首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Stark spectroscopy is a powerful technique to investigate the electrostatic interactions between pigments as well as between the pigments and the proteins in photosynthetic pigment–protein complexes. In this study, Stark spectroscopy has been used to determine two nonlinear optical parameters (polarizability change Tr(Δα) and static dipole-moment change |Δμ| upon photoexcitation) of isolated and of reconstituted LH1 complexes from the purple photosynthetic bacterium, Rhodospirillum (Rs.) rubrum. The integral LH1 complex was prepared from Rs. rubrum S1, while the reconstituted complex was assembled by addition of purified carotenoid (all-trans-spirilloxanthin) to the monomeric subunit of LH1 from Rs. rubrum S1. The reconstituted LH1 complex has its Qy absorption maximum at 878 nm. This is shifted to the blue by 3 nm in comparison to the isolated LH1 complex. The energy transfer efficiency from carotenoid to bacteriochlorophyll a (BChl a), which was determined by fluorescence excitation spectroscopy of the reconstituted LH1 complex, is increased to 40%, while the efficiency in the isolated LH1 complex is only 28%. Based on the differences in the values of Tr(Δα) and |Δμ|, between these two preparations, we can calculate the change in the electric field around the BChl a molecules in the two situations to be E Δ ≈ 3.4 × 105 [V/cm]. This change can explain the 3 nm wavelength shift of the Qy absorption band in the reconstituted LH1 complex.  相似文献   

2.
Rhodopseudomonas sp. Rits is a recently isolated new species of photosynthetic bacteria and found to accumulate a significantly high amount of bacteriochlorophyll (BChl) a intermediates possessing non-, di- and tetra-hydrogenated geranylgeranyl groups at the 17-propionate as well as normal phytylated BChl a (Mizoguchi T et al. (2006) FEBS Lett 580:137-143). A phylogenetic analysis showed that this bacterium was closely related to Rhodopseudomonas palustris. The strain Rits synthesizes light-harvesting complexes 2 and 4 (LH2/4), as peripheral antennas, as well as the reaction center and light-harvesting 1 core complex (RC-LH1 core). The amounts of these complexes were dependent upon the incident light intensities, which was also a typical behavior of Rhodopseudomonas palustris. HPLC analyses of extracted pigments indicated that all four BChls a were associated with the purified photosynthetic pigment-protein, as complexes described above. The results suggested that this bacterium could use these pigments as functional molecules within the LH2/4 and RC-LH1 core. Pigment compositional analyses in several purple photosynthetic bacteria showed that such BChl a intermediates were always detected and were more widely distributed than expected. Long chains in the propionate moiety of BChl a would be one of the important factors for assembly of LH systems in purple photosynthetic bacteria.  相似文献   

3.
Fiedor L 《Biochemistry》2006,45(6):1910-1918
The ability of chlorophylls to coordinate ligands is of fundamental structural importance for photosynthetic pigment-protein complexes, where in virtually all cases the pigment is thought to be in a pentacoordinated state. In this study, the correlation of the Q(X) transition energy with the coordination state of the central metal in bacteriochlorophyll is applied in investigating the pigment coordination state in bacterial photosynthetic antenna LH1. To facilitate a detailed spectral analysis in the Q(X) region, carotenoid-depleted forms of LH1 are prepared and model LH1 are constructed with non-native carotenoids having blue-shifted absorption. The deconvolution of the Q(X) envelope in LH1 reveals that the band is the sum of two transitions, which peak near 590 and 607 nm, showing that a significant fraction (up to 25%) of hexacoordinated bacteriochlorophyll is present in the complex. The hexacoordination can be seen also in LH1 antennae from other species of purple photosynthetic bacteria. It seems correlated with the LH1 aggregation state and probably is a consequence of the structural flexibility of the assembled complex. The sixth ligand probably originates from the apoprotein and seems not to affect the chromophore core size. These findings show that in light-harvesting complexes a hexacoordinated state of bacteriochlorophyll is not uncommon. Its presence may be relevant to a correct assembly of the antenna and have functional consequences, as it results in a splitting of the pigment S2 excited state (Q(X)), i.e., the carotenoid excitation acceptor state, what might affect intracomplex carotenoid-to-bacteriochlorophyll energy transfer.  相似文献   

