首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chicks convert both orally and intravenously administered 1alpha-hydroxy[6-3H]vitamin D3 rapidly to 1alpha,25-dihydroxy[6-3H]vitamin D3. The maximal accumulation of 1alpha,25-dihydroxy[6-3H]vitamin D3 in intestine precedes the intestinal absorption response to 1alpha-hydroxyvitamin D3 by at least 2 hours. Oral administration results in the highest concentrations of 1alpha,25-dihydroxy[6-3H]vitamin D3 in intestine, giving a level about 1.5 times that achieved with an intravenous dose. On the other hand, an oral dose of 1alpha-hydroxy[6-3H]vitaminD3 gives much lower amounts of both 1alpha-hydroxy[6-3H]vitamin D3 and 1alpha,25-dihydroxy[6-3H]vitamin D3 in bone and blood than an intravenous dose, which suggests that the 1alpha-hydroxy[6-3H]vitamin D3 may not be utilized as well by the oral route as by an intravenous route. Liver homogenates from both rat and chick convert 1alpha-hydroxy[6-3H]vitamin D3 to 1alpha,25-dihydroxy[6-3H]vitamin D3. However, intestinal homogenates from chick, but not rat, can also cary out this conversion, which may account for the higher concentration of 1alpha,25-dihydroxy[6-3H]vitamin D3 found in the intestine of chicks given an oral dose of 1alpha-hydroxy[6-3H]vitamin D3.  相似文献   

2.
In previous works we have found a mitochondrial alkaline phosphatase (AP) activity in LLC-PK1. The aim of this work has been to study the possible involvement of mitochondrial AP activity in the synthesis of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) and 24,25-dihydroxyvitamin D3 (24,25(OH)2D3) from the substrate 25(OH)D3. Renal phenotype LLC-PK1 cells were incubated with 25(OH)D3 as substrate and treated with or without 1,25(OH)2D3, forskolin, 12-myristate-13-acetate (PMA) and 1,25(OH)2D3 in conjunction with PMA. Incubation of LLC-PK1 cells with forskolin (adenylate cyclase activator) not only stimulated the 1-hydroxylase and inhibited the 24-hydroxylase activities but also increased the mitochondrial AP activity. The addition of 1,25(OH)2D3, the main activator of 24-hydroxylase, produced a decrease of mitochondrial AP activity, a decrease of 1,25(OH)2D3 synthesis and an increase of the 24,25(OH)2D3 synthesis. Incubation with PMA, a potent activator of protein kinase C, did not produce any changes in mitochondrial AP activity, but an inhibition of 1,25(OH)2D3 and an activation of 24,25(OH)2D3 synthesis were found. Moreover, incubation of LLC-PK1 cells with PMA in conjunction with 1,25(OH)2D3 produced an additive effect in the decrease of 1,25(OH)2D3 and an increase of 24,25(OH)2D3 synthesis remaining mitochondrial AP activity as cells treated only with 1,25(OH)2D3. Our results suggest that mitochondrial AP activity could be involved as an intracellular signal in the regulation of 25(OH)D3 metabolism to the synthesis of 1,25(OH)2D3 and 24,25(OH)2D3 in renal phenotype LLC-PK1 cells through cAMP protein kinase system.  相似文献   

3.
Plasma 25-(OH)D3 concentrations following an intra-portal injection of 100 micrograms Kg-1 of D3 or 100 micrograms Kg-1 of 25-(OH)D3 was studied in D depleted rats fed ethanol diet and pair-fed controls. When challenged with D3, the rats under ethanol feeding were unable to increase their plasma 25(OH)D3 concentrations above those observed in controls. Plasma 25(OH)D3 concentrations following 25(OH)D3 administration were however lowered by the ethanol treatment 3 and 96 hr after 25(OH)D3 administration (p less than 0.05). These results suggest that animals chronically exposed to ethanol have an unaltered plasma 25(OH)D3 response following a pharmacological dose of D3 while the drug treatment contributes to an accelerated plasma 25(OH)D3 disappearance following 25(OH)D3.The former observations also suggest that D3 does not seem to be a high affinity substrate for the ethanol-induced cytochrome P-450.  相似文献   

