首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SPIN90 is a widely expressed Nck-binding protein that contains one Src homology 3 (SH3) domain, three Pro-rich motifs, and a serine/threonine-rich region, and is known to participate in sarcomere assembly during cardiac myocyte differentiation. We used in vitro binding assays and yeast two-hybrid screening analysis to identify Nck, betaPIX, Wiscott-Aldrich syndrome protein (WASP), and ERK1 as SPIN90-binding proteins. It appears that betaPIX, WASP, and SPIN90 form a complex that interacts with Nck in a manner dependent upon cell adhesion to extracellular matrix. The betaPIX.WASP.SPIN90.Nck interaction was abolished in suspended and cytochalasin D-treated cells, but was recovered when cells were replated on fibronectin-coated dishes. The SPIN90.betaPIX.WASP complex was stable, even in suspended cells, suggesting SPIN90 serves as an adaptor molecule to recruit other proteins to Nck at focal adhesions. In addition, we found that overexpression of the SPIN90 SH3 domain or Pro-rich region, respectively, abolished SPIN90.Nck and SPIN90.betaPIX interactions, resulting in detachment of cells from extracellular matrix. SPIN90 was phosphorylated by ERK1, which was, itself, activated by cell adhesion and platelet-derived growth factor. Such phosphorylation of SPIN90 likely promotes the interaction of the SPIN90.betaPIX.WASP complex and Nck. It thus appears that the interaction of the betaPIX.WASP.SPIN90 complex with Nck is crucial for stable cell adhesion and can be dynamically modulated by SPIN90 phosphorylation that is dependent on cell adhesion and ERK activation.  相似文献   

2.
Signalling proteins such as phospholipase C-gamma (PLC-gamma) or GTPase-activating protein (GAP) of ras contain conserved regions of approximately 100 amino acids termed src homology 2 (SH2) domains. SH2 domains were shown to be responsible for mediating association between signalling proteins and tyrosine-phosphorylated proteins, including growth factor receptors. Nck is an ubiquitously expressed protein consisting exclusively of one SH2 and three SH3 domains. Here we show that epidermal growth factor or platelet-derived growth factor stimulation of intact human or murine cells leads to phosphorylation of Nck protein on tyrosine, serine, and threonine residues. Similar stimulation of Nck phosphorylation was detected upon activation of rat basophilic leukemia RBL-2H3 cells by cross-linking of the high-affinity immunoglobulin E receptors (Fc epsilon RI). Ligand-activated, tyrosine-autophosphorylated platelet-derived growth factor or epidermal growth factor receptors were coimmunoprecipitated with anti-Nck antibodies, and the association with either receptor molecule was mediated by the SH2 domain of Nck. Addition of phorbol ester was also able to stimulate Nck phosphorylation on serine residues. However, growth factor-induced serine/threonine phosphorylation of Nck was not mediated by protein kinase C. Interestingly, approximately fivefold overexpression of Nck in NIH 3T3 cells resulted in formation of oncogenic foci. These results show that Nck is an oncogenic protein and a common target for the action of different surface receptors. Nck probably functions as an adaptor protein which links surface receptors with tyrosine kinase activity to downstream signalling pathways involved in the control of cell proliferation.  相似文献   

3.
The nonreceptor tyrosine kinase c-Abl is tightly regulated in vivo, but the mechanisms that normally repress its activity are not well understood. We find that a construct encoding the first two Src homology 3 (SH3) domains of the Src homology 2/SH3 adaptor protein Nck can activate c-Abl in human 293T cells. A myristoylated Nck SH3 domain construct, which is expected to localize to membranes, potently activated Abl when expressed at low levels. An unmyristoylated Nck SH3 domain construct, which localizes to the cytosol and nucleus, also activated Abl but only at high levels of expression. Activation by both myristoylated and unmyristoylated Nck constructs required the C terminus of Abl; a C-terminally truncated form of Abl was not activated, although this construct could still be activated by deletion of its SH3 domain. Activation did not require the major binding sites in the Abl C terminus for Nck SH3 domains, however, suggesting that the mechanism of activation does not require direct binding to the C terminus. Activation of c-Abl by Nck SH3 domains provides a robust experimental system for analyzing the mechanisms that normally repress Abl activity and how that normal regulation can be perturbed.  相似文献   

