首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.

Objective

To investigate the interactions of chondrocyte metabolism by synovial cells and synovial supernatants in a new perfusion co-culture system.

Methods

Chondrocytes and synovial fibroblasts were obtained from knee joints of slaughtered adult cattle. For experimental studies chondrocytes and synovial fibroblasts were placed together into a perfusion chamber (co-culture) or were placed into two different perfusion culture containers, which were connected by a silicone tube (culturing of chondrocytes with synovial supernatants). A control setup was used without synovial cells. Chondrocyte proliferation was shown by measurement of DNA content. The proteoglycan synthesis was quantified using 35SO42−-labelling and the dimethylmethylene blue assay. 3H-proline incorporation was used to estimate the protein biosynthesis. Type II collagen synthesis was measured by ELISA, furthermore extracellular matrix deposition was monitored immunohistochemically (collagen types I/II). Regarding to the role of reactive oxygen species LDH release before and after stimulation with hydrogen peroxide was measured.

Results

The proliferation of chondrocytes shows an increase in monoculture as well as in co-culture or in culture with synovial supernatants more than fivefold within 12 days. 3H-proline incorporation as a marker for chondrocytes biosynthetic activity decreases in co-culture system and in culture with synovial supernatants. A similar effect is seen measuring total proteoglycan content as well as the 35SO42− incorporation in chondrocytes. Co-culturing and culturing with synovial supernatants lead to a significant decrease of proteoglycan release and content. Quantification of collagen type II by ELISA shows significant lower amounts of native collagen type II in the extracellular matrix of co-cultured chondrocytes as well as in culture with synovial supernatants. The membrane damage of chondrocytes by hydrogen peroxide is reduced when chondrocytes are co-cultured with synovial fibroblasts.

Conclusion

The co-culture perfusion system is a new tool to investigate interactions of different cell types with less artificial interferences. Our results suggest that synovial supernatants and synovial fibroblasts modulate the biosynthetic activity and the matrix deposition of chondrocytes as well as the susceptibility to radical attack of reactive oxygen species.  相似文献   

2.
The in vitro phenotype of bovine articular chondrocytes is described. Chondrocytes plated at high density in roller-bottle and dish cultures were maintained in vitro. The major matrix macromolecules, collagen and proteoglycan, synthesized by these cells were characterized during the course of the culture period. The chondrocytes synthesized mainly Type II collagen, which was found predominantly in the cell-associated matrix. The media contained a mixture of Type II and Type III collagens. Type I collagen was detectable in neither the medium nor the cell-associated matrix. The proteoglycan monomers found in media and cell-associated matrix had the same hydrodynamic sizes as monomers synthesized by cartilage slices or those extracted from adult articular cartilage. The majority of proteoglycans synthesized by the cells were found in high molecular weight aggregates which were readily recovered from the media and were extractable from cell-associated matrix with low ionic strength buffers. The results demonstrate the long-term in vitro phenotypic stability of the bovine articular chondrocytes. The advantages of the in vitro system as a model for studying the effects of external agents, such as drugs and vitamins, are discussed.  相似文献   

3.
For lack of sufficient human cartilage donors, chondrocytes isolated from various animal species are used for cartilage tissue engineering. The present study was undertaken to compare key features of cultured large animal and human articular chondrocytes of the knee joint. Primary chondrocytes were isolated from human, porcine, ovine and equine full thickness knee joint cartilage and investigated flow cytometrically for their proliferation rate. Synthesis of extracellular matrix proteins collagen type II, cartilage proteoglycans, collagen type I, fibronectin and cytoskeletal organization were studied in freshly isolated or passaged chondrocytes using immunohistochemistry and western blotting. Chondrocytes morphology, proliferation, extracellular matrix synthesis and cytoskeleton assembly differed substantially between these species. Proliferation was higher in animal derived compared with human chondrocytes. All chondrocytes expressed a cartilage-specific extracellular matrix. However, after monolayer expansion, cartilage proteoglycan expression was barely detectable in equine chondrocytes whereby fibronectin and collagen type I deposition increased compared with porcine and human chondrocytes. Animal-derived chondrocytes developed more F-actin fibers during culturing than human chondrocytes. With respect to proliferation and extracellular matrix synthesis, human chondrocytes shared more similarity with porcine than with ovine or equine chondrocytes. These interspecies differences in chondrocytes in vitro biology should be considered when using animal models.  相似文献   

