首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
枯草芽胞杆菌甲壳素脱乙酰酶的筛选及酶学性质*   总被引:5,自引:0,他引:5  
从海洋泥土中分离出产甲壳素脱乙酰酶菌株,确定该菌株为产碱属芽孢杆菌,其产酶适宜培养条件为:pH4.0,添加金属离子Ca^2 ,培养时间为80h,温度为350℃。所得甲壳素脱乙酰酶作用的最适温度为40℃~50℃,最适pH为4.5-5.0之间。  相似文献   

2.
甲壳素脱乙酰酶(chitin deacetylase,CDA,E.C.3.5.1.41)是一种能催化脱去甲壳素分子中N-乙酰葡糖胺链上的乙酰基,使之变成壳聚糖的酶。而壳聚糖因其独特的性质被广泛应用于医药、食品、化工、化妆品等行业。对CDA的来源、分离纯化和酶学性质、结构和催化机制、基因的克隆表达及应用前景等方面的研究进行了综述,并分析出今后的主要研究方向应在CDA基因的克隆表达、CDA底物的改造及CDA的结构和催化机制等方面。  相似文献   

3.
Abstract: The adrenergic regulation of histamine release was studied in rat brain slices labeled with L-[3H]histidine. Noradrenaline in increasing concentrations progressively inhibited K+-evoked [3H]histamine release from cortical slices, whereas phenylephrine and isoprenaline were ineffective. Yohimbine, a preferential α2-adrenoceptor antagonist, reversed the noradrenaline effect in an apparently competitive manner and with a mean K i value of 30 n M . Phentolamine reversed the noradrenaline effect with a similar potency, whereas propranolol was ineffective. The imidazolines clo-nidine and oxymetazoline acted as partial agonists, oxymeta-zoline even behaving as an apparent antagonist. In vivo clo-nidine also inhibited [3H]histamine formation in cerebral cortex, an effect reversed by the administration of yohimbine. However, yohimbine failed to increase significantly [3H]histamine release in vitro and [3H]histamine formation in vivo, suggesting that adrenergic receptors are not activated by endogenous noradrenaline released under basal conditions. It is concluded that adrenergic α2-adrenoceptors presumably located on histaminergic axons control release and synthesis of histamine in the brain.  相似文献   

4.
The Significance of Mast Cells as a Source of Histamine in the Mouse Brain   总被引:2,自引:4,他引:2  
Abstract: Knowledge of the relative contributions of mast cells and neurons to the overall pool of histamine in the brain is a prerequisite to determining the significance and role of this amine in brain function. Consequently, we analyzed the levels of brain histamine in four genotypes (+/+, W/+, Wv/+ , and WIWv ) of WBB6F1 mice, whose numbers of brain-associated mast cells vary in a genotypically specific manner. Although mast cell numbers ranged from a total absence of mast cells (W/ Wv ) to an average of about 500 mast cells/brain ( W/+ ), no significant differences between genotypes were found in the quantities of histamine in whole brains, brain regions, or crude subcellular fractions. Thus, in this strain of mice, mast cells are not a significant source of histamine in the brain. This suggests that most of the histamine is of neuronal origin. Since neuronal histamine levels are maintained only by continued histidine decarboxylase activity, complete inhibition of this enzyme by α-fluoromethylhistidine, a "suicide" inhibitor of histidine decarboxylase, would totally deplete W/Wv mice of brain histamine. This was not found to occur in the W/Wv mice, suggesting that neuronal stores of histamine can be maintained in the absence of histidine decarboxylase, or that an additional nonneuronal, non-mast cell source of histamine exists in the W/Wv mouse brain.  相似文献   

5.
Solubilization of the Picrotoxinin Binding Receptor from Mammalian Brain   总被引:3,自引:2,他引:1  
Abstract: The binding sites for α-dihydropicrotoxinin (DHP), which is a ligand for the picrotoxin-sensitive component at the benzodiazepine-γ-aminobutyric acid-receptor-ionophore complex, has been solubilized from rat brain, using 1% Lubrol. A new assay, which involves precipitation of the [3H]DHP-soluble protein complex by γ-globulin and polyethylene glycol (PEG), followed by centrifugation, is described. The solubilized material bound DHP to two sites with apparent affinities of 0.038 and 1.85 μM. The binding of DHP to the solubilized receptors was inhibited by convulsant and depressant drugs with potencies similar to those required for membrane receptors. The ability of barbiturates to inhibit DHP binding to both solubilized and membrane receptors strongly suggests that barbiturates may interact with the picrotoxin binding component. These data suggest that ligand recognition properties of the picrotoxinin binding are not altered by solubilization. The binding was abolished by urea and partially destroyed by heating the soluble extract at 65°C for 30 min. This new method of measuring the binding of ligands to the solubilized receptors by PEG centrifugation might be used successfully in other solubilization studies.  相似文献   

6.
Abstract: Levels of histamine and its major metabolites in brain, tele -methylhistamine (t-MH) and tele -methylimidazoleacetic acid (t-MIAA), were measured in rat brains up to 12 h after intraperitoneal administration of l -histidine (His), the precursor of histamine. Compared with saline-treated controls, mean levels of histamine were elevated at 1 h (+ 102%) after a 500 mg/kg dose; levels of t-MH did not increase. Following a 1,000 mg/kg dose; levels mean histamine levels were increased for up to 7 h, peaked at 3 h, and returned to control levels within 12 h. In contrast, levels of t-MH showed a small increase only after 3 h; levels of t-MIAA remained unchanged after either dose. Failure of most newly formed histamine to undergo methylation, its major route of metabolism in brain, suggested that histamine was metabolized by another mechanism possibly following nonspecific decarboxylation. To test this hypothesis, other rats were injected with α-fluoromethylhistidine (α-FMHis; 75 mg/kg, i.p.), an irreversible inhibitor of specific histidine decarboxylase. Six hours after rats received α-FMHis, the mean brain histamine level was reduced 30% compared with saline-treated controls. Rats given His (1,000 mg/kg) 3 h after α-FMHis (75 mg/kg) and examined 3 h later had a higher (+112%) mean level of histamine than rats given α-FMHis, followed by saline. Levels of t-MH and t-MIAA did not increase. These results imply that high doses of His distort the simple precursor-product relationship between histamine and its methylated metabolites in brain. The possibility that some His may undergo nonspecific decarboxylation in brain after His loading is discussed. These findings, and other actions of His independent of histamine, raise questions about the validity of using His loading as a specific probe of brain histaminergic function.  相似文献   

7.
The turnover of neuronal histamine (HA) in nine brain regions and the spinal cord of the guinea pig and the mouse was estimated and the values obtained were compared with data previously obtained in rats. The size of the neuronal HA pool was determined from the decrease in HA content, as induced by (S)-alpha-fluoro-methylhistidine (alpha-FMH), a suicide inhibitor of histidine decarboxylase. The ratios of neuronal HA to the total differed with the brain region. Pargyline hydrochloride increased the tele-methylhistamine (t-MH) levels linearly up to 2 h after administration in both the guinea pig and the mouse whole brain. Regional differences in the turnover rate of neuronal HA, calculated from the pargyline-induced accumulation of t-MH, as well as in the size of the neuronal HA pool, were more marked in the mouse than in the guinea pig brain. The hypothalamus showed the highest rate in both species. There was a good correlation between the steady-state t-MH levels and the turnover rate in different brain regions. Neither the elevation of the t-MH levels by pargyline nor the reduction of HA by alpha-FMH was observed in the spinal cord, thereby suggesting that the HA present in this region is of mast cell origin. The half-life of neuronal HA in different brain regions was in the range of 13-38 min for the mouse and 24-37 min for the guinea pig, except for HA from the guinea pig hypothalamus, which had an extraordinarily long value of 87 min. These results suggest that there are species differences in the function of the brain histaminergic system.  相似文献   

8.
Metabolites of [3H]progesterone were studied in slices prepared from different brain regions of male rat, mouse, and monkey. The major metabolites were 5α-dihydroprogesterone (5α-DHP) and 3α,5α-tetrahydroprogesterone (3α,5α-THP) in rat brain slices, 5α-DHP and 20α- dihydroprogesterone (20α-DHP) in mouse brain slices, and 20α-DHP in monkey brain slices. In rat olfactory bulb slices, 5α-DHP represented 25.2 ± 3.3% of total radioactivity and 3α,5α-THP 17.5 ± 2.8%, whereas in rat medulla oblongata slices, 5α-DHP was 31.3 ± 3.5% and 3α,5α- THP 5.4 ± 1.5% of total radioactivity. In slices from other rat brain regions, both metabolites represented 12–20% of total radioactivity.-The highest metabolite content in mouse brain was also detected in olfactory bulb slices, where 5α-DHP represented 16.6 ± 4.6% and 20α-DHP 9.5 ± 2.3% of total radioactivity. In cortical and corpus callosum slices of monkey brain, 26.8 ± 4.4% and 2.4 ± 0.5% of total radioactivity, respectively, were converted to 20α-DHP, and less than 3% of total radioactivity could be attributed to any of the other metabolites detected. The 3α,α-THP content in both rat and monkey brain was below 1 nM, but increased in rat brain to 6.7 ± 2.5 nM after electroshock. Endogenous 3α,5α-THP might play an important role in the regulation of rat behavior through the modulation of GABA action on the GABAA receptor. The significant interspecies differences in the brain progesterone metabolism should be considered in evaluating the functional role of neurosteroids in various species.  相似文献   

9.
Abstract: In mammalian brain, histamine is known to be metabolized solely by histamine methyltransferase (HMT), forming tele -methylhistamine (t-MH), then tele -methylimidazoleacetic acid (t-MIAA). We previously showed that imidazoleacetic acid (IAA), a GABA agonist, and histamine's metabolite in the periphery, is present in brain where its concentration increased after inhibition of HMT. Also, when [3H]histamine was given intracerebroventricularly to rats, a portion was converted to IAA, a process increased by inhibition of HMT. These results indicated that brain has the capacity to oxidize histamine but did not show whether this pathway is operative under physiological conditions. To address this question, rats were infused for >4 weeks with α-fluoromethylhistidine (α-FMHis), an irreversible inhibitor of histamine's synthetic enzyme, l -histidine decarboxylase. Compared with controls (untreated and saline-treated rats), brain levels of histamine, t-MH, and t-MIAA in all regions were markedly reduced in treated rats. As a percentage of controls, depletion of t-MIAA > t-MH > histamine in all regions, and regional depletions of histamine corresponded to its turnover rates in regions of rat brain. In contrast, levels of IAA were unchanged as were levels of pros -methylimidazoleacetic acid, an isomer of t-MIAA unrelated to histamine metabolism. Results suggest that in brains of rats, unlike in the periphery, most IAA may not normally derive from histamine. Because histamine in brain can be converted to IAA under certain conditions, direct oxidation of histamine may be a conditional phenomenon. Our results also support the existence of a very slow turnover pool of brain histamine and use of chronic α-FMHis infusion as a model to probe the histaminergic system in brain.  相似文献   

10.
Carbachol and norepinephrine were used as agonists to compare and contrast cholinergic and adrenergic stimulation of inositide breakdown in rat brain slices. Carbachol acts through a muscarinic (possibly M1) receptor and norepinephrine acts through an alpha 1 adrenoceptor. Studies in cerebral cortical slices indicated that both agonists stimulated the production of inositol-1-phosphate and glycerophosphoinositol. Although the initial rates for the stimulation of inositol phosphate release were similar for the two ligands, the response to norepinephrine continued for 60 min and was larger compared with carbachol which plateaued at 30 min. The presence of carbachol did not affect the ED50 for norepinephrine. Concentrations of carbachol near the ED50 in combination with norepinephrine resulted in an additive response whereas maximal concentrations of carbachol and norepinephrine resulted in a less than additive response in the cortex. This negative interaction was also seen in the hippocampus and hypothalamus but not in the striatum, brainstem, spinal cord, olfactory bulb, or cerebellum. Norepinephrine had a larger response than carbachol in the hippocampus, striatum, and spinal cord, but the reverse was true in the olfactory bulb. Manganese (1 mM) stimulated the incorporation of [3H]inositol into phosphatidylinositol (PtdIns) four- to fivefold but not into polyphosphoinositides. The stimulation by manganese of PtdIns labelling increased the nonstimulated release of inositol phosphates but did not affect the stimulated release of inositol phosphates by carbachol or norepinephrine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Abstract: α - d -Mannosidase (EC 3.2.1.24.) was purified to homogeneity from adult rat brain. The enzyme, of apparent molecular weight 397,000, appears to be formed of subunits of molecular weight 120,000 made of two protomers (62,000) bound by disulfide bridges. Isoelectric focusing gives two bands, of pi 5.40 and 5.15. Both isoenzymes seem to have the same pH curve (a small peak of activity at pH 4.5 and a maximum of activity around pH 6.0). These two isoenzymes are immunologically related.  相似文献   

12.
急性髓系白血病(AML)是造血干/祖细胞恶性克隆性疾病,以骨髓、血液和其他组织中髓系起源的异常原始细胞增殖为特征。“3+7”诱导方案(蒽环类药物联合阿糖胞苷)一直是治疗AML的基石,但仍有部分AML患者无法耐受强化疗或完全缓解后复发,目前AML的总体疗效仍不乐观。因此,寻找新药物以提高AML患者疗效具有重要的临床意义。越来越多的研究证明,表观遗传对AML的发生、发展起重要作用。组蛋白去乙酰化酶抑制剂(HDACi)是表观遗传修饰的分子靶向药物,可抑制组蛋白去乙酰化酶(HDAC)的活性,上调组蛋白赖氨酸的乙酰化水平,目前已应用于AML临床研究中,在联合治疗中显现出良好的耐受性与治疗效果。本综述介绍了HDAC和HDACi的分类依据以及在临床上的应用,阐述了伏立诺他、贝利司他、帕比司他、戊丙酸、恩替诺特、西达本胺等6种HDACi在AML中的临床前研究结果和临床应用研究进展,讨论了HDACi与其他抗癌药物联用在AML中的作用机制,并对HDACi今后的发展提出了建议,期望为临床治疗AML提供参考。  相似文献   

13.
目的:组蛋白乙酰化与有丝分裂过程中的多个染色质相关事件有关,但是它在哺乳动物减数分裂过程中的作用仍不清楚。本研究通过观察人卵子体外成熟过程中不同阶段的组蛋白H3K9乙酰化变化模式,以探讨组蛋白乙酰化在减数分裂过程中的作用。方法:我们选择在我院进行单精子显微注射(Intracytoplasmicsperminjection,ICSI)的病人,共收集用于GV期卵子25个,MI期卵子28个用于本研究。将其中一部分直接用4%多聚甲醛固定,另一部分体外培养成熟至MII期,再用4%多聚甲醛固定。采用免疫荧光染色检测不同发育时期卵子的组蛋白H3K9乙酰化状态。结果:免疫荧光染色结果显示,GV期的卵子可检测到明显的H3K9乙酰化,MI期和MII期的卵子的H3K9乙酰化程度逐渐减弱。结论:人类卵子在成熟过程中会发生组蛋白H3K9乙酰化水平的逐渐降低,可能与减数分裂过程中特定的染色体分离、基因表达的重新编程密切相关。  相似文献   

14.
The functional role of histamine (HA) in zebrafish brains was studied. Zebrafish did not display a clear circadian variation in brain HA levels. Loading of zebrafish with l-histidine increased HA concentration in the brain. A single injection of the histidine decarboxylase (HDC) inhibitor, alpha-fluoromethylhistidine (alpha-FMH), gave rise to a rapid reduction in zebrafish brain HA. Low HDC activity in the brain after injections verified the effect of alpha-FMH. A reduction in the number of histaminergic fibres but not neurones and an increased expression of HDC mRNA was evident after alpha-FMH. Automated behavioural analysis after alpha-FMH injection showed no change in swimming activity, but abnormalities were detected in exploratory behaviour examined in a circular tank. No significant behavioural changes were detected after histidine loading. The time spent for performance in the T-maze was significantly increased in the first trial 4 days after alpha-FMH injections, suggesting that lack of HA may impair long-term memory. The rostrodorsal telencephalon, considered to correspond to the mammalian amygdala and hippocampus in zebrafish, is densely innervated by histaminergic fibres. These results suggest that low HA decreases anxiety and/or affects learning and memory in zebrafish, possibly through mechanisms that involve the dorsal forebrain.  相似文献   

15.
16.
Abstract: We investigated the effect of lipopolysaccharide (LPS) and various inflammatory cytokines on the histidine decarboxylase (HDC) activity in cultured cells of the rat embryonic brain. Histaminergic neuronal cell bodies were supposed to exist in cultured cells of the diencephalon but not in those of the cortex. The HDC activity was elevated by adding LPS and interleukin-1 β (IL-1β) but not by tumor necrosis factor-α (TNF-α) and IL-6 to the mixed primary cultures of diencephalon. In the adherent cell fraction of the cultured diencephalon cells, HDC activity was also enhanced by LPS and IL-1β. In a similar manner, LPS augmented HDC activity in the mixed primary culture of cerebral cortical cells and in its adherent cell fraction. The effects of IL-1β but not LPS in the mixed primary culture of diencephalon were canceled by a prior exposure to cytosine-β- d -arabinofuranoside. The changes in HDC activity after exposure to LPS for 12 h were not accompanied by increased mRNA levels. In these cell cultures, mast cells were not detected by Alcian Blue staining. These results indicated the presence of the third type of HDC-bearing cell besides neurons and mast cells in the brain. The increase of HDC activity by IL-1β might be due to cell proliferation.  相似文献   

17.
3α-Hydroxysteroid Oxidoreductase in Rat Brain   总被引:2,自引:2,他引:0  
Abstract: We describe a simple procedure for the microassay of 3α-hydroxysteroid oxidoreductase in homogenates of rat brain. This enzyme converts dihydrotestosterone to 3α-androstandiol. We have mapped the distribution of the enzymatic activity in 14 regions of the rat brain. The highest activities were observed in homogenates of olfactory bulb (51/nmol/mg protein/h) and olfactory tubercle (29 nmol/mg protein/h). Substantially lower values were seen in the other brain regions, including thalamus, caudate nucleus, frontal cortex, hippocampus, hypothalamus, and preoptic area (6–20 nmol/mg protein/ h).  相似文献   

18.
Cerebral apolipoprotein E (apoE) has been implicated in neuronal protection and repair. Due to the variable levels and types of estrogen receptors within different brain regions, the effect of estrogen on apoE and the mechanism of this effect may vary within different regions. Ovariectomized female C57BL/6 mice were treated with pharmacological levels of 17 beta-estradiol or placebo for 5 days, resulting in supraphysiological plasma levels of estradiol in the treated mice. ApoE and glial fibrillary acidic protein (GFAP) levels were measured in the cortex, hippocampus and diencephalon. 17 beta-Estradiol up-regulated apoE but not GFAP in the cortex and diencephalon, whereas in the hippocampus, GFAP and apoE were equally up-regulated. Treatment of estrogen receptor (ER) alpha knockout mice with 17 beta-estradiol or treatment of C57BL/6 mice with 17 alpha-estradiol, a poor estrogen receptor agonist, specifically induced apoE in the cortex, but not in the diencephalon. These results indicate that 17 beta-estradiol effects on apoE are either directly or indirectly mediated by ER alpha in the diencephalon, while the effects in the cortex may be mediated by a non-classical mechanism or by ER beta. Measurement of mRNA levels in estrogen versus placebo-treated wild-type mice indicated that the effect of 17 beta-estradiol on apoE was not associated with changes in apoE mRNA levels.  相似文献   

19.
Wang SM  Ge WZ  Liu HM  Zou DP  Yan XB 《Steroids》2004,69(10):599-604
Acetylated 3β-O-β-glycosyl steroid derivatives were synthesized by the reaction of a new polyhydroxysteroid 3β,5α,6β-trihydroxypregn-16-en-20-one (2) with the peracetylated 1-bromo derivatives of d-glucose and d-galactose, respectively. Subsequent protection by excess acetic anhydride in pyridine selectively gave the 6β-O-acetylated steroid glycosides. Deprotection of the acetylated steroid glycosides separately with moderate catalysis dibutyltin oxide in methanol selectively removed all acetyl groups of sugar moiety, whereas the acetyl group of the steroid part was retained. The structures of the steroid glycosides were confirmed by mass spectrometry, NMR and IR. The complete protocol was shown to be non-destructive at all stages to the sugar moieties and the steroid nucleus. These regioselective reactions open a route to the synthesis of a series of closely related isomers of 2 and other widespread polyhydroxysteroids and steroid glycosides in marine organisms and some terrestrial species.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号