首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Laboratory strains of measles viruses (MV), such as Edmonston and Halle, use the complement regulatory protein CD46 as a cell surface receptor. The receptor usage of clinical isolates of MV, however, remains unclear. Receptor usage by primary patient isolates of MV was compared to isolates that had been passaged on a variety of tissue culture cell lines. All of the isolates could infect cells in a CD46-dependent manner, but their tropism was restricted according to cell type (e.g., lymphocytes versus fibroblasts). The results indicate that patient isolates that have not been adapted to tissue culture cell lines use CD46 as a receptor. In addition, passaging primary MV patient isolates in B95-8 cells selected variants that had alternate receptor usage compared to the original isolate. Thus, changes in receptor usage by MV are dependent upon the cell type used for isolation. Furthermore, our results confirm the relevance of the CD46 receptor to natural measles infection.  相似文献   

2.
Measles virus (MV) is a human pathogen using two distinct cell surface receptors for entry into host cells. We present here a comparative analysis for binding of the MV receptors CD46 and SLAM to the measles virus hemagglutinin protein (MVH, Edmonston strain). Soluble monomeric and dimeric MVH variants were prepared in mammalian cells and their conformation assessed using a panel of monoclonal antibodies. The two receptor molecules specifically bound to the MVH protein with distinct binding modes. The association rate (k(a)) for SLAM binding to MVH was very low ( approximately 3000 m(-1)s(-1)), about 20 times lower that the k(a) determined for CD46 binding. However, SLAM bound tighter to the virus protein than CD46, as revealed by a 5-fold lower dissociation rate (k(d), approximately 1.5 x 10(-3) s(-1)). These data suggest that the SLAM receptor binds to a less accessible and more hydrophobic surface on MVH than the CD46 receptor, as illustrated in a binding model. Despite the differences in kinetics, receptor competition binding experiments revealed that they recognize overlapping sites in MVH. Indeed, a panel of anti-MVH monoclonal antibodies equally inhibited binding of both receptor molecules. The similar immune reactivity of the two receptor binding sites suggests that the shift in receptor usage by MV may not be driven by immune responses.  相似文献   

3.
A chimeric fusion protein encompassing the CD46 ectodomain linked to the C-terminal part of the C4b binding protein (C4bp) alpha chain (sCD46-C4bpalpha) was produced in eukaryotic cells. This protein, secreted as a disulfide-linked homo-octamer, was recognized by a panel of anti-CD46 antibodies with varying avidities. Unlike monomeric sCD46, the octameric sCD46-C4bpalpha protein was devoid of complement regulatory activity. However, sCD46-C4bpalpha was able to bind to the measles virus hemagglutinin protein expressed on murine cells with a higher avidity than soluble monomeric sCD46. Moreover, the octameric sCD46-C4bpalpha protein was significantly more efficient than monomeric sCD46 in inhibiting virus binding to CD46, in blocking virus induced cell-cell fusion, and in neutralizing measles virus in vitro. In addition, the octameric sCD46-C4bpalpha protein, but not the monomeric sCD46, fully protected CD46 transgenic mice against a lethal intracranial measles virus challenge.  相似文献   

4.
The two terminal complement control protein (CCP) modules of the CD46 glycoprotein mediate measles virus binding. Three-dimensional models for these two domains were derived based on the NMR structures of two CCP modules of factor H. Both CD46 modules are about 35 A long, and form a five-stranded antiparallel beta-barrel structure. Monte Carlo simulations, sampling the backbone torsion angles of the linker peptide and selecting possible orientations on the basis of minimal solvent-exposed hydrophobic area, were used to predict the orientation of CCP-I relative to CCP-II. We tested this procedure successfully for factor H. For CD46, three clusters of structures differing in the tilt angle of the two domains were obtained. To test these models, we mutagenized the CCP modules. Four proteins, two without an oligosaccharide chain and two with mutated short amino acid segments, reached the cell surface efficiently. Only the protein without the CCP-I oligosaccharide chain maintained binding to the viral attachment protein hemagglutinin. These results are consistent with one of our models and suggest that the viral hemagglutinin does not bind at the membrane-distal tip of CD46, but near the concave CCP-II interface region.  相似文献   

5.
Recently, two cellular membrane proteins, the membrane cofactor protein CD46 and the membrane-organizing external spike protein, moesin, have been identified to be functionally associated with measles virus (MV) infectivity of cells. We investigated the functional consequences of binding of monoclonal antibodies to both molecules individually and combined on MV attachment, fusion, and plaque formation and the putative direct physical interaction of moesin and CD46. We found that antibodies to moesin or CD46 separately inhibited MV-cell interactions to a high percentage in the plaque test, by approximately 85 and 75%, respectively. The inhibition by combinations of antibodies was additive at low concentrations and complete at high concentrations. This indicates that similar sites of interaction were blocked by steric hindrance. Furthermore, antimoesin antibodies blocked the infection of CD46-negative mouse cell lines with MV. Chemical cross-linking of cell surface proteins indicated the close proximity of CD46 and moesin in the membrane of human cells, and coimmunoprecipitation of moesin with CD46 suggested their physical interaction. Immunohistochemically by electron microscopy, CD46 and moesin were found to be localized at sites of the cellular membrane where MV particles adsorbed. These data support a model of direct interaction of CD46 and moesin in the cellular membrane and suggest that this complex is functionally involved in the uptake of MV into cells.  相似文献   

6.
Natural or wild-type (wt) measles virus (MV) infection in vivo which is restricted to humans and certain monkeys represents an enigma in terms of receptor usage. Although wt MV is known to use the protein SLAM (CD150) as a cell receptor, many human tissues, including respiratory epithelium in which the infection initiates, are SLAM negative. These tissues are CD46 positive, but wt MV strains, unlike vaccinal and laboratory MV strains, are not thought to use CD46 as a receptor. We have identified a novel CD46 binding site at residues S548 and F549, in the hemagglutinin (H) protein from a laboratory MV strain, which is also present in wt H proteins. Our results suggest that although wt MV interacts with SLAM with high affinity, it also possesses the capacity to interact with CD46 with low affinity.  相似文献   

7.
We have previously characterized an influenza A (H1N1) virus which has host-dependent growth and receptor binding properties and have shown that a mutation which removes an oligosaccharide from the tip of the hemagglutinin (HA) by changing Asn-129 to Asp permits this virus to grow to high titer in MDBK cells, (C. M. Deom, A. J. Caton, and I. T. Schulze, Proc. Natl. Acad. Sci. USA 83:3771-3775, 1986). We have now isolated monoclonal antibodies specific for the mutant HA and have used escape mutants to identify alterations in HA sequence which reduce virus yields from MDBK cells without reducing those from chicken embryo fibroblasts. Two types of escape mutants which grow equally well in chicken embryo fibroblasts were obtained. Those with the parent phenotype contain Asn at residue 129 and are glycosylated at that site. Those with the mutant phenotype are unchanged at residue 129 but have a Gly to Glu substitution at residue 158, which is close to residue 129 on the HA1 subunit. Binding assays with neoglycoproteins containing N-acetylneuraminic acid in either alpha 2,3 or alpha 2,6 linkage to galactose showed that the MDBK-synthesized oligosaccharides at Asn-129 reduce binding to both of these receptors, leaving the HA's preference for alpha 2,6 linkages unchanged. Glu at residue 158 greatly reduces binding to both receptors without reducing virus yields from MDBK cells. We conclude that changes in the receptor binding properties of the HA can result either from direct alteration of the HA protein by host cell glycosylation or from mutations in the HA gene and that these changes generate heterogeneity that can contribute to the survival of influenza A virus populations in nature.  相似文献   

8.
A monoclonal antibody (MCI20.6) which inhibited measles virus (MV) binding to host cells was previously used to characterize a 57- to 67-kDa cell surface glycoprotein as a potential MV receptor. In the present work, this glycoprotein (gp57/67) was immunopurified, and N-terminal amino acid sequencing identified it as human membrane cofactor protein (CD46), a member of the regulators of complement activation gene cluster. Transfection of nonpermissive murine cells with a recombinant expression vector containing CD46 cDNA conferred three major properties expected of cells permissive to MV infection. First, expression of CD46 enabled MV to bind to murine cells. Second, the CD46-expressing murine cells were able to undergo cell-cell fusion when both MV hemagglutinin and MV fusion glycoproteins were expressed after infection with a vaccinia virus recombinant encoding both MV glycoproteins. Third, M12.CD46 murine B cells were able to support MV replication, as shown by production of infectious virus and by cell biosynthesis of viral hemagglutinin after metabolic labeling of infected cells with [35S]methionine. These results show that the human CD46 molecule serves as an MV receptor allowing virus-cell binding, fusion, and viral replication and open new perspectives in the study of MV pathogenesis.  相似文献   

9.
The receptor binding specificity of influenza viruses may be important for host restriction of human and avian viruses. Here, we show that the hemagglutinin (HA) of the virus that caused the 1918 influenza pandemic has strain-specific differences in its receptor binding specificity. The A/South Carolina/1/18 HA preferentially binds the alpha2,6 sialic acid (human) cellular receptor, whereas the A/New York/1/18 HA, which differs by only one amino acid, binds both the alpha2,6 and the alpha2,3 sialic acid (avian) cellular receptors. Compared to the conserved consensus sequence in the receptor binding site of avian HAs, only a single amino acid at position 190 was changed in the A/New York/1/18 HA. Mutation of this single amino acid back to the avian consensus resulted in a preference for the avian receptor.  相似文献   

10.
In order to clarify the effect of an accumulation of amino acid substitutions on the hemadsorption character of the influenza AH3 virus hemagglutinin (HA) protein, we introduced single-point amino acid changes into the HA1 domain of the HA proteins of influenza viruses isolated in 1968 (A/Aichi/2/68) and 1997 (A/Sydney/5/97) by using PCR-based random mutation or site-directed mutagenesis. These substitutions were classified as positive or negative according to their effects on the hemadsorption activity. The rate of positive substitutions was about 50% for both strains. Of 44 amino acid changes that were identical in the two strains with regard to both the substituted amino acids and their positions in the HA1 domain, 22% of the changes that were positive in A/Aichi/2/68 were negative in A/Sydney/5/97 and 27% of the changes that were negative in A/Aichi/2/68 were positive in A/Sydney/5/97. A similar discordance rate was also seen for the antigenic sites. These results suggest that the accumulation of amino acid substitutions in the HA protein during evolution promoted irreversible structural changes and therefore that antigenic changes in the H3HA protein may not be limited.  相似文献   

11.
A major difference between vaccine and wild-type strains of measles virus (MV) in vitro is the wider cell specificity of vaccine strains, resulting from the receptor usage of the hemagglutinin (H) protein. Wild-type H proteins recognize the signaling lymphocyte activation molecule (SLAM) (CD150), which is expressed on certain cells of the immune system, whereas vaccine H proteins recognize CD46, which is ubiquitously expressed on all nucleated human and monkey cells, in addition to SLAM. To examine the effect of the H protein on the tropism and attenuation of MV, we generated enhanced green fluorescent protein (EGFP)-expressing recombinant wild-type MV strains bearing the Edmonston vaccine H protein (MV-EdH) and compared them to EGFP-expressing wild-type MV strains. In vitro, MV-EdH replicated in SLAM(+) as well as CD46(+) cells, including primary cell cultures from cynomolgus monkey tissues, whereas the wild-type MV replicated only in SLAM(+) cells. However, in macaques, both wild-type MV and MV-EdH strains infected lymphoid and respiratory organs, and widespread infection of MV-EdH was not observed. Flow cytometric analysis indicated that SLAM(+) lymphocyte cells were infected preferentially with both strains. Interestingly, EGFP expression of MV-EdH in tissues and lymphocytes was significantly weaker than that of the wild-type MV. Taken together, these results indicate that the CD46-binding activity of the vaccine H protein is important for determining the cell specificity of MV in vitro but not the tropism in vivo. They also suggest that the vaccine H protein attenuates MV growth in vivo.  相似文献   

12.
During protein evolution the amino acid substitutions accumulate with time. However, the effect of accumulation of the amino acid substitutions to structural changes has not been estimated well. We will propose that the discordance of amino acid substitution on the HA protein of influenza A virus is useful for the assessment of structural changes during evolution. Discordance value can be obtained from the experimental data of tolerance or intolerance by introducing site directed mutagenesis at the homologous positions of two HA proteins holding the same amino acid residues. The value of discordance correlated to the number of amino acid differences among proteins. In the H3HA discordance rate was calculated to be 0.45% per one amino acid change. Furthermore, discordance of amino acid substitutions suggests that tolerable amino acid substitutions in different order have a probability of promoting irreversible divergence of the HA protein to different subtypes.  相似文献   

13.
The protein product of the v-myb oncogene of avian myeloblastosis virus, p48v-myb, differs structurally in several ways from its normal cellular homolog, p75c-myb. We demonstrated that the 11 specific amino acid substitutions found in two independent molecular clones of this virus were not required for the transformation of myeloblasts by v-myb.  相似文献   

14.
Measles virus (MV) enters cells either through the signaling lymphocyte activation molecule SLAM (CD150) expressed only in immune cells or through the ubiquitously expressed regulator of complement activation, CD46. To identify residues on the attachment protein hemagglutinin (H) essential for fusion support through either receptor, we devised a strategy based on analysis of morbillivirus H-protein sequences, iterative cycles of mutant protein production followed by receptor-based functional assays, and a novel MV H three-dimensional model. This model uses the Newcastle disease virus hemagglutinin-neuraminidase protein structure as a template. We identified seven amino acids important for SLAM- and nine for CD46 (Vero cell receptor)-induced fusion. The MV H three-dimensional model suggests (i) that SLAM- and CD46-relevant residues are located in contiguous areas in propeller beta-sheets 5 and 4, respectively; (ii) that two clusters of SLAM-relevant residues exist and that they are accessible for receptor contact; and (iii) that several CD46-relevant amino acids may be shielded from direct receptor contacts. It appears likely that certain residues support receptor-specific H-protein conformational changes. To verify the importance of the H residues identified with the cell-cell fusion assays for virus entry into cells, we transferred the relevant mutations into genomic MV cDNAs. Indeed, we were able to recover recombinant viruses, and we showed that these replicate selectively in cells expressing SLAM or CD46. Selectively receptor-blind viruses will be used to study MV pathogenesis and may have applications for the production of novel vaccines and therapeutics.  相似文献   

15.
We have used site-directed mutagenesis of the hemagglutinin (H) glycoprotein of measles virus (MV) to investigate the molecular basis for the phenotypic differences observed between MV vaccine strains and recently isolated wild-type MV strains. The former downregulate CD46, the putative cellular receptor of MV, are positive for hemadsorption, and are fusogenic in HeLa cells, whereas the latter are negative for these phenotypic markers. CD46 downregulation in particular, could have profound consequences for the immunopathology of MV infection, as this molecule protects the cell from complement lysis. Mutagenesis of two amino acids, valine and tyrosine at positions 451 and 481, respectively, in the H protein from the vaccine-like Hallé MV strain to their counterparts, glutamate and asparagine, in the H protein from the wild-type Ma93F MV strain (creating the V451E/Y481N double mutation) abrogated CD46 downregulation, HeLa cell fusion, and hemadsorption. The converse double mutagenesis of the Ma93F H protein (E451V/N481Y) transferred the CD46-downregulating, fusogenic, and hemadsorption functions to this protein. The data provide the first mapping study of the functional domains of MV H. The consequences of these results for MV vaccine design and the role of CD46 in MV infection are discussed.  相似文献   

16.
Measles virus (MV), one of the most contagious agents, infects immune cells using the signaling lymphocyte activation molecule (SLAM) on the cell surface. A complex of SLAM and the attachment protein, hemagglutinin (MVH), has remained elusive due to the intrinsic handling difficulty including glycosylation. Furthermore, crystals obtained of this complex are either nondiffracting or poorly-diffracting. To solve this problem, we designed a systematic approach using a combination of the following techniques; (1) a transient expression system in HEK293SGnTI(-) cells, (2) lysine methylation, (3) structure-guided mutagenesis directed at better crystal packing, (4) Endo H treatment, (5) single-chain formation for stable complex, and (6) floating-drop vapor diffusion. Using our approach, the receptor-binding head domain of MV-H covalently fused with SLAM was successfully crystallized and diffraction was improved from 4.5 ? to a final resolution of 3.15 ? . These combinational methods would be useful as crystallization strategies for complexes of glycoproteins and their receptors.  相似文献   

17.
Measles virus (MV) C protein is a small and basic non-structural protein, but its function is not well understood. We have found that a FLAG-tagged wild-type MV C protein expressed from cDNA was accumulated exclusively in the nucleus. To analyze the amino acid sequence important for the nuclear localization of C protein, a plasmid expressing C protein fused to the enhanced green fluorescent protein (EGFP) was generated. Mutation analysis revealed that (41)PPARKRRQ(48), belonging to the classical nuclear localization signal was important for nuclear localization. Analysis of the amino acid sequence of C protein revealed that it has a nuclear export signal (NES)-like sequence, (76)LEKAMTTLKL(85). Addition of the putative NES to the EGFP resulted in the translocation of EGFP to the cytoplasm. The Rev(1.4)-EGFP nuclear export assay showed that this putative NES has a CRM1-dependent NES activity. C-EGFP accumulated in HeLa nuclei could be translocated to NIH3T3 nuclei in heterokaryon assays. In MV-infected cells, C-EGFP was accumulated in the nuclei in early phase but in the cytoplasm in late phase. These results indicate that the putative NES is functional and that C protein has the ability to shuttle between the nucleus and the cytoplasm.  相似文献   

18.
The interaction of measles virus with its receptor signaling lymphocytic activation molecule (SLAM) controls cell entry and governs tropism. We predicted potential interface areas of the measles virus attachment protein hemagglutinin to begin the investigation. We then assessed the relevance of individual amino acids located in these areas for SLAM-binding and SLAM-dependent membrane fusion, as measured by surface plasmon resonance and receptor-specific fusion assays, respectively. These studies identified one hemagglutinin protein residue, isoleucine 194, which is essential for primary binding. The crystal structure of the hemagglutinin-protein localizes Ile-194 at the interface of propeller blades 5 and 6, and our data indicate that a small aliphatic side chain of residue 194 stabilizes a protein conformation conducive to binding. In contrast, a quartet of residues previously shown to sustain SLAM-dependent fusion is not involved in binding. Instead, our data prove that after binding, this quartet of residues on propeller blade 5 conducts conformational changes that are receptor-specific. Our study sets a structure-based stage for understanding how the SLAM-elicited conformational changes travel through the H-protein ectodomain before triggering fusion protein unfolding and membrane fusion.  相似文献   

19.
Two cellular proteins, membrane cofactor protein (MCP) and moesin, were reported recently to be functionally associated with the initiation of a measles virus infection. We have analyzed the interaction of measles virus with cell surface proteins, using an overlay binding assay with cellular proteins immobilized on nitrocellulose. Among surface-biotinylated proteins from a human rectal tumor cell line (HRT), measles virus was able to bind only to a 67-kDa protein that was identified as MCP. The virus recognized different isoforms of MCP expressed from human (HRT and HeLa) and simian (Vero) cell lines. The binding of measles virus to MCP was abolished after cleavage of the disulfide bonds by reducing agents as well as after enzymatic release of N-linked oligosaccharides. By contrast, removal of sialic acid or O-linked oligosaccharides did not affect the recognition of MCP measles virus. These data indicate that the receptor determinant of MCP is dependent on a conformation of the protein that is maintained by disulfide bonds and N-glycans present in the complement binding domains. Our results are consistent with a role of MCP as primary attachment site for measles virus in the initial stage of an infection. The functional relationship between MCP and moesin in a measles virus infection is discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号