4.
Rabbit articular chondrocytes in suspension culture synthesize Type II collagen [3alpha1(II)] in the absence of extracellular Ca2+ and Type I collagen [2alpha1(I) - alpha2] in the complete medium. As a result of pre-treatment in monolayer culture with calcitonin or parathyroid hormone in the complete medium, an influx of Ca2+ into the cells occurs. These cells produce mainly Type I collagen when transferred to suspension cultures in the medium devoid of CaCl2. If added directly to the suspension culture medium containing no CaCl2, calcitonin stimulates an active efflux of Ca2+ from the cells into the medium and leads the cells to synthesize Type I collagen. Under similar conditions, parathyroid hormone does not change the collagen-phenotype.  相似文献   

5.
Chondrocytes produce large pericellular coats in vitro that can be visualized by the exclusion of particles, e.g., fixed erythrocytes, and that are removed by treatment with Streptomyces hyaluronidase, which is specific for hyaluronate. In this study, we examined the kinetics of formation of these coats and the relationship of hyaluronate and proteoglycan to coat structure. Chondrocytes were isolated from chick tibia cartilage by collagenase-trypsin digestion and were characterized by their morphology and by their synthesis of both type II collagen and high molecular weight proteoglycans. The degree of spreading of the chondrocytes and the size of the coats were quantitated at various times subsequent to seeding by tracing phase-contrast photomicrographs of the cultures. After seeding, the chondrocytes attached themselves to the tissue culture dish and exhibited coats within 4 h. The coats reached a maximum size after 3-4 d and subsequently decreased over the next 2-3 d. Subcultured chondrocytes produced a large coat only if passaged before 4 d. Both primary and first passage cells, with or without coats, produced type II collagen but not type I collagen as determined by enzyme-linked immunosorbent assay. Treatment with Streptomyces hyaluronidase (1.0 mU/ml, 15 min), which completely removed the coat, released 58% of the chondroitin sulfate but only 9% of the proteins associated with the cell surface. The proteins released by hyaluronidase were not digestible by bacterial collagenase. Monensin and cycloheximide (0.01-10 microM, 48 h) caused a dose-dependent decrease in coat size that was linearly correlated to synthesis of cell surface hyaluronate (r = 0.98) but not chondroitin sulfate (r = 0.2). We conclude that the coat surrounding chondrocytes is dependent on hyaluronate for its structure and that hyaluronate retains a large proportion of the proteoglycan in the coat.  相似文献   

6.
Fibronectin, the major cell surface glycoprotein of fibroblasts, is absent from differentiated cartilage matrix and chondrocytes in situ. However, dissociation of embryonic chick sternal cartilage with collagenase and trypsin, followed by inoculation in vitro reinitiates fibronectin synthesis by chondrocytes. Immunofluorescence microscopy with antibodies prepared against plasma fibronectin (cold insoluble globulin [CIG]) reveals fibronectin associated with the chondrocyte surface. Synthesis and secretion of fibronectin into the medium are shown by anabolic labeling with [35S]methionine or [3H]glycine, and identification of the secreted proteins by immunoprecipitation and sodium dodecyl sulfate (SDS)-disc gel electrophoresis. When chondrocytes are plated onto tissue culture dishes, the pattern of surface-associated fibronectin changes from a patchy into a strandlike appearance. Where epithelioid clones of polygonal chondrocytes develop, only short strands of fibronectin appear preferentially at cellular interfaces. This pattern is observed as long as cells continue to produce type II collagen that fails to precipitate as extracellular collagen fibers for some time in culture. Using the immunofluorescence double-labeling technique, we demonstrate that fibroblasts as well as chondrocytes which synthesize type I collagen and deposit this collagen as extracellular fibers show a different pattern of extracellular fibronectin that codistributes in large parts with collagen fibers. Where chondrocytes begin to accumulate extracellular cartilage matrix, fibronectin strands disappear. From these observations, we conclude (a) that chondrocytes synthesize fibronectin only in the absence of extracellular cartilage matrix, and (b) that fibronectin forms only short intercellular "stitches" in the absence of extracellular collagen fibers in vitro.  相似文献   

7.
The effect of cell culture age and concomitant changes in cell density on the biosynthesis of sulfated-proteoglycan by rabbit articular chondrocytes in secondary monolayer culture was studied. Low density (LD, 2 d), middle density (MD, 5-7 d), and high density (HD, 12-15 d) cultures demonstrated changes in cellular morphology and rates of DNA synthesis. DNA synthesis was highest at LD to MD densities, but HD cultures continued to incorporate [3H]-thymidine. LD cultures incorporated 35SO4 into sulfated-proteoglycans at a higher rate than MD or LD cultures. The qualitative nature of the sulfated-proteoglycans synthesized at the different culture ages were analyzed by assessing the distribution of incorporated 35SO4 in associative and dissociative CsCl density gradients and by elution profiles on Sepharose CL-2B. Chondrocytes deposited into the extracellular matrix (cell-associated fraction) 35SO4-labeled proteoglycan aggregate. More aggregated proteoglycan was found in the MD and HD cultures than at LD. A 35SO4-labeled aggregated proteoglycan of smaller hydrodynamic size than that found in the cell-associated fraction was secreted into the culture medium at each culture age. The proteoglycan monomer (A1D1) of young and older cultures had similar hydrodynamic sizes at all cell culture ages and cell densities. The glycosaminoglycan chains of A1D1 were hydrodynamically larger in the younger LD cultures than in the older HD cultures and consisted of only chondroitin 6 and 4 sulfate chains. A small amount of chondroitin 4,6 sulfate was detected, but no keratan sulfate was measured. The A1D2 fractions of young LD cultures contained measurable amounts of dermatan sulfate; no dermatan sulfate was found in older MD or HD cultures. These studies indicated that chondrocytes at LD synthesized a proteoglycan monomer with many of the characteristics of young immature articular cartilage of rabbits. These results also indicated that rapidly dividing chondrocytes were capable of synthesizing proteoglycans which form aggregates with hyaluronic acid. Culture age and cell density appears primarily to modulate the synthesis of glycosaminoglycan types and chain length. Whether or not these glycosaminoglycans are found on the same or different core proteins remains to be determined.  相似文献   

8.
Previous studies showed that cultures of chick limb bud mesenchymal cells plated at high density, to maximize chondrogenic expression, had a much reduced extracellular matrix around chondrocytes when exposed to 4-methyl-, umbelliferyl-β-d-xyloside. The majority of newly synthesized chondroitin sulfate chains were found in the culture medium presumably bound to the xyloside as opposed to their normal deposition on the core protein of proteoglycan. The question remained open as to whether the development of an abnormal matrix affected the synthesis of extracellular deposition of other cartilage-specific macromolecules. We have analyzed, both morphologically and biochemically, the synthesis and deposition of Type I and Type II collagen by β-d-xyloside-treated cultures of limb mesenchymal cells. While the rate of collagen synthesis per plate and its extracellular accumulation after 8 days in culture were reduced to some extent, the ratios of Type II to Type I collagen and the morphological distribution of these macromolecules were not affected by exposure to β-d-xyloside. We conclude that the expression of the cartilage-specific Type II collagen during chondrogenic differentiation is, although reduced, qualitatively not dependent on the amount of extracellular chondroitin sulfate chains attached to matrix-associated proteoglycan core protein. However, prolonged exposure of limb bud cells to xylosides leads to the formation of a chondroitin sulfate- and collagen-deficient matrix which, in turn, reduces the capacity of limb bud cells to synthesize Types I and II collagen.  相似文献   