4.
Le Foll B  Diaz J  Sokoloff P 《Life sciences》2005,76(11):1281-1296
The dopamine D3 receptor (D3R) has been implicated in schizophrenia, drug addiction, depression and Parkinson's disease. The D3R is localized post-synaptically on nucleus accumbens neurons, but is also an autoreceptor on dopaminergic neurons in the mesencephalon. Its functional role as autoreceptor is highly debated, but supported by the elevated basal extracellular dopamine levels found in D3R-deficient mice. To investigate the functional role of the D3R in vivo, we used mice with a targeted disruption of the D3R gene. We found a higher basal level of grooming in D3R-deficient mice, compared to their wild-type littermates. This behavior, which is under the control of D1R stimulation, may be related to an increased dopaminergic tone, since no changes in the gene expression of dopamine D1 and D2 receptors were noticed in the striatum of these mice. D3R-deficient mice displayed other neuroadaptive changes, including decreased tyrosine hydroxylase, increased dopamine transporter mRNAs and increased dopamine reuptake in striatum. The level of tyrosine hydroxylase protein was unchanged in the striatum, as preprodynorphin and preproenkephalin gene expressions. All the changes identified in D3R-deficient mice cannot explain hyperdopaminergia, but, on the contrary, tend to attenuate this phenotype. These results support a distinct role for D2R and D3R as autoreceptors: the D2R is the release-regulating and firing rate-regulating autoreceptor, whereas the D3R may control basal dopamine levels in the striatum, by an unknown mechanism, which does not involve regulation of dopamine transporters or tyrosine hydroxylase. This hyperdopaminergia phenotype of D3R-deficient mice may explain their hyperactivity to drug-paired environmental cues.  相似文献   

5.
1alpha-Hydroxy [6-3H]vitamin D3 has been synthesized with a specific activity of 4 Ci/mmol, and its metabolism in rats has been studied. It is rapidly converted to 1alpha,25-dihydroxy [6-3H]vitamin D3 in vivo. Following an intravenous or oral dose, a maximal concentration of 1alpha,25-dihydroxy [6-3H]vitamin D3 is found 2 and 4 hours, respectively, before the maximal intestinal calcium transport response is observed. Similarly, 1alpha,25-dihydroxy[6-3H]vitamin D3 accumulation in bone precedes the bone calcium mobilization response. It appears, therefore, that the biological activity of 1alpha-hydroxyvitamin D3 is largely, if not exclusively, due to its conversion to 1alpha,25-dihydroxy[6-3H]vitamin D3 1alpha-Hydroxy[6-3H]vitamin D3 and 1alpha,25-dihydroxy[6-3H]vitamin D3 appear in intestine equally well after an oral or an intravenous dose of 1alpha-hydroxy[6-3H]vitamin D3. However, much less of both 1alpha-hydroxy[6-3H]vitamin D3 and 1alpha,25-dihydroxy[6-3H]vitamin D3 appears in bone and blood after an oral than after an intravenous dose. A much reduced bone calcium mobilization response is also noted following an oral dose as compared to an intravenous dose of 1alpha-hydroxyvitamin D3, suggesting that oral 1alpha-hydroxyvitamin D3 is not utilized as well as intravenously administered material.  相似文献   

6.
Dopamine receptors include the D1- (D1 and D5 subtypes) and D2-like (D2, D3, and D4 subtypes) families. D1-like receptors are positively and D2-like receptors negatively coupled to the adenylyl cyclase. Dopamine D2-like (D4 subtype) receptors have been identified in human and rat hearts. However the presence of D2 and D3 receptor subtypes is unclear. Furthermore, their role in cardiac functions is unknown. By autoradiographic studies of guinea pig hearts, we identified D3 and D4 receptors, using the selective radioligands [3H]-7-OH-DPAT and [3H]emonapride (YM-09151-2 plus raclopride). Western blot analysis confirmed D3 and D4 receptors in the right and left ventricle of the same species. Selective agonists of D3 and D4 receptors (+/-)-7-OH-DPAT and PD 168 077 (10(-9) to 10(-5) M, respectively) induced a significant negative chronotropic and inotropic effect in the isolated guinea pig heart preparation. Negative inotropic effect induced by PD 168 077 was associated with an inhibition in cyclase activity. No changes in cyclase activity were found with (+/-)-7-OH-DPAT. The aim of this study is to support the presence of D3 and D4 receptors in the heart. Although our results suggest that D3 and D4 receptors are functionally active in the heart, we need additional information with an antagonist and an agonist of improved potency and selectivity to understand the respective roles of D3 and D4 receptors in the cardiac functions.  相似文献   

7.
Treatment of logarithmically growing rat intestinal epithelial cells (IEC-6) in culture with vitamin D3 (cholecalciferol), 25-hydroxy vitamin D3 (25-hydroxy cholecalciferol), 1,25-dihydroxy vitamin D3 (1,25-dihydroxycholecalciferol), and 24,25 dihydroxy vitamin D3 (24(R),25-dihydroxycholecalciferol), caused an inhibition of the cholesterol biosynthetic pathway at two separate sites. At concentrations greater than 2 micrograms/ml, the hydroxylated forms of vitamin D3 caused an accumulation of methyl sterols indicating an inhibition of lanosterol demethylation. Vitamin D3, however, had little effect on lanosterol demethylation. A second site of inhibition occurs at 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase), the rate limiting enzyme in cholesterol biosynthesis at concentrations less than 2 micrograms/ml. All vitamin D3 compounds, except 1,25-dihydroxy vitamin D3, inhibited HMG-CoA reductase activity in a concentration-dependent manner. The lack of inhibition of HMG-CoA reductase activity by 1,25-dihydroxy vitamin D3 in IEC-6 cells was not due to impaired uptake, since 1,25-dihydroxy vitamin D3 caused an accumulation of methyl sterols under similar conditions. The inhibition of HMG-CoA reductase activity and cholesterol synthesis by vitamin D3 and 25-hydroxy vitamin D3 was also observed in other cell culture lines such as human skin fibroblasts (GM-43), transformed human liver cells (Hep G2), and mouse peritoneal macrophages (J-774). On the other hand, 1,25-hydroxy vitamin D3 showed effects on HMG-CoA reductase activity that varied with the cell line. In J-774 and human skin fibroblasts, 1,25-dihydroxy vitamin D3 showed a biphasic effect on reductase activity such that at low concentrations reductase activity was inhibited but was restored to control values at high concentrations.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The effect of 24,25-dihydroxyvitamin D3 [24,25(OH)2D3] on 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] metabolism was examined in rats fed on a low-calcium diet. These rats exhibit hypocalcaemia, high urinary cyclic AMP excretion, a markedly elevated serum 1,25(OH)2D concentration and low serum concentrations of both 24,25(OH)2D and 25(OH)D. When the rats are treated orally with 1, 5 or 10 micrograms of 24,25(OH)2D3/100 g every day, there is a dramatic decrease in serum 1,25(OH)2D concentration in a dose-dependent manner concomitant with an increase in serum 24,25(OH)2D concentration. Serum calcium concentration and urinary cyclic AMP excretion are not significantly affected by the 24,25(OH)2D3 treatment, which suggests that parathyroid function is not affected by the 24,25(OH)2D3 treatment. The 25(OH)D3 1 alpha-hydroxylase activity measured in kidney homogenates is markedly elevated in rats on a low-calcium diet but is not affected by any doses of 24,25(OH)2D3. In contrast, recovery of intravenously injected [3H]1,25(OH)2D3 in the serum is decreased in 24,25(OH)2D3-treated rats. Furthermore, when [3H]1,25(OH)2D3 is incubated in vitro with kidney or intestinal homogenates of 24,25(OH)2D3-treated rats there is a decrease in the recovery of radioactivity in the total lipid extract as well as in the 1,25(OH)2D3 fraction along with an increase in the recovery of radioactivity in the water-soluble phase. These results are consistent with the possibility that 24,25(OH)2D3 has an effect on 1,25(OH)2D3 metabolism, namely that of enhancing the degradation of 1,25(OH)2D3. However, because a considerable proportion of the injected 24,25(OH)2D3 is expected to be converted into 1,24,25(OH)3D3 by renal 1 alpha-hydroxylase in 24,25(OH)2D3-treated rats, at least a part of the decrease in serum 1,25(OH)2D concentration may be due to a competitive inhibition by 24,25(OH)2D3 of the synthesis of 1,25(OH)2D3 from 25(OH)D3. Thus the physiological importance of the role of 24,25(OH)2D3 in regulating the serum 1,25(OH)2D concentration as well as the mechanism and metabolic pathway of degradation of 1,25(OH)2D3 remain to be clarified.  相似文献   

