首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Triesterified phospholipid model compounds have been synthesized and extensively studied with 300-MHz 1H NMR in the monomer phase in order to get additional support for the effect of conformational transmission induced by a P(4-coord) into a trigonal bipyramidal P(5-coord) transition, as was suggested by Merkelbach and Buck. To elucidate any conformational preferences around the C2-C3 bond, the stereospecifically deuterated precursor 1,2-dihexanoyl-(3R)-sn-[3-2H]glycerol was synthesized. The results reveal that a coordinational change of phosphorus from four to five is transmitted in a significant increase in population of the conformer, in which the vicinally substituted oxygens O-2 and O-3 are trans located. The impact of this transmission seems not to be restricted to conformational changes in the adjacent C2-C3 bond, but is also present in specific rotations around the C1-C2 bond, thereby shifting the C1-C2 conformational equilibrium towards a decreased contribution of the trans arrangement of the acyl chains. As a consequence the interchain distance will be reduced and thus van der Waals interactions will be maximized. The results are interpreted in terms of increased electron density on O-3 when axially located in a P(5-coord) trigonal bipyramidal compound, thereby introducing enhanced electrostatic repulsions within the oxygen pairs O-3, O-2 and O-3, O-1. Relaxation of this energetically unfavourable geometry leads to the observed conformational shifts. Absence of conformational transmission, as found in P(5-coord) trigonal bipyramidal compounds with the 2-ester group substituted for an alkyl moiety, can be considered as additional support for the introduced concept. In the alkyl part of the model phospholipids, however, no conformational changes were observed by means of 13C NMR. Extrapolating this outcome to more condensed phases, a proposition could be made about the mechanism by which conformational changes in the head-group and/or glyceryl backbone will be compensated.  相似文献   

2.
(R, S)-Methionine was transformed into C(alpha)-hydroxymethyl methionine by a route involving C(alpha)-hydroxymethylation of 2-phenyl-4-methylthioethyl-5-oxo-4,5-dihydro-1,3-oxazole. The absolute configuration of (-)-C(alpha)-hydroxymethyl methionine was elucidated to be (S) by chemical correlation with (S) (-)-C(alpha)-ethyl serine. Absolute structure determination (by single crystal X-ray diffraction) on N(alpha)-benzoyl-C(alpha)-hydroxymethyl methionine confirmed the (R)-configuration for the (+)-enantiomer. In addition, the X-ray diffraction analysis showed that the C(alpha,alpha)-disubstituted glycyl residue adopts the fully extended (C5) conformation.  相似文献   

3.
The photochemistry of optically pure isomers of alpha-methylbenzylamide of trans-2,3-diphenylcyclopropane-1-carboxylic acid has been examined in isotropic solution and within zeolites. The results suggest that these isomerize through cleavage of C2-C3 bond. The direct excitation in solution leads to non-equilibrating 1,3-singlet diradical intermediates whereas triplet sensitization results in equilibrating 1,3-triplet diradical intermediates. The direct excitation within NaY zeolite seems to result in equilibrating zwitterionic intermediates. Studies on the optically pure trans isomers allow one to understand the mechanism of chiral induction during the photoisomerization of mesocis-2,3-diphenylcyclopropane-1-carboxylic acid. The current study has clarified the nature of the excited states involved during the classic (R)-N-acetyl-1-naphthylethylamine sensitized isomerization of 1,2-diphenylcyclopropane.  相似文献   

4.
The angiotensin I-converting enzyme (peptidyl-dipeptide hydrolase, EC 3.4.15.1) inhibitor, ramiprilat (2-[N-[(S)-1-ethoxycarbonyl-3-phenylpropyl]-L-Ala]-(1S,3S,5S)-2- azabicyclo[3.3.0]octane-3-carboxylic acid), is shown to exist in tow conformational isomers, cis and trans, which interconvert around the amide bond. The two conformers were separated by reversed-phase high-performance liquid chromatography. The conformers were identified by nuclear Overhauser effect measurements. From line shape analysis the isomerization rate constants were determined to be kcis----trans = 15 s-1 and ktrans----cis = 5 s-1 at 368 K in [2H]phosphate buffer (p2H 7.5). By enzyme kinetic studies using 3-(2-furylacryloyl)-L-Phe-Gly-Gly as substrate, the trans conformer was found to be the most potent enzyme inhibitor, whereas the cis conformer had a very low inhibitory effect. A new inhibition mechanism is presented for this type of slow, tight-binding inhibitors that contain an amide bond. This mechanism involves an equilibrium between the two conformers and the enzyme-bound inhibitor complex.  相似文献   

