in expression at an unusually high frequency, and only one vpma gene at a time is transcribed from a single promoter present in that locus, while all other genes are silent (9, 10). An open reading frame (ORF) with homology to the λ-integrase family of site-specific recombinases was found in the vicinity of the vpma locus and was predicted to mediate DNA inversions responsible for switching the promoter from an active vpma gene to a silent one, resulting in alteration of vpma expression (9, 10). This recombinase, designated Xer1, was indeed recently demonstrated to be responsible for phase variation of Vpma proteins (4). Targeted knockouts of the xer1 gene by homologous recombination prevented Vpma switching and produced Vpma phase-locked mutants (PLMs) steadily expressing a single vpma gene without any variation. Complementation of the wild-type xer1 gene in these PLMs restored Vpma phase variation (4). Similar systems generating surface diversity by DNA inversions involving site-specific recombination have been identified in other mycoplasma species (3, 18, 26).Site-specific recombination systems are widespread among bacteria, and the biological functions of these systems depend strongly on the participating recombination sites (RS) (16, 24, 27). Excision events between direct repeat RS usually resolve chromosome or plasmid dimers, which can arise through homologous recombination, ensuring proper segregation of newly replicated genetic material to daughter cells (1). Also, site-specific recombination mediates integration and excision of phage genomes into and out of the host chromosome (13). In contrast, site-specific inversion involving inverted repeat RS generates genetic diversity and often controls the expression of genes that are important for pathogenesis (21).The Xer1 recombinase of M. agalactiae belongs to the λ-integrase family of site-specific recombinases (10). Members of this family share four strongly conserved amino acid residues (R-H-R-Y) within the C-terminal half of the protein. This tetrad includes the active tyrosine residue that is directly involved in the recombination reaction (8). Recombination occurs by formation and resolution of a Holliday junction intermediate involving a covalent linkage between the recombinase and the DNA through the tyrosine residue. Since energy cofactors such as ATP are not required, such recombination events can occur in the absence of replication (16, 24).Sequence alignment of vpma genes identified a conserved 21-bp region within the 5′-untranslated region (UTR) in all vpma genes that was predicted to be involved in Xer1-mediated inversions (10). The present study clearly demonstrates that the Xer1 recombinase recognizes RS located within the 5′ UTR of vpma genes, causing cleavage and strand exchange within a conserved region of 21 bp. By placing two vpma-derived RS on a plasmid along with the xer1 gene, recombination events were demonstrated in Escherichia coli upon Xer1 induction via PCR and restriction analysis. Although the conserved 21-bp region was sufficient for inversions, additional nucleotides flanking it at the 5′ end were found to have a positive influence on the rate of recombination. An interesting outcome of these studies was that Xer1 also mediated excisions between direct repeat vpma RS in E. coli. This raised the intriguing possibility that such Xer1-mediated excisions also occur in the native M. agalactiae system. For further analysis of such excision events in the native system, we tested the feasibility of using the lacZ reporter tool in M. agalactiae, as lacZ is known to be expressed successfully in few other mycoplasma species, to study gene expression by use of promoter probe vectors (15, 19, 22, 23). We developed an excision assay based on blue-white phenotype selection to study Xer1-mediated excisions in M. agalactiae, thus displaying a novel application of the lacZ reporter gene in mycoplasmas. Successful implementation of this reporter system demonstrated Xer1-mediated excisions in the M. agalactiae type strain PG2, based on blue-white selection and PCR analysis. As expected, such excisions were not observed in the control xer1-disrupted VpmaY phase-locked mutant (PLMY), which lacks Xer1. Excisions in the native system imply that genetic material is susceptible to loss, which might be the cost for maintaining the machinery of high-frequency gene shuffling for a greater population advantage, unless there are specific regulatory mechanisms preventing such excisions.  相似文献   

14.
15.
Background: Nonalcoholic fatty liver disease (NAFLD) is the most frequent cause of chronic liver diseases worldwide. At present, there are no effective pharmacological therapies for NAFLD except lifestyle intervention-mediated weight loss. Atractylenolide III (ATL III), the major bioactive component found in Atractylode smacrocephala Koidz, has been shown to exert anti-oxidant, anti-tumor, anti-allergic response, anti-bacterial effects and cognitive protection. Here we investigate the therapeutic potential and underlying mechanisms of ATL III for the treatment of NAFLD.Methods: Male C57BL/6J mice were fed a high-fat diet (HFD) and treated with ATL III. Lipid accumulation was analyzed by Oil Red O staining in liver tissues and free fatty acids (FFAs)-treated hepatocytes. AMP-activated protein (AMPK) and sirtuin 1(SIRT1) signaling pathways were inhibited by Compound C and EX527 in vitro, respectively. Small-interfering RNA (siRNA) was used to knockdown adiponectin receptor 1 (AdipoR1) expression in HepG2 cells.Results: ATL III treatment ameliorated liver injury and hepatic lipid accumulation in the HFD-induced NAFLD mouse model as demonstrated by that ATL III administration significantly reduced serum levels of alanine aminotransferase, glutamic oxaloacetic transaminase, triglycerides, total cholesterol and low-density lipoprotein. Furthermore, treatment with ATL III alleviated hepatic oxidative stress, inflammation and fibrosis in the HFD feeding model. To study the underlying mechanisms, we performed Computer Aided Design assay and found that open-formed AdipoR1 and adiponectin receptor 2 were the potential receptors targeted by ATL III. Interestingly, HFD feeding or FFAs treatment only reduced hepatic AdipoR1 expression, while such reduction was abolished by ATL III administration. In addition, in vitro treatment with ATL III activated the AdipoR1 downstream AMPK /SIRT1 signaling pathway and reduced lipid deposition in HepG2 cells, which was diminished by silencing AdipoR1. Finally, inhibition of AMPK or SIRT1, the AdipoR1 downstream signaling, abolished the protective effects of ATL III on lipid deposition and oxidative stress in FFAs-treated HepG2 cells.Conclusion: Our findings suggest that ATL III is a therapeutic drug for the treatment of NAFLD and such protective effect is mediated by activating hepatic AdipoR1-mediated AMPK/SIRT1 signaling pathway.  相似文献   

16.
Abstract: The β-amyloid peptide (Aβ), a main constituent in both senile and diffuse plaques in Alzheimer's disease brains, was previously shown to be neurotoxic and to be able to interact with several macromolecular components of brain tissue. Previous investigations carried out in our laboratory demonstrated free radical species formation in aqueous solutions of Aβ(1–40) and its C-end fragment, Aβ(25–35). Toxic forms of Aβ rapidly inactivate the oxidation-sensitive cytosolic enzyme glutamine synthetase (GS). In this regard, we suggested and subsequently demonstrated that Aβ radicals can cause an oxidative damage of cell proteins and lipids resulting in disruption of membrane functions, enzyme inactivation, and cell death. Because GS can be a substrate for Aβ-derived oxidizing species, the present study was conducted to determine if GS could protect against Aβ neurotoxicity. In contrast to this initial hypothesis, we here report that GS significantly enhances the neurotoxic effects of Aβ(1–40). The Aβ-mediated inactivation of GS was found to be accompanied by the loss of immunoreactive GS and the significant increase of Aβ(1–40) neurotoxicity.  相似文献   

17.
Highlights? Cocrystal structure of KRIT1 with ICAP1 shows a bidentate interaction interface ? Cocrystal structure of ICAP1 with integrin β1 shows a PTB-peptide interaction ? KRIT1 antagonizes ICAP1-modulated integrin activation by the bidentate interaction ? KRIT1 contains a previously undescribed N-terminal Nudix domain  相似文献   

18.
19.
The orf-I gene of human T-cell leukemia type 1 (HTLV-1) encodes p8 and p12 and has a conserved cysteine at position 39. p8 and p12 form disulfide-linked dimers, and only the monomeric forms of p8 and p12 are palmitoylated. Mutation of cysteine 39 to alanine (C39A) abrogated dimerization and palmitoylation of both proteins. However, the ability of p8 to localize to the cell surface and to increase cell adhesion and viral transmission was not affected by the C39A mutation.  相似文献   

20.
NLRP1 was the first NOD-like receptor described to form an inflammasome, recruiting ASC to activate caspase-1, which processes interleukin-1β and interleukin-18 to their active form. A wealth of new genetic information has now redefined our understanding of this innate immune sensor. Specifically, rare loss-of-function variants in the N-terminal pyrin domain indicate that this part of NLRP1 is autoinhibitory and normally acts to prevent a familial autoinflammatory skin disease associated with cancer. In the absence of a ligand to trigger human NLRP1, these mutations have now confirmed the requirement of NLRP1 autolytic cleavage within the FIIND domain, which had previously been implicated in NLRP1 activation. Autolytic cleavage generates a C-terminal fragment of NLRP1 containing the CARD domain which then forms an ASC-dependent inflammasome. The CARD domain as an inflammasome linker is consistent with the observation that under some conditions, particularly for mouse NLRP1, caspase-1 can be engaged directly, and although it is no longer processed, it is still capable of producing mature IL-1β. Additional rare variants in a linker region between the LRR and FIIND domains of NLRP1 also cause autoinflammatory disease in both humans and mice. This new genetic information is likely to provide for more mechanistic insight in the years to come, contributing to our understanding of how NLRP1 functions as an innate immune sensor of infection and predisposes to autoimmune or autoinflammatory diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号