9.
A five-dimensional (5D) APSY (automated projection spectroscopy) HCNCH experiment is presented, which allows unambiguous correlation of sugar to base nuclei in nucleic acids. The pulse sequence uses multiple quantum (MQ) evolution which enables long constant-time evolution periods in all dimensions, an improvement that can also benefit non-APSY applications. Applied with an RNA with 23 nucleotides the 5D APSY-HCNCH experiment produced a complete and highly precise 5D chemical shift list within 1.5 h. Alternatively, and for molecules where the out-and-stay 5D experiment sensitivity is not sufficient, a set of out-and-back 3D APSY-HCN experiments is proposed: an intra-base (3D APSY-b-HCN) experiment in an MQ or in a TROSY version, and an MQ sugar-to-base (3D APSY-s-HCN) experiment. The two 3D peak lists require subsequent matching via the N1/9 chemical shift values to one 5D peak list. Optimization of the 3D APSY experiments for maximal precision in the N1/9 dimension allowed matching of all 15N chemical shift values contained in both 3D peak lists. The precise 5D chemical shift correlation lists resulting from the 5D experiment or a pair of 3D experiments also provide a valuable basis for subsequent connection to chemical shifts derived with other experiments.  相似文献   

10.
Effect of 24,25-dihydroxyvitamin D3 in osteoclasts.   总被引:1,自引:0,他引:1  
Previous results demonstrated that the administration of pharmacological doses of 24,25-dihydroxyvitamin D3 (24,25(OH)2D3) to animals reduces bone resorption and increases bone volume with a decrease in osteoclast number. In order to clarify whether 24,25(OH)2D3 has an effect to inhibit osteoclastic bone resorption, the effect of 24,25(OH)2D3 on the formation and function of osteoclastic cells was examined in vitro. Treatment of hemopoietic blast cells, which are progenitors of osteoclasts, with parathyroid hormone (PTH) or 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) stimulated the formation of osteoclast-like multinucleated cells in a dose-dependent manner. Although 24,25(OH)2D3 in itself had little effect on osteoclast-like multinucleated cells formation, it inhibited the stimulatory effect of PTH on the formation of osteoclastic cells. In addition, 24,25(OH)2D3 also inhibited the stimulation of resorption pit formation by osteoclasts under stimulation with PTH. In contrast, 1,25(OH)2D3 stimulated the formation and function of osteoclastic cells even at low concentrations, and the effect was additive to PTH. These results could not be explained by either an agonistic or antagonistic effect of 24,25(OH)2D3 on 1,25(OH)2D3, and are consistent with the assumption that 24,25(OH)2D3 has a unique inhibitory effect on the formation and function of osteoclasts. Because 24,25(OH)2D3 is shown to stimulate the degradation of 1,25(OH)2D3 and because the formation of 24,25(OH)2D3 is stimulated by 1,25(OH)2D3 not only in the kidney but also in many of its target tissues, including bone, the inhibitory effect of 24,25(OH)2D3 on osteoclastic bone resorption may play a role in the local modulation of the actions of osteotropic hormones in bone.  相似文献   

11.
The hormonal form of vitamin D, 1,25-dyhydroxyvitamin D3 (1,25(OH)2D3), is implicated in a wide range of functions other than its classical role in calcium and phosphorous homeostasis. When Toxoplasma gondii-infected BALB/c mice were treated with 1,25(OH)2D3, they succumb to death sooner than their counterparts. But they showed less parasite burden in tissues which was further supported by mild pathological lesions. As an effort to understand the physiological mechanism for the above observation an in vitro study was performed. Fewer parasites were observed when 1,25(OH)2D3 pre-treated murine intestinal epithelial cells were challenged with parasites. Moreover, the observed inhibition was dose-dependent and had a maximum effect with 10(-7)M of 1,25(OH)2D3. However, no observable difference was observed, when pre-incubated parasites were added to cells suggesting that the observed inhibition was a result of an effect from 1,25(OH)2D3 on Toxoplasma intracellular growth. Our data support the notion that 1,25(OH)2D3 may inhibit intra cellular T. gondii parasite proliferation in vivo and in vitro.  相似文献   

12.
Vitamin D3, an important seco-steroid hormone for the regulation of body calcium homeostasis, promotes immature myeloid precursor cells to differentiate into monocytes/macrophages. Vitamin D receptor (VDR) belongs to a nuclear receptor super-family that mediates the genomic actions of vitamin D3 and regulates gene expression by binding with vitamin D response elements in the promoter region of the cognate gene. Thus by regulating gene expression, VDR plays an important role in modulating cellular events such as differentiation, apoptosis, and growth. Here we report lipopolysaccharide (LPS), a bacterial toxin; decreases VDR protein levels and thus inhibits VDR functions in the human blood monocytic cell line, THP-1. The biologically active form of vitamin D3, 1alpha,25-dihydroxy vitamin D3 [1,25(OH)2D3], induced VDR in THP-1 cells after 24 h treatment, and LPS inhibited 1,25(OH)2D3-mediated VDR induction. However, LPS and 1,25(OH)2D3 both increased VDR mRNA levels in THP-1 cells 20 h after treatment, as observed by real time RT-PCR. Moreover, LPS plus 1,25(OH)2D3 action on VDR mRNA level was additive and synergistic. A time course experiment up to 60 h showed an increase in VDR mRNA that was not preceded with an increase in VDR protein levels. Although the proteasome pathway plays an important role in VDR degradation, the proteasome inhibitor lactacystin had no effect on the LPS-mediated down-regulation of 1,25(OH)2D3 induced VDR levels. Reduced VDR levels by LPS were accompanied by decreased 1,25(OH)2D3/VDR function determined by VDR responsive 24-hydroxylase (CYP24) gene expression. The above results suggest that LPS impairs 1,25(OH)2D3/VDR functions, which may negatively affect the ability of 1,25(OH)2D3 to induce myeloid differentiation into monocytes/macrophages.  相似文献   

13.
Osteoblast maturation is partly controlled by the interaction of 1alpha,25(OH)(2)D(3) (D3), an active metabolite of Vitamin D, with other growth factors. The first reports describing the in vitro effect of D3 on human osteoblast differentiation performed experiments in the presence of serum. One potentially exciting candidate that might help explain the D3 responses observed for osteoblasts cultured with serum is lysophosphatidic acid (LPA). Drawn to the possibility that D3 and serum borne LPA might interact to induce osteoblast maturation we co-treated human cells with D3 and serum in the presence of Ki16425, an LPA receptor antagonist. Ki16425 inhibited osteoblast maturation as determined by markedly reduced alkaline phosphatase (ALP) expression. We subsequently found that LPA and D3 acted synergistically in generating mature osteoblasts and that this differentiation response could be inhibited using pertussis toxin, implying an important role of Galphai signal transduction. Furthermore, we found evidence for a dependency on both mitogen activated protein kinase kinase (MEK) and Rho associated coiled kinase (ROCK) for LPA and D3 stimulated maturation.  相似文献   

14.
Isolated primary hepatocytes from the liver are very similar to in vivo native liver hepatocytes, but they have the disadvantage of a limited lifespan in 2D culture. Although a sandwich culture and 3D organoids with mesenchymal stem cells (MSCs) as an attractive assistant cell source to extend lifespan can be used, it cannot fully reproduce the in vivo architecture. Moreover, long-term 3D culture leads to cell death because of hypoxic stress. Therefore, to overcome the drawback of 2D and 3D organoids, we try to use a 3D printing technique using alginate hydrogels with primary hepatocytes and MSCs. The viability of isolated hepatocytes was more than 90%, and the cells remained alive for 7 days without morphological changes in the 3D hepatic architecture with MSCs. Compared to a 2D system, the expression level of functional hepatic genes and proteins was higher for up to 7 days in the 3D hepatic architecture. These results suggest that both the 3D bio-printing technique and paracrine molecules secreted by MSCs supported long-term culture of hepatocytes without morphological changes. Thus, this technique allows for widespread expansion of cells while forming multicellular aggregates, may be applied to drug screening and could be an efficient method for developing an artificial liver.  相似文献   

15.
To understand further the mechanism of action of parathyroid hormone (PTH) in the stimulation of the number of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) binding sites in UMR 106-01 cells we studied the role of cAMP and calcium. In addition to PTH other agents known to act via the cAMP signal pathway, prostaglandin E2, forskolin and dibutyryl cAMP, caused an increase in 1,25(OH)2D3 binding. Addition of the adenylate cyclase inhibitor 9-(tetrahydro-2-furyl)adenine resulted in a marked decrease of PTH-stimulated cAMP production but this was not followed by a reduction of 1,25(OH)2D3 receptor up-regulation by PTH. Increasing the intracellular calcium concentration by Bay K 8644 and A23817 independent of an activation of the cAMP signal pathway did not result in an increased 1,25(OH)2D3 binding. The calcium channel blockers nitrendipine and verapamil and chelating extracellular calcium with EGTA all reduced cAMP-mediated stimulation of 1,25(OH)2D3 binding. This reduction was not due to a reduce cAMP production as verapamil even potentiated PTH- and forskolin-stimulated cAMP production in a dose-dependent manner. The present study provides evidence for an interrelated action of calcium and cAMP in the heterologous up-regulation of the 1,25(OH)2D3 receptor. The current data show an interaction between the cAMP and calcium signal pathway at (1) the level of cAMP generation/degradation, and (2) a level located distal in the cascade leading to 1,25(OH)2D3 receptor up-regulation.  相似文献   

16.
Cardiac injury induces myocardial expression of the thyroid hormone inactivating type 3 deiodinase (D3), which in turn dampens local thyroid hormone signaling. Here, we show that the D3 gene (Dio3) is a tissue-specific imprinted gene in the heart, and thus, heterozygous D3 knockout (HtzD3KO) mice constitute a model of cardiac D3 inactivation in an otherwise systemically euthyroid animal. HtzD3KO newborns have normal hearts but later develop restrictive cardiomyopathy due to cardiac-specific increase in thyroid hormone signaling, including myocardial fibrosis, impaired myocardial contractility, and diastolic dysfunction. In wild-type littermates, treatment with isoproterenol-induced myocardial D3 activity and an increase in the left ventricular volumes, typical of cardiac remodeling and dilatation. Remarkably, isoproterenol-treated HtzD3KO mice experienced a further decrease in left ventricular volumes with worsening of the diastolic dysfunction and the restrictive cardiomyopathy, resulting in congestive heart failure and increased mortality. These findings reveal crucial roles for Dio3 in heart function and remodeling, which may have pathophysiologic implications for human restrictive cardiomyopathy.  相似文献   

17.
Abstract: The nervous system-specific proteins: synaptin, D1, D2, D3, glial fibrillary acidic protein (GFA) and 14-3-2, were quantified in dissociated cerebral cells from the foetal rat brain at various times of growth in culture. By approximately 1 week in culture, the neuronal membrane markers synaptin, D1, D2, and D3 could all be demonstrated. A maximum concentration of 10–20% for synaptin, D1, and D3 and 160% for D2, in comparison with the levels in adult forebrain, was attained during the 2nd week in vitro. The astroglial gliofilament marker GFA increased continuously, reaching by 38 days of cultivation an 18-fold higher level than the concentration in adult forebrain. The neuronal cytoplasm marker 14-3-2 could be demonstrated in trace amounts, and only after more than 1 week in vitro. Neuronal cell bodies and processes stained by indirect immunofluorescence using an anti-D2 serum were strongly fluorescent after 1 week in vitro. Immunofluorescence staining for GFA revealed a cytoplasmatic filamentous network in perinuclear areas and processes of, presumably, astroblasts.  相似文献   

18.
19.
Growth rate of five children with vitamin D-dependent rickets was analyzed during the long-term treatment with an active analog of vitamin D3. Considerable increase in growth rate together with the improvement of biochemical values and radiological pattern took place during the initial phase of administration of 1-hydroxyvitamin D3. During the maintenance treatment of long duration with 1-hydroxyvitamin D3 both the acceleration of growth and catch-up growth persisted. However, in 4 among 5 children studied an inhibition of growth was observed during different periods of time. Only in one boy was this connected with the conclusion of the process of physiological growth. In three remaining children a slow-down in growth rate appeared during the pre-pubertal period or was the effect of lowering the dose of 1-hydroxyvitamin D3 as an countermeasure to hypercalciuria. In such cases inhibition of growth was caused by the administration of too small a dose of 1-hydroxyvitamin D3 in relation to the requirement. In all cases the appearance of biochemical features of rickets aggravation, such as low blood serum phosphate concentration and elevated alkaline phosphatase activity, preceded the observable inhibition of growth. The results obtained allow us to conclude that the inhibition of growth observed during the long-term treatment of rickets with 1-hydroxyvitamin D3 may be regarded as the first signal of inadequate dosage of 1-hydroxy vitamin D3.  相似文献   

20.
We compared the growth of human lung cancer cells in an ex vivo three-dimensional (3D) lung model and 2D culture to determine which better mimics lung cancer growth in patients. A549 cells were grown in an ex vivo 3D lung model and in 2D culture for 15 days. We measured the size and formation of tumor nodules and counted the cells after 15 days. We also stained the tissue/cells for Ki-67, and Caspase-3. We measured matrix metalloproteinase (MMP) levels in the conditioned media and in blood plasma from patients with adenocarcinoma of the lung. Organized tumor nodules with intact vascular space formed in the ex vivo 3D lung model but not in 2D culture. Proliferation and apoptosis were greater in the ex vivo 3D lung model compared to the 2D culture. After 15 days, there were significantly more cells in the 2D culture than the 3D model. MMP-1, MMP-9, and MMP-10 production were significantly greater in the ex vivo 3D lung model. There was no production of MMP-9 in the 2D culture. The patient samples contained MMP-1, MMP-2, MMP-9, and MMP-10. The human lung cancer cells grown on ex vivo 3D model form perfusable nodules that grow over time. It also produced MMPs that were not produced in 2D culture but seen in human lung cancer patients. The ex vivo 3D lung model may more closely mimic the biology of human lung cancer development than the 2D culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号