9.
The effect of concanavalin A on proteoglycan synthesis by rabbit costal and articular chondrocytes was examined. Chondrocytes were seeded at low density and grown to confluency in medium supplemented with 10% fetal bovine serum, and then the serum concentration was reduced to 0.3%. At the low serum concentration, chondrocytes adopted a fibroblastic morphology. Addition of concanavalin A to the culture medium induced a morphologic alteration of the fibroblastic cells to spherical chondrocytes and increased by 3- to 4-fold incorporation of [35S]sulfate and [3H]glucosamine into large chondroitin sulfate proteoglycan that was characteristically found in cartilage. The stimulation of incorporation of labeled precursors reflected real increases in proteoglycan synthesis, as chemical analyses showed a 4-fold increase in the accumulation of macromolecules containing hexuronic acid in concanavalin A-maintained cultures. Furthermore, the effect of concanavalin A on [35S]sulfate incorporation into proteoglycans was greater than that of various growth factors or hormones. However, concanavalin A had smaller effects on [35S]sulfate incorporation into small proteoglycans and [3H]glucosamine incorporation into hyaluronic acid and chondroitinase AC-resistant glycosaminoglycans. Since other lectins tested, such as wheat germ agglutinin, lentil lectin, and phytohemagglutinin, had little effect on [35S]sulfate incorporation into proteoglycans, the concanavalin A action on chondrocytes seems specific. Although concanavalin A decreased [3H]thymidine incorporation in chondrocytes, the stimulation of proteoglycan synthesis could be observed in chondrocytes exposed to the inhibitor of DNA synthesis, cytosine arabinoside. These results indicate that concanavalin A is a potent modulator of proteoglycan synthesis by chondrocytes.  相似文献   

10.
We studied the effect of the depletion of glutathione on the synthesis of proteoglycan and collagen in cultured chick chondrocytes. When the cultured chondrocytes were incubated with 1 mM buthionine sulfoximine (BSO), a specific inhibitor of gamma-glutamyl-cysteine synthetase, the intracellular glutathione level markedly dropped within 12 h with no loss of cell viability. Incorporation of 35SO2-4 into proteoglycan was lowered in the presence of BSO. When the 35S-labeled proteoglycans were separated into two fractions by glycerol density gradient centrifugation, the inhibitory effect of BSO on the synthesis of proteoglycan was greater in the fast-sedimenting proteoglycan fraction, which consisted mainly of cartilage specific large proteoglycan (PG-H), than in the slowly sedimenting proteoglycan fraction. The inhibition by BSO of the synthesis of core protein-free glycosaminoglycan chains primed by p-nitrophenyl-beta-D-xyloside was smaller than the inhibition of the synthesis of proteoglycan. Analysis of glycosaminoglycans labeled with [3H]glucosamine indicated that the treatment of chondrocytes with BSO resulted in a small increase in the proportion of synthesis of hyaluronic acid to the synthesis of total glycosaminoglycan. The incorporation of [3H]proline into collagen was also inhibited by BSO. Sodium dodecyl sulfate polyacrylamide gel electrophoresis of the 3H-labeled collagen showed that, in the presence of BSO, processing of Type II collagen appeared to slow down and the proportion of Type X collagen synthesis was reduced.  相似文献   

11.
12.
Previously, we showed that fetal bovine cartilage contains a polypeptide that stimulates the incorporation of [35S]sulfate into proteoglycans synthesized by rat and rabbit costal chondrocytes in culture. In this paper, we report that the cartilage-derived factor (CDF) increases not only [35S]sulfate incorporation but also [3H]thymidine incorporation into rabbit chondrocytes in monolayer culture. The dose-response curve of CDF stimulation of DNA synthesis was similar in profile to that of CDF stimulation of proteoglycan synthesis. In addition, CDF markedly enhanced [3H]uridine incorporation into rabbit chondrocytes and significantly enhanced [3H]serine incorporation into total protein. These findings indicate that fetal bovine cartilage contains a factor that shows somatomedin-like activity in monolayer cultures of rabbit chondrocytes.  相似文献   

13.
Cell culture in collagen lattice is known to be a more physiological model than monolayer for studying the regulation of extracellular matrix protein deposition. The synthesis of sulfated glycosaminoglycans (GAG) and dermatan sulfate (DS) proteoglycans by 3 cell strains were studied in confluent monolayers grown on plastic surface, in comparison to fully retracted collagen lattices. Cells were labelled with35S-sulfate, followed by GAG and proteoglycan analysis by cellulose acetate and SDS-polyacrylamide gel electrophoresis, respectively. The 3 cell strains contracted the lattice in a similar way. In monolayer cultures, the major part of GAG was secreted into culture medium whereas in lattice cultures of dermal fibroblasts and osteosarcoma MG-63 cells but not fibrosarcoma HT-1080 cells, a higher proportion of GAGs, including dermatan sulfate, was retained within the lattices. Small DS proteoglycans, decorin and biglycan, were detected in fibroblasts and MG-63 cultures. They were preferentially trapped within the collagen gel. In retracted lattices, decorin had a higher Mr than in monolayer. Biglycan was detected in monolayer and lattice cultures of MG-63 cells but in lattice cultures only in the case of fibroblasts. In this last case, an up regulation of biglycan mRNA steady state level and down regulation of decorin mRNA was observed, in comparison to monolayers, indicating that collagen can modulate the phenotypical expression of small proteoglycan genes.Supported by a fellowship from the Centre National de la Recherche Scientifique  相似文献   