4.
Nck is a ubiquitously expressed adaptor protein containing Src homology 2 (SH2) and Src homology 3 (SH3) domains. It integrates downstream effector proteins with cell membrane receptors, such as the epidermal growth factor receptor (EGFR). EGFR plays a critical role in cellular proliferation and differentiation. The 45-residue juxtamembrane domain of EGFR (JM), located between the transmembrane and kinase domains, regulates receptor activation and trafficking to the basolateral membrane of polarized epithelia through a proline-rich motif that resembles a consensus SH3 domain binding site. We demonstrate here that the JM region can bind to Nck, showing a notable binding preference for the second SH3 domain. To elucidate the structural determinants for this interaction, we have determined the NMR solution structures of both the first and second Nck SH3 domains (Nck1-1 and Nck1-2). These domains adopt a canonical SH3 beta-barrel-like fold, containing five antiparallel strands separated by three loop regions and one 3 10-helical turn. Chemical shift perturbation studies have identified the residues that form the binding cleft of Nck1-2, which are primarily located in the RT and n-Src loops. JM binds to Nck1-2 with an affinity of approximately 80 microM through a positively charged sequence near the N-terminus, as opposed to the polyproline sequence. The two Nck SH3 domains exhibit both steric and electrostatic differences in their RT-Src and n-Src loops, and a model of the Nck1-2 domain complexed with the JM highlights the factors that define the putative binding mode for this ligand.  相似文献   

5.
Lee S  Lee K  Hwang S  Kim SH  Song WK  Park ZY  Chang S 《The EMBO journal》2006,25(20):4983-4995
SPIN90/WISH (SH3 protein interacting with Nck, 90 kDa/Wiskott-Aldrich syndrome protein (WASP) interacting SH3 protein) regulates actin polymerization through its interaction with various actin-regulating proteins. It is highly expressed in the brain, but its role in the nervous system is largely unknown. We report that it is expressed in dendritic spines where it associates with PSD-95. Its overexpression increased the number and length of dendritic filopodia/spines via an N-WASP-independent mechanism, and knock down of its expression with small interfering RNA reduced dendritic spine density. The increase in spinogenesis is accompanied by an increase in synaptogenesis in contacting presynaptic neurons. Interestingly, PSD-95-induced dendritic spinogenesis was completely abolished by knock down of SPIN90/WISH. Finally, in response to chemically induced long-term potentiation, SPIN90/WISH associated with PSD-95 and was redistributed to dendritic spines. Our results suggest that SPIN90/WISH associates with PSD-95, and so becomes localized to dendritic spines where it modulates actin dynamics to control dendritic spinogenesis. They also raise the possibility that SPIN90/WISH is a downstream effector of PSD-95-dependent synaptic remodeling.  相似文献   

6.
7.
Nck is a ubiquitously expressed, primarily cytosolic adapter protein consisting of one SH2 domain and three SH3 domains. It links receptor and nonreceptor tyrosine kinases to actin cytoskeleton reorganizing proteins. In T lymphocytes, Nck is a crucial component of signaling pathways for T cell activation and effector function. It recruits actin remodeling proteins to T cell receptor (TCR)‐associated activation clusters and thereby initiates changes in cell polarity and morphology. Moreover, Nck is crucial for the TCR‐induced mobilization of secretory vesicles to the cytotoxic immunological synapse. To identify the interactome of Nck in human T cells, we performed a systematic screen for interaction partners in untreated or pervanadate‐treated cells. We used GST fusion proteins containing full length Nck, the combined SH3 domains or the individual SH3 and SH2 domains to precipitate putative Nck interactors from cellular lysates. Protein bands were excised from gels, processed by tryptic in‐gel digestion and analyzed by mass spectrometry. Using this approach, we confirmed previously established interactions (e.g., with Slp76, CD3ε, WASP, and WIPF1) and identified several novel putative Nck‐binding proteins. We subsequently verified the SH2 domain binding to the actin‐binding protein HIP55 and to FYB/ADAP, and the SH3‐mediated binding to the nuclear proteins SFPQ/NONO. Using laser scanning microscopy, we provide new evidence for a nuclear localization of Nck in human T cells. Our data highlight the fundamental role of Nck in the TCR‐to‐cytoskeleton crosstalk and point to yet unknown nuclear functions of Nck also in T lymphocytes.  相似文献   

8.
Recruitment of cellular signaling proteins by the CD3 polypeptides of the TCR complex mediates T cell activation. We have screened a human Src homology 3 (SH3) domain phage display library for proteins that can bind to the proline-rich region of CD3epsilon. This screening identified Eps8L1 (epidermal growth factor receptor pathway substrate 8-like 1) together with the N-terminal SH3 domain of Nck1 and Nck2 as its preferred SH3 partners. Studies with recombinant proteins confirmed strong binding of CD3epsilon to Eps8L1 and Nck SH3 domains. CD3epsilon bound well also to Eps8 and Eps8L3, and modestly to Eps8L2, but not detectably to other SH3 domains tested. Interestingly, binding of Nck and Eps8L1 SH3 domains was mapped to a PxxDY motif that shared its tyrosine residue (Y166) with the ITAM of CD3epsilon. Phosphorylation of this residue abolished binding of Eps/Nck SH3 domains in peptide spot filter assays, as well as in cells cotransfected with a dominantly active Lck kinase. TCR ligation-induced binding and phosphorylation-dependent loss of binding were also demonstrated between Eps8L1 and endogenous CD3epsilon in Jurkat T cells. Thus, phosphorylation of Y166 serves as a molecular switch during T cell activation that determines the capacity of CD3epsilon to interact with either SH3 or SH2 domain-containing proteins.  相似文献   

9.
We recently reported that SPIN90 is able to bind with several proteins involved in regulating actin cytoskeleton networks, including dynamin, WASP, β PIX, and Nck. Based on these findings, we investigated how SPIN90 regulates the actin cytoskeleton and promotes actin assembly. This study demonstrated that aluminium fluoride-induced localization of SPIN90 to lamellipodia requires amino acids 582-722 at the SPIN90 C-terminus, which is also essential for F-actin binding and Arp2/3 complex mediated polymerization of actin into branched actin filaments. Furthermore, after deletion of the F-actin binding region (582-722 SPIN90) failed to localize at the membrane edge and was unable to promote lamellipodia formation, suggesting that the F-actin binding region in the SPIN90 C-terminus is essential for the formation of branched actin networks and regulation of the actin cytoskeleton at the leading edge of cells.  相似文献   

10.
Angiogenesis-the growth of new blood vessels from preexisting vessels-is an important physiological process and is considered to play a key role in tumor growth and metastasis. We identified the immunoglobulin-containing and proline-rich receptor-1 (IGPR-1, also called TMIGD2) gene as a novel cell adhesion receptor that is expressed in various human organs and tissues, mainly in cells with epithelium and endothelium origins. IGPR-1 regulates cellular morphology, homophilic cell aggregation, and cell-cell interaction. IGPR-1 activity also modulates actin stress fiber formation and focal adhesion and reduces cell migration. Silencing of expression of IGPR-1 by small interfering RNA (siRNA) and by ectopic overexpression in endothelial cells showed that IGPR-1 regulates capillary tube formation in vitro, and B16F melanoma cells engineered to express IGPR-1 displayed extensive angiogenesis in the mouse Matrigel angiogenesis model. Moreover, IGPR-1, through its proline-rich cytoplasmic domain, associates with multiple Src homology 3 (SH3)-containing signaling proteins, including SH3 protein interacting with Nck (SPIN90/WISH), bullous pemphigoid antigen-1, and calcium channel β2. Silencing of expression of SPIN90/WISH by siRNA in endothelial cells showed that SPIN90/WISH is required for capillary tube formation. These features of IGPR-1 suggest that IGPR-1 is a novel receptor that plays an important role in cell-cell interaction, cell migration, and angiogenesis.  相似文献   

11.
Src homology domains [i.e., Src homology domain 2 (SH2) and Src homology domain 3 (SH3)] play a critical role in linking receptor tyrosine kinases to downstream signaling networks. A well-defined function of the SH3-SH2-SH3 adapter Grb2 is to link receptor tyrosine kinases, such as the epidermal growth factor receptor (EGFR), to the p21ras-signaling pathway. Grb2 has also been implicated to play a role in growth factor-regulated actin assembly and receptor endocytosis, although the underlying mechanisms remain unclear. In this study, we show that Grb2 interacts through its SH3 domains with the human Wiskott-Aldrich syndrome protein (WASp), which plays a role in regulation of the actin cytoskeleton. We find that WASp is expressed in a variety of cell types and is exclusively cytoplasmic. Although the N-terminal SH3 domain of Grb2 binds significantly stronger than the C-terminal SH3 domain to WASp, full-length Grb2 shows the strongest binding. Both phosphorylation of WASp and its interaction with Grb2, as well as with another adapter protein Nck, remain constitutive in serum-starved or epidermal growth factor-stimulated cells. WASp coimmunoprecipitates with the activated EGFR after epidermal growth factor stimulation. Purified glutathione S-transferase-full-length-Grb2 fusion protein, but not the individual domains of Grb2, enhances the association of WASp with the EGFR, suggesting that Grb2 mediates the association of WASp with EGFR. This study suggests that Grb2 translocates WASp from the cytoplasm to the plasma membrane and the Grb2-WASp complex may play a role in linking receptor tyrosine kinases to the actin cytoskeleton.  相似文献   

12.
The Nck adaptor protein comprises a single C-terminal SH2 domain and three SH3 domains. The domain structure of Nck suggests that Nck links tyrosine kinase substrates to proteins containing proline-rich motifs. Here we show that Bcr/Abl tyrosine kinase, and three tyrosine phosphorylated proteins (115, 120 and 155 kDa) are co-immunoprecipitated with antibody against Nck from lysates of the human leukaemia cell line K562. By means of affinity purification with the Nck-binding phosphopeptide EPGPY(P)AQPSV, we could also detect the association of endogenous Nck with the proto-oncogene product Cbl. An investigation of the nature of interactions revealed that Bcr/Abl, Cbl, and the 155-kDa tyrosine phosphotyrosine bind exclusively to the SH3 domains of Nck. In addition, none of the single SH3 domains of Nck expressed as glutathione-S-transferase (GST) fusion proteins is able to interact with the proline-rich ligands. However, combined first and second SH3 domains have the capacity to bind Bcr/Abl, Chl and p155. Mutations of conserved tryptophan to Lysine in either of the combined first and second SH3 domains completely abolish ligand binding. These data suggest that cooperation exists among the SH3 domains of Nck for a high-affinity binding of proteins containing proline-rich motifs.  相似文献   

13.
BACKGROUND: SH2/SH3 adaptor proteins play a critical role in tyrosine kinase signaling pathways, regulating essential cell functions by increasing the local concentration or altering the subcellular localization of downstream effectors. The SH2 domain of the Nck adaptor can bind tyrosine-phosphorylated proteins, while its SH3 domains can modulate actin polymerization by interacting with effectors such as WASp/Scar family proteins. Although several studies have implicated Nck in regulating actin polymerization, its role in living cells is not well understood. RESULTS: We used an antibody-based system to experimentally modulate the local concentration of Nck SH3 domains on the plasma membrane of living cells. Clustering of fusion proteins containing all three Nck SH3 domains induced localized polymerization of actin, including the formation of actin tails and spots, accompanied by general cytoskeletal rearrangements. All three Nck SH3 domains were required, as clustering of individual SH3 domains or a combination of the two N-terminal Nck SH3 domains failed to promote significant local polymerization of actin in vivo. Changes in actin dynamics induced by Nck SH3 domain clustering required the recruitment of N-WASp, but not WAVE1, and were unaffected by downregulation of Cdc42. CONCLUSIONS: We show that high local concentrations of Nck SH3 domains are sufficient to stimulate localized, Cdc42-independent actin polymerization in living cells. This study provides strong evidence of a pivotal role for Nck in directly coupling ligand-induced tyrosine phosphorylation at the plasma membrane to localized changes in organization of the actin cytoskeleton through a signaling pathway that requires N-WASp.  相似文献   

14.
Clathrin-mediated endocytosis is a major cellular pathway for internalization of proteins and lipids and for recycling of synaptic vesicles. The GTPase dynamin plays a key role in this process, and the proline-rich domain of dynamin participates in various protein-protein interactions to ensure a proper coordination of endocytic processes. Although dynamin is not directly associated with actin, several dynamin-binding proteins can interact with actin or with proteins that regulate actin assembly, thereby coordinately regulating actin assembly and trafficking events. This article summarizes dynamin interactions with various Src homology 3-containing proteins, many of which are actin-binding proteins. It also discusses the recently identified two new dynamin binding proteins, SH3 protein interacting with Nck, 90 kDa/Wiskott-Aldrich syndrome protein interacting with SH3 protein (SPIN90/WISH) and sorting nexin 9, and outlines their potential role as a link between endocytosis and actin dynamics.  相似文献   

15.
Using a conventional cloning technique, a novel full-length cDNA was isolated and sequenced from a human placental cDNA library. This cDNA consists of 2129 bp and has a predicted open reading frame encoding 366 amino acids. It possesses a Src homology 3 (SH3) motif, proline-rich region, serine-rich region and no catalytic domain, suggesting that it seems to be a signaling protein most similar to e3B1, an eps8 SH3 binding protein. PCR-based mapping with both a monochromosomal hybrid panel and radiation hybrid cell panels placed the gene to human chromosome 17q21.3 near the marker D17S1795.  相似文献   

16.
One of the adaptor proteins, Nck, comprises a single SH2 domain and three SH3 domains that are important in protein-protein interactions. The in vivo association of Nck with the guanine nucleotide exchange factor Sos has been well documented; however, the precise nature of the interaction is unclear. To determine which SH3 domains are involved in the Nck-Sos interaction, individual SH3 domains of Nck were generated as glutathione S-transferase fusion proteins. We found that exclusively the third (C-terminal) SH3 domain of Nck has the ability to bind to Sos. In addition, in [35S]methionine labelled K562 cells, a 100,000 Mr protein was found to be associated with the third SH3 domain of Nck. This protein was identified as dynamin, a GTP-binding protein that has been implicated in clathrin-coated vesicle formation. Dynamin and Nck co-precipitated when cell lysates were immunoprecipitated with anti-Nck antibody. These data suggest that Nck may contribute to Ras activation and the function of dynamin in membrane trafficking through its third SH3 domain.  相似文献   

17.
The cDNA clone encoding a novel isoform of protein kinase PKN, termed PKNbeta, was isolated from a HeLa cDNA library. PKNbeta had high sequence homology with PKNalpha, originally isolated PKN, especially in the repeats of charged amino acid-rich region with leucine-zipper like sequences (CZ region/HR1), in the carboxyl-terminal catalytic domain, and in approximately 130 amino acid stretch (D region/HR2), located between CZ region/HR1 and the catalytic domain. However, the amino acid sequence of PKNbeta differed from that of PKNalpha in the region immediately amino-terminal to the catalytic domain, which contained two distinct proline-rich sequences consistent with the class II consensus sequence, PXXPXR, for binding to SH3 domain. Distribution of PKNbeta differed from that of PKNalpha in the following two respects: (1) Northern blotting indicated that PKNbeta mRNA could not be detected in human adult tissues, but was expressed abundantly in human cancer cell lines; (2) immunochemical analysis indicated that PKNbeta localized in nucleus and perinuclear Golgi apparatus, and was almost absent in cytoplasmic region in NIH3T3 cells. Recombinant PKNbeta expressed in COS7 cells displayed autophosphorylation and peptide kinase activity, but was found to be significantly less responsive to arachidonic acid than PKNalpha. The identification of this novel isoform underscores the diversity of PKN signaling pathway.  相似文献   

18.
A uNick protein     
Nck is an adaptor protein composed of three N-terminal Src Homology (SH) 3 domains followed by a unique C?terminal SH2 domain. Like other SH2/SH3 domains-containing adaptor proteins, Nck mediates signal transduction from activated cell surface receptors by directing the flow of information to elicit properly orchestrated cell responses. In this way, Nck appears to be unique in its contribution to a wide variety of cellular processes. Moreover, in addition to the typical signal/pY-SH2/SH3-effectors mode of signaling, Nck also transduces signals through an inverse mode of -signaling (signal-SH3/SH2-pY/effectors) and from various cell compartments. Since Nck contributes to important morphogenic and mitogenic processes, deregulated expression of Nck could be detrimental to cellular homeostasis. In agreement, Nck expression has been found upregulated in numerous types of cancer. In this paper we delineate the main molecular -signaling -complexes associated with Nck, focusing on those involved in cancer progression.  相似文献   

19.
Y C Su  J Han  S Xu  M Cobb    E Y Skolnik 《The EMBO journal》1997,16(6):1279-1290
Nck, an adaptor protein composed of one SH2 and three SH3 domains, is a common target for a variety of cell surface receptors. We have identified a novel mammalian serine/threonine kinase that interacts with the SH3 domains of Nck, termed Nck Interacting Kinase (NIK). This kinase is most homologous to the Sterile 20 (Ste20) family of protein kinases. Of the members of this family, GCK and MSST1 are most similar to NIK in that they bind neither Cdc42 nor Rac and contain an N-terminal kinase domain with a putative C-terminal regulatory domain. Transient overexpression of NIK specifically activates the stress-activated protein kinase (SAPK) pathway. Both the kinase domain and C-terminal regulatory region of NIK are required for full activation of SAPK. NIK likely functions upstream of MEKK1 to activate this pathway; a dominant-negative MEK kinase 1 (MEKK1) blocks activation of SAPK by NIK. MEKK1 and NIK also associate in cells and this interaction is mediated by regulatory domains on both proteins. Two other members of this kinase family, GCK and HPK1, contain C-terminal regulatory domains with homology to that of NIK. These findings indicate that the C-terminal domain of these proteins encodes a new protein domain family and suggests that this domain couples these kinases to the SAPK pathway, possibly by interacting with MEKK1 or related kinases.  相似文献   

20.
From eluates of F-actin affinity chromatography of chicken brain, we identified a novel actin-binding protein (lasp-2) whose gene was predicted in silico. We cloned cDNA of chicken lasp-2 and analyzed its structure, expression, activity, and localization with lasp-1 (LIM and SH3 protein 1), a previously identified actin-binding protein closely related to lasp-2. Chicken lasp-2 showed high homology to mammalian putative lasp-2. Both chicken lasp-1 and chicken lasp-2 have N-terminal LIM domains, C-terminal SH3 domains, and internal nebulin repeats. However, lasp-2 is greatly different from lasp-1 in the sequence between the second nebulin repeat and a SH3 domain, and the region is conserved in chicken, mouse, and human. As expected from its structural similarity to lasp-1, lasp-2 possessed actin-binding activity and localized with actin filament in filopodia of neuroblastoma. In contrast to lasp-1, which is widely distributed in non-muscle tissues, lasp-2 was highly expressed in brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号