4.
The utility of photosynthetically defective mutants in the purple photosynthetic bacterium Blastochloris viridis (formerly Rhodopseudomonas viridis)was demonstrated with construction of a reaction-center deficient mutant, LH 1-H. This LH 1-H mutant has a photosynthetic apparatus in which most of the puf operon genes were deleted, resulting in an organism containing only the genes for the light harvesting polypeptides and the H subunit of the reaction center. This B. viridisstrain containing a truncation of the puf operon was characterized by gel electrophoresis, lipid-to-protein ratio analysis, optical spectroscopy, electron paramagnetic resonance and transmission electron microscopy. Optical and electron paramagnetic resonance spectroscopies revealed no photoactivity in this LH 1-H mutant consistent with the absence of intact reaction centers. Electron paramagnetic resonance evidence for assembled LH 1 complexes suggested that the interactions between light harvesting polypeptide complexes in membranes were largely unchanged despite the absence of their companion reaction center cores. The observed increase in the lipid-to-protein ratio was consistent with modified interactions between LH 1s, a view supported by transmission electron microscopy analysis of membrane fragments. The results show that B. viridis can serve as a practical system for investigating structure-function relationships in membranes and photosynthesis through the construction of photosynthetically defective mutants. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
During the photosynthetic process, highly organized membranal assemblies convert light into biochemical energy with high efficiency. We have used whole-mount cryo-electron tomography to study the intracellular architecture of the photosynthetic membranes of the anaerobic purple photosynthetic bacterium Rhodopseudomonas viridis, as well as the organization of the photosynthetic units within the membranes. Three-dimensional reconstruction demonstrates a continuity of the plasma membrane with the photosynthetic membranes that form tunnel-like structures with an average diameter of 31 nm ± 8 nm at the connection sites. The spacing between the photosynthetic membranes at their cytoplasmic faces was found to be 11 nm, thus enforcing a highly close packaging of the photosynthetic membranes. Analysis of successive tomographic slices allowed for derivation of the spacing between adjacent photosynthetic core complexes from a single-layered photosynthetic membrane, in situ. This analysis suggests that most, if not all, photosynthetic membranes in R. viridis are characterized by a similar two-dimensional hexagonal lattice organization.  相似文献   

6.
Light-harvesting antenna core (LH1-RC) complexes isolated from Rhodospirillum rubrum and Rhodopseudomonas palustris were successfully self-assembled on an ITO electrode modified with 3-aminopropyltriethoxysilane. Near infra-red (NIR) absorption, fluorescence, and IR spectra of these LH1-RC complexes indicated that these LH1-RC complexes on the electrode were stable on the electrode. An efficient energy transfer and photocurrent responses of these LH1-RC complexes on the electrode were observed upon illumination of the LH1 complex at 880 nm.  相似文献   

7.
Incorporation of spirilloxanthin into carotenoidless LH2 and LH1-RC complexes from a purple sulfur bacterium Allochromatium (Alc.) minutissimum was studied. Carotenoidless cells of Alc. minutissimum were obtained using diphenylamine, a carotenoid biosynthesis inhibitor. In the course of incorporation of the carotenoid mixture, the composition of which corresponded to that of Alc. minutissimum control photosynthetic membranes, no selective incorporation of spirilloxanthin into the LH1-RC complex was detected. It is assumed that in vivo carotenoids are not incorporated into the LH2 and LH1-RC complexes from a common pool. Pure spirilloxanthin destroys both the LH2 and LH1-RC complexes. Within the concentration range of spirilloxanthin in the incorporated mixture from 27% to 52%, it was found to be incorporated into the LH2 and LH1-RC complexes with the efficiency of 13% and 33%, respectively. The possible existence of different sites of assembly for the LH2 and LH1-RC complexes is discussed, as well as of two fractions of LH2 complexes, in one of which rhodopin may be integrated, and in the other (minor) one, spirilloxanthin.  相似文献   

8.
Picosecond time-resolved fluorescence spectroscopy has been used in order to compare the fluorescence kinetics of detergent-solubilized and membrane-reconstituted light-harvesting 2 (LH2) complexes from the purple bacteria Rhodopseudomonas (Rps.) acidophila and Rhodobacter (Rb.) sphaeroides. LH2 complexes were reconstituted in phospholipid model membranes at different lipid:protein-ratios and all samples were studied exciting with a wide range of excitation densities. While the detergent-solubilized LH2 complexes from Rps. acidophila showed monoexponential decay kinetics (τf = 980 ps) for excitation densities of up to 3·1013 photons/(pulse·cm2), the membrane-reconstituted LH2 complexes showed multiexponential kinetics even at low excitation densities and high lipid:protein-ratios. The latter finding indicates an efficient clustering of LH2 complexes in the phospholipid membranes. Similar results were obtained for the LH2 complexes from Rb. sphaeroides. Guest editor: Dr. Conrad Mullineaux.  相似文献   

9.
Variation of the distribution of bacteriochlorophyll a (BChl a) between external antenna (LH2) and core complexes (LH1 + RC) of the photosynthetic membrane of the sulfur bacterium Allochromatium minutissimum was studied at light intensities of 5 and 90 Wt/m2 in the temperature range of 12–43°C. The increase of light intensity was shown to result in a 1.5-to 2-times increase of a photosynthetic unit (PSU). PSU sizes pass through a maximum depending on growth temperature, and the increase of light intensity (5 and 90 Wt/m2) results in a shift of the maximal PSU size to higher temperatures (15 and 20°C, respectively). In the narrow temperature interval of ~14–17°C, the ratio of light intensity to PSU size is typical of phototrophs: lower light intensity corresponds to larger PSU size. The pattern of PSU size change depending on light intensity was shown to differ at extreme growth temperatures (12°C and over 35°C). The comparison of Alc. minutissimum PSU size with the data on Rhodobacter capsulatus and Rhodopseudomonas palustris by measuring the effective optical absorption cross-section for the reaction of photoinhibition of respiration shows a two to four times greater size of light-harvesting antenna for Alc. minutissimum, which seems to correspond to the maximum possible limit for purple bacteria.  相似文献   

10.
《BBA》2023,1864(2):148946
Possibly the most abundant group of anoxygenic phototrophs are marine photoheterotrophic Gammaproteobacteria belonging to the NOR5/OM60 clade. As little is known about their photosynthetic apparatus, the photosynthetic complexes from the marine phototrophic bacterium Congregibacter litoralis KT71 were purified and spectroscopically characterised. The intra-cytoplasmic membranes contain a smaller amount of photosynthetic complexes when compared with anaerobic purple bacteria. Moreover, the intra-cytoplasmic membranes contain only a minimum amount of peripheral LH2 complexes. The complexes are populated by bacteriochlorophyll a, spirilloxanthin and two novel ketocarotenoids, with biophysical and biochemical properties similar to previously characterised complexes from purple bacteria. The organization of the RC-LH1 complex has been further characterised using cryo-electron microscopy. The overall organisation is similar to the complex from the gammaproteobacterium Thermochromatium tepidum, with the type-II reaction centre surrounded by a slightly elliptical LH1 antenna ring composed of 16 αβ-subunits with no discernible gap or pore. The RC-LH1 and LH2 apoproteins are phylogenetically related to other halophilic species but LH2 also to some alphaproteobacterial species. It seems that the reduction of light-harvesting apparatus and acquisition of novel ketocarotenoids in Congregibacter litoralis KT71 represent specific adaptations for operating the anoxygenic photosynthesis under aerobic conditions at sea.  相似文献   

11.
The development of functional photosynthetic units in Rhodobacter sphaeroides was followed by near infra-red fast repetition rate (IRFRR) fluorescence measurements that were correlated to absorption spectroscopy, electron microscopy and pigment analyses. To induce the formation of intracytoplasmic membranes (ICM) (greening), cells grown aerobically both in batch culture and in a carbon-limited chemostat were transferred to semiaerobic conditions. In both aerobic cultures, a low level of photosynthetic complexes was observed, which were composed of the reaction center and the LH1 core antenna. Interestingly, in the batch cultures the reaction centers were essentially inactive in forward electron transfer and exhibited low photochemical yields FV/FM, whereas the chemostat culture displayed functional reaction centers with a rather rapid (1-2 ms) electron transfer turnover, as well as a high FV/FM of ∼0.8. In both cases, the transfer to semiaerobiosis resulted in rapid induction of bacteriochlorophyll a synthesis that was reflected by both an increase in the number of LH1-reaction center and peripheral LH2 antenna complexes. These studies establish that photosynthetic units are assembled in a sequential manner, where the appearance of the LH1-reaction center cores is followed by the activation of functional electron transfer, and finally by the accumulation of the LH2 complexes.  相似文献   

12.
Recent topographs of the intracytoplasmic membrane (ICM) of purple bacteria obtained by atomic force microscopy (AFM) have provided the first surface views of the native architecture of a multicomponent biological membrane at submolecular resolution, representing an important landmark in structural biology. A variety of species-dependent, closely packed arrangements of light-harvesting (LH) complexes was revealed: the most highly organized was found in Rhodobacter sphaeroides in which the peripheral LH2 antenna was seen either in large clusters or in fixed rows interspersed among ordered arrays of dimeric LH1-reaction center (RC) core complexes. A more random organization was observed in other species containing both the LH1 and LH2 complexes, as typified by Rhododspirillum photometricum with randomly packed monomeric LH1-RC core complexes intermingled with large, paracrystalline domains of LH2 antenna. Surprisingly, no structures that could be identified as the ATP synthase or cytochrome bc 1 complexes were observed, which may reflect their localization at ICM vesicle poles or in curved membrane areas, out of view from the flat regions imaged by AFM. This possible arrangement of energy transducing complexes has required a reassessment of energy tranduction mechanisms which place the cytochrome bc 1 complex in close association with the RC. Instead, more plausible proposals must account for the movement of quinone redox species over considerable membrane distances on appropriate time scales. AFM, together with atomic resolution structures are also providing the basis for molecular modeling of the ICM that is leading to an improved picture of the supramolecular organization of photosynthetic complexes, as well as the forces that drive their segregation into distinct domains.  相似文献   

13.
The LH1 complexes were isolated from the purple photosynthetic bacterium Rhodospirillum rubrum strain S1. They were initially solubilized using LDAO and then purified in the presence of Triton X-100. The purified complexes were then either used directly or following an exchange into LDAO. Stark spectroscopy was applied to probe the electrostatic field around the bacteriochlorophyll a (BChl a) and carotenoid binding sites in the LH1 complexes surrounded by these two different surfactant molecules. Polarizabilty change () and dipole moment change () upon photoexcitation were determined for the BChl a Qy band. Both of these parameters show smaller values in the presence of LDAO than in Triton X-100. This indicates that polar detergent molecules, like LDAO, affect the electrostatic environment around BChl a, and modify the nonlinear optical parameters ( and values). The electrostatic field around the BChl a binding site, which is generated by the presence of LDAO, was determined to be |E L | = ∼3.9 × 105 [V/cm]. Interestingly, this kind of electrostatic effect was not observed for the carotenoid-binding site. The present study demonstrates a unique electrostatic interaction between the polar detergent molecules surrounding the LH1 complex and the Qy absorption band of BChl a that is bound to the LH1 complex.  相似文献   

14.
We have measured the singlet-singlet quenching of the bacteriochlorophyll (BChl) fluorescence yield as a function of excitation intensity in a number of antenna complexes isolated from photosynthetic bacteria. Our results show that the lithium dodecyl sulfate (LDS)-B875, LDS-B800 – 850 and lauryldimethylamine N-oxide complexes of Rhodopseudomonas sphaeroides contain 8, greater than 25 and greater than 600 BChl a molecules, respectively. The size of the Rhodopspirillum rubrum B880 complex is greater than 70 BChl a and that of the water-soluble BChl a complex from Prosthecochloris aestuarii about 20–25 BChl a. These results are discussed in relation to current models of the arrangement of antenna complexes within the photosynthetic membranes.  相似文献   

15.
The photosynthetic membrane in purple bacteria contains several pigment–protein complexes that assure light capture and establishment of the chemiosmotic gradient. The bioenergetic tasks of the photosynthetic membrane require the strong interaction between these various complexes. In the present work, we acquired the first images of the native outer membrane architecture and the supramolecular organization of the photosynthetic apparatus in vesicular chromatophores of Rhodobacter (Rb.) veldkampii. Mixed with LH2 (light-harvesting complex 2) rings, the PufX-containing LH1–RC (light-harvesting complex 1 – reaction center) core complexes appear as C-shaped monomers, with random orientations in the photosynthetic membrane. Within the LH1 fence surrounding the RC, a remarkable gap that is probably occupied (or partially occupied) by PufX is visualized. Sequence alignment revealed that one specific region in PufX may be essential for PufX-induced core dimerization. In this region of ten amino acids in length all Rhodobacter species had five conserved amino acids, with the exception of Rb. veldkampii. Our findings provide direct evidence that the presence of PufX in Rb. veldkampii does not directly govern the dimerization of LH1–RC core complexes in the native membrane. It is indicated, furthermore, that the high membrane curvature of Rb. veldkampii chromatophores (Rb. veldkampii features equally small vesicular chromatophores alike Rb. sphaeroides) is not due to membrane bending induced by dimeric RC–LH1–PufX cores, as it has been proposed in Rb. sphaeroides.  相似文献   

16.
The time dependent assembly of the photosynthetic apparatus was studied in Rhodospirillum rubrum after transfer of cells growing aerobically in the dark to low aeration. While bacteriochlorophyll (Bchl) cellular levels increase continuously levels of soluble cytochrome c 2do not change significantly. Absorption spectra of membranes isolated at different times after transfer reveal that incorporation of carotenoids lags behind incorporation of Bchl. However, a carotenoid fraction exhibiting spectral properties of spirilloxanthin isomers was isolated apart from membranes. This carotenoid fraction even was present in homogenates from Bchl-free, aerobically grown cells. Incorporation of U-14C-proteinhydrolyzate into membrane proteins showed that proteins are mainly formed which are specific for photosynthetic membranes. Although the proportion of reaction center (RC) Bchl per light harvesting (LH) Bchl does not change the proportions of membrane proteins present in RC and LH preparations change initially. But later on the proportions of the different proteins also reach constant values. Concerning proteins characteristic for cytoplasmic membranes a differential incorporation of label can be observed. The data indicate that the photosynthetic apparatus in Rhodospirillum rubrum is assembled through a sequential mechanism.Abbreviations Bchl bacteriochlorophyll - LH light harvesting - RC reaction center - R. Rhodospirillum - R. Rhodopseudomonas  相似文献   

17.
Discrepancy is revealed between the values of excitation transfer times measured experimentally, and those calculated, for the atomic structures of B800 → B850 bacteriochlorophylls within the LH2 light-harvesting pigment–protein complex of the purple bacterium Rhodopseudomonas acidophila. The value 2.9–3.2 ps for the B800 → B850 excitation transfer, calculated on the basis of atomic structure of LH2, is about 4-times longer than that measured for this bacterium (0.7 ps). This discrepancy appears common in at least two purple bacteria. Possible sources responsible for this discrepancy are discussed. It may either signify some drawback/s/ in our notions about the precise in vivo structure of LH2 complexes, for example, possible changes of LH2 structure during crystallization, or it may reflect our ignorance of some mechanisms involved in excitation migration.  相似文献   

18.
Now is a very exciting time for researchers in the area of the primary reactions of purple bacterial photosynthesis. Detailed structural information is now available for not only the reaction center (Lancaster et al. 1995, in: Blankenship RE et al. (eds) Anoxygenic Photosynthetic Bacteria, pp 503–526), but also LH2 from Rhodopseudomonas acidophila (McDermott et al. 1995, Nature 374: 517–521) and LH1 from Rhodospirillum rubrum (Karrasch et al. 1995. EMBO J 14: 631–638). These structures can now be integrated to produce models of the complete photosynthetic unit (PSU) (Papiz et al., 1996, Trends Plant Sci, in press), which opens the door to a much more detailed understanding of the energy transfer events occurring within the PSU.Abbreviations Bchl bacteriochlorophyll - LH light-harvesting - PSU photosynthetic unit Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences  相似文献   

19.
The non-sulphur purple bacterium Rhodopseudomonas palustris contains five pucAB genes for peripheral light-harvesting complexes. Bacteria grown under high-light conditions absorb at 800 and 850 nm but in low-light the 850 nm peak is almost absent and LH2 complexes are replaced by LH4. The genome contains six bacteriophytochromes (Bph). Bphs sense light in the red/far-red through a reversible Pr to Pfr transformation that controls gene expression. Bph3 (RPA1537) controls the expression of a cluster of photosynthetic genes, however most of the peripheral light harvesting complex genes are outside of this region. The pucAB-d genes encode LH4 peptides and are near two Bphs (RPA3015, RPA3016). We have characterised three Bphs and show that Bph4 RPA3015 and Bph3 RPA1537 have different dark stable states. It is known that Bph3 is active in its red absorbing Pr form and suggests a working hypothesis that Bph4 is active in the Pfr state. We show that LH4 expression can be induced with red light at the Pr absorption maximum (708 nm) of Bph4. The property of light transmission of water maybe an important factor in understanding this adaptation. Bph4 can sense the reduction in light intensity indirectly through an increase in ratio of transmitted red/far-red light. The red right activated Bph4 regulates the synthesis of LH4 which concentrates bacteriochlorophyll a pigment absorption at 800 nm to exploit a recovery in water light transmission in this region.  相似文献   

20.
Hole-burned absorption and line-narrowed fluorescence spectra are studied at 5 K in wild type and mutant LH1 and LH2 antenna preparations from the photosynthetic purple bacterium Rhodobacter sphaeroides. Evidence was found in all samples, even in intact membranes, of the presence of a broad distribution of bacteriochlorophyll species that are unable to communicate energy between each other and to the exciton states of functional antenna complexes. The distribution maximum of these localized species determined by zero phonon hole action spectroscopy is at 783.5 nm in purified LH1 complexes and at 786.8 nm in B850-only mutant LH2 complexes. A well-resolved peak at 807 nm in LH1 complexes is assigned to the exciton band structure of functional core antenna complexes. Similar structure in LH2 complexes overlaps with the distribution of localized species. Off-diagonal (structural) disorder may be responsible for this exciton band structure. Our data also imply that pair-wise inter-chlorophyll couplings determine the resonance fluorescence lineshape of excitonic polarons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号