5.
(1) "Uridine hydrates" i.e. (+)- and (-)6-hydroxy-5, 6-dihydrouridine were formed under gamma irradiation in a deaerated aqueous solution of uridine. (2) The structures of two diastereoisomers were determined by spectroscopic measurements (infrared, ultraviolet and NMR) and verified by stereospecific synthesis; uridine hydrates were prepared by mild reduction of trans(+)- and (-)iodohydrins with acetic acid and zinc power. (3) The carbon 6 epimerisation of uridine hydrates 6R or 6S was performed in triated water (pH 5.5, 30 degrees C) and at the same time tritium incorporation on carbon 5 was noted. The mechanism of these reactions could be explained by the opening of the N1-C6 bond of the pyrimidine ring, followed by ketoenolisation reaction of carbons 4 and 5. (4) The 250 MHz NMR analysis has allowed us to determine the nucleoside conformations. Nucleosides had mainly the S(C2' endo) conformation. A slight preference of gauche-gauche (gg) rotamer of the exocyclic hydroxymethyl group was noted and the aglycone was in the anti conformation.  相似文献   

6.
A systematic understanding of the noncovalent interactions that influence the structures of the cis conformers and the equilibrium between the cis and the trans conformers, of the X‐Pro tertiary amide motifs, is presented based on analyses of 1H‐, 13C‐NMR and FTIR absorption spectra of two sets of homologous peptides, X‐Pro‐Aib‐OMe and X‐Pro‐NH‐Me (where X is acetyl, propionyl, isobutyryl and pivaloyl), in solvents of varying polarities. First, this work shows that the cis conformers of any X‐Pro tertiary amide motif, including Piv‐Pro, are accessible in the new motifs X‐Pro‐Aib‐OMe, in solution. These conformers are uniquely observable by FTIR spectroscopy at ambient temperatures and by NMR spectroscopy from temperatures as high as 273 K. This is made possible by the persistent presence of ni‐1→πi* interactions at Aib, which also influence the disappearance of steric effects at these cis X‐Pro rotamers. Second, contrary to conventional understanding, the energy contribution of steric effects to the cis/trans equilibrium at the X‐Pro motifs is found to be nonvariant (0.54 ± 0.02 kcal/mol) with increase in steric bulk on the X group. Third, the current studies provide direct evidence for the weak intramolecular interactions namely the ni‐1→πi*, the NPro???Hi+1 (C5a), and the C7 hydrogen bond that operate and influence the structures, stabilities, and dynamics between different conformational states of X‐Pro tertiary amide motifs. NMR and IR spectral data suggest that the cis conformers of X‐Pro motifs are ensembles of short‐lived rotamers about the C′X–NPro bond. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 66–77, 2014.  相似文献   

7.
Abstract

The NMR study on the interactions of 2′-dG with Mg2+, Zn2+ and Hg2+ ions in D2O solution has shown that binding of softer metal ions to N7 shifts N <!—graphic—> S pseudorotational equilibrium slightly towards N-type sugar conformations. There are no detectable changes for the conformational equilibria across C4′-C5′ bond, whereas the population of the syn conformers is slightly increased.  相似文献   

8.
Two classes of nicotinic cholinergic agonists, which vary in flexibility and electronegativity, have been synthesized, and their structural and dynamic properties have been studied with nuclear magnetic resonance (NMR) spectroscopy. Although the compounds are chemically identical except for the presence or absence of one cyclicizing C--C bond, single channel recording and radioligand binding studies have shown that the cyclic compounds are considerably more potent than the acyclic derivatives (McGroddy, K.A., A.A. Carter, M.M. Tubbert, and R.E. Oswald. 1993. Biophys. J. 64:325-338). Using one- and two-dimensional NMR spectroscopy, we have shown that these molecules exist in two distinct stable conformers, which differ in the orientation of the amide bond. The cyclic 1,1-dimethyl-4-trifluoroacetyl-piperazinium iodide and its trifluoromethyl derivative compounds are symmetric, and the two conformers are of equal energy. The acyclic N,N,N,N'-tetramethyl-N'-acetylethylene-diamine iodide (TED) and its trifluoromethyl derivative derivatives, however, populate two energetically unequal solution conformations. Using variable temperature NMR spectroscopy on these molecules and their uncharged precursors, we have characterized the energetics of amide bond isomerization and have distinguished steric and electrostatic contributions to the equilibrium between the two conformers. The more populated TED conformer has the amide methyl group trans to the carbonyl oxygen, and it is stabilized by an electrostatic attraction between the partially negative carbonyl oxygen and the positively charged quaternary amine nitrogen. As discussed in the accompanying paper (McGroddy, K.A., A.A. Carter, M.M. Tubbert, and R.E. Oswald. 1993. Biophys. J. 64:325-338), the differences in the stable solution structures of the TED derivatives and their interconversion kinetics may be of biological significance.  相似文献   