14.
Paul D. Benya  Joy D. Shaffer 《Cell》1982,30(1):215-224
The differentiated phenotype of rabbit articular chondrocytes consists primarily of type II collagen and cartilage-specific proteoglycan. During serial monolayer culture this phenotype is lost and replaced by a complex collagen phenotype consisting predominately of type I collagen and a low level of proteoglycan synthesis. Such dedifferentiated chondrocytes reexpress the differentiated phenotype during suspension culture in firm gels of 0.5% low Tm agarose. Approximately 80% of the cells survive this transition from the flattened morphology of anchorage-dependent culture to the spherical morphology of anchorage-independent culture and then deposit characteristic proteoglycan matrix domains. The rates of proteoglycan and collagen synthesis return to those of primary chondrocytes. Using SDS-polyacrylamide gel electrophoresis of intact collagen chains and two-dimensional cyanogen bromide peptide mapping, we demonstrated a complete return to the differentiated collagen phenotype. These results emphasize the primary role of cell shape in the modulation of the chondrocyte phenotype and demonstrate a reversible system for the study of gene expression.  相似文献   

15.
Chondrocytes at different stages of cellular differentiation were isolated from the tarsal element (immature chondrocytes) and zones 2 and 3 (mature chondrocytes) of 12-d chick embryo tibiotarsus. The chondrocytes from the two sources differed in their cell morphologies, growth rate and production of type X collagen. In 24 h, zone 2 and 3 chondrocytes synthesized 800 times more type X collagen than tarsal chondrocytes. The effect of exogenous CaCl2 (5 and 10 mM) on the synthesis of type X collagen by both mature and immature chondrocytes was tested. After a 72-h incubation of zone 2 and 3 chondrocytes with CaCl2 type X collagen increased 8-fold with 5 mM and 10-fold with 10 mM Ca2+. [3H]Proline incorporation into culture medium and matrix macromolecules increased 11 and 32% with 5 and 10 mM CaCl2, respectively. Type II collagen synthesis was not affected by elevated extracellular Ca2+ during this 72-h period. Similar studies with tarsal chondrocytes demonstrated a time- and dose-dependent response to CaCl2 with type X collagen levels reaching a 4-fold and 15-fold increase over controls with 5 and 10 mM Ca2+, respectively, at 48 h. Elevated extracellular Ca2+ had no effect on cell proliferation. These observations offer the first direct evidence of the induction of type X collagen synthesis with elevated extracellular Ca2+.  相似文献   

16.
Chondrocytes from immature and mature rabbits have been compared in biosynthetic studies with [3H] leucine and [35S]sulfate as precursors. The time course of incorporation of [3H]leucine into general protein, proteoglycan monomer core protein, and link protein and of [35S]sulfate into proteoglycan monomer has been examined. Proteoglycan monomer was isolated from the high buoyant density (p greater than 1.60) fractions of dissociative CsCl gradients and link protein by immunoprecipitation with antibody 8A4 followed by gel electrophoresis. Results based on the period of linear isotope incorporation showed that mature cells synthesize protein at about 40% of the rate of immature cells and both proteoglycan and link protein at about 20% of the rate of immature cells. The labeling rates obtained suggest that immature cells synthesize an approximate 1:1 molar ratio of link protein to proteoglycan monomer, and for mature cells this ratio is about 0.8:1. While cell layer retention of newly synthesized proteoglycan was markedly lower in mature relative to immature cell cultures, link protein retention was high in both immature and mature cultures; this finding provides an explanation for our previous observation (Plaas, A. H. K., and Sandy, J. D. (1984) Biochem, J. 220, 337-340) that link-free monomer accumulates in the medium of mature but not immature cultures. The link protein synthesized by both ages of cells and isolated from cell layer or medium was a single major species of apparent molecular mass 48-51 kDa. The results suggest that mature chondrocytes are less efficient than immature chondrocytes in the coordinated assembly of link-stabilized proteoglycan aggregates in this culture system.  相似文献   

17.
Primary cultures of rabbit articular chondrocytes have been cultivated normally and within three-dimensional systems using different alginate matrices. The in vitro proliferation capacity of the cells immobilized in the calcium alginate beads was investigated. The growth curve showed that chondrocytes are able to grow and to divide for several days inside the beads; in parallel an increase in protein contents was also measured. The differentiated phenotype of rabbit articular chondrocytes consists of cartilage-specific proteoglycans. During serial monolayer cultures this phenotype was lost and replaced by a low level of proteoglycan synthesis. On the contrary when cultivated in beads, entrapped cells maintained their differentiated pheno-type over time; the rates of proteoglycan were similar to those of primary chondrocytes. All these parameters were tested comparatively using different substrata in monolayer cultures and in alginate gels. Assays were carried out to assess the influence of type I collagen, type IV collagen, and of fibronectine on the growth as well as on the differentiation phenotype. The encapsulation methodology is readily applicable to the culture of chondrocytes in single beads, in multiwell dishes, or to mass culture for a bioproduction of extracellular matrix components.  相似文献   

18.
Human meniscus cells have a predominantly fibrogenic pattern of gene expression, but like chondrocytes they proliferate in monolayer culture and lose the expression of type II collagen. We have investigated the potential of human meniscus cells, which were expanded with or without fibroblast growth factor 2 (FGF2), to produce matrix in three-dimensional cell aggregate cultures with a chondrogenic medium at low (5%) and normal (20%) oxygen tension. The presence of FGF2 during the expansion of meniscus cells enhanced the re-expression of type II collagen 200-fold in subsequent three-dimensional cell aggregate cultures. This was increased further (400-fold) by culture in 5% oxygen. Cell aggregates of FGF2-expanded meniscus cells accumulated more proteoglycan (total glycosaminoglycan) over 14 days and deposited a collagen II-rich matrix. The gene expression of matrix-associated proteoglycans (biglycan and fibromodulin) was also increased by FGF2 and hypoxia. Meniscus cells after expansion in monolayer can therefore respond to chondrogenic signals, and this is enhanced by FGF2 during expansion and low oxygen tension during aggregate cultures.  相似文献   

19.
Chondrocytes enzymatically dissociated from 13-day-old mouse embryo tibia grow in monolayer culture with a fibroblast-like phenotype and express high levels of type I collagen. Chondrogenesis can be induced by transferring the adherent cells in suspension culture and maintaining them in the constant presence of mouse embryo extract. Round shaping of the cells and formation of multicellular aggregates rapidly follow the passage in anchorage-independent conditions. Cell differentiation is evidenced by a marked decrease in the level of type I collagen and by the induction of type II collagen which accumulates when ascorbic acid is included in the culture medium. The addition of the vitamin also triggers the aggregated chondrocytes to organize their extracellular matrix giving rise to a structure closely resembling the in vivo developing cartilage.  相似文献   

20.
The metabolism of heparan sulfate proteoglycan was studied in monolayer cultures of a rat hepatocyte cell line. Late log cells were labeled with 35SO4(2-) or [3H] glucosamine, and labeled heparan sulfate, measured as nitrous acid-susceptible product, was assayed in the culture medium, the pericellular matrix, and the intracellular pools. Heparan sulfate in the culture medium and the intracellular pools increased linearly with time, while that in the matrix reached a steady-state level after a 10-h labeling period. When pulse-labeled cells were incubated in unlabeled medium, a small fraction of the intracellular pool was released rapidly into the culture medium while the matrix heparan sulfate was taken up by the cells, and the resulting intracellular pool was rapidly catabolized. The structures of the heparan sulfate chains in the three pools were very similar. Both the culture medium pool and the cell-associated fraction of heparan sulfate contained proteoheparan sulfate plus a polydisperse mixture of heparan chains which were attached to little, if any, protein. Pulse-chase data suggested that the free heparan sulfate chains were formed as a result of catabolism of the proteoglycan. When NH4Cl, added to inhibit lysosomal function, was present during either a labeling period or a chase period, the total catabolism of the heparan sulfate chains to monosaccharides plus free SO2-4 was blocked, but the conversion of the proteoglycan to free heparan sulfate chains continued at a reduced rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号