9.
Z P Liu  L M Gierasch 《Biopolymers》1992,32(12):1727-1739
The conformational behavior of a model cyclic pentapeptide--cyclo(Gly-L-Pro-D-Phe-Gly-L-Val)--has been explored through the combined use of in vacuo molecular dynamics simulations and a range of nmr experiments (preceding paper). The molecular dynamics analysis suggests that, despite the conformational constraints imposed by formation of the pentapeptide cycle, this pentapeptide undergoes conformational transitions between various hydrogen-bonded conformations, characterized by low energy barriers. An inverse gamma turn with Pro in position i + 1 and a gamma turn with D-Phe in position i + 1 are two alternatives occurring frequently. Like other DLDDL cyclic pentapeptides, cyclo(Gly-Pro-D-Phe-Gly-Val) is also stabilized by an inverse gamma-turn structure with the beta-branched Val residue in position i + 1, and this hydrogen bond is retained in the different conformational families. The gamma-turn around D-Phe3 and the inverse gamma turn around Val5 are consistent with the nmr observations. 3JNH-CH alpha coupling constants of the all-trans forms were calculated from one of the molecular dynamics trajectories and are comparable to nmr experimental data, suggesting that the conformational states visited during the simulation are representative of the conformational distribution in solution. In addition to the equilibrium among various hydrogen-bonded all-trans conformers, the observation in nmr spectra of two sets of resonances for all peptide protons indicated a slow conformational interconversion of the Gly-Pro peptide bond between trans and cis isomers. The activation energy between these two conformers was determined experimentally by magnetization transfer and was calculated by high temperature constrained molecular dynamics simulation. Both methods yield a free energy of activation of ca. 20 kcal/mol. Furthermore, the free energy of activation is dependent on the direction of rotation of the Gly-Pro peptide bond.  相似文献   

10.
To investigate the structural function of the C-terminal amide group of endomorphin-2 (EM2, H-Tyr-Pro-Phe-Phe-NH(2)), an endogenous micro-opioid receptor ligand, the solution conformations of EM2 and its C-terminal free acid (EM2OH, H-Tyr-Pro-Phe-Phe-OH) in TFE (trifluoroethanol), water (pH 2.7 and 5.2), and aqueous DPC (dodecylphosphocholine) micelles (pH 3.5 and 5.2) were investigated by the combination of 2D (1)H-NMR measurement and molecular modelling calculation. Both peptides were in equilibrium between the cis and trans rotamers around the Tyr--Pro w bond with population ratios of 1 : 1 to 1 : 2 in dimethyl sulfoxide, TFE and water, whereas they predominantly took the trans rotamer in DPC micelle, except in EM2OH at pH 5.2, which had a trans/cis rotamer ratio of 2 : 1. Fifty possible 3D conformers were generated for each peptide, taking different electronic states depending on the type of solvent and pH (neutral and monocationic forms for EM2, and zwitterionic and monocation forms for EM2OH) by the dynamical simulated annealing method, under the proton-proton distance constraints derived from the ROE cross-peak intensities. These conformers were then roughly classified into four groups of two open [reverse S (rS)- and numerical 7 (n7)-type] and two folded (F1- and F2-type) conformers according to the conformational pattern of the backbone structure. Most EM2 conformers in neutral (in TFE) and monocationic (in water and DPC micelles) forms adopted the open structure (mixture of major rS-type and minor n7-type conformers) despite the trans/cis rotamer form. On the other hand, the zwitterionic EM2OH in TFE, water and DPC micelles showed an increased population of F1- and F2-type folded conformers, the population of which varied depending on their electronic state and pH. Most of these folded conformers took an F1-type structure similar to that stabilized by an intramolecular hydrogen bond of (Tyr1)NH(3) (+)...COO(-)(Phe4), observed in its crystal structure. These results show that the substitution of a carboxyl group for the C-terminal amide group makes the peptide structure more flexible and leads to the ensemble of folded and open conformers. The conformational requirement of EM2 for binding to the micro-opioid receptor and the structural function of the C-terminal amide group are discussed on the basis of the present conformational features of EM2 and EM2OH and a possible model for binding to the micro-opioid receptor, constructed from the template structure of rhodopsin.  相似文献   

11.
Proton NMR studies at 250 MHz showed that ribofuranosyl and 2-deoxyribofuranosyl derivatives of N2-(p-n-butylphenyl)guanine (BuPG) favored the C2'-endo (S) sugar pucker and the gg exocyclic group rotamer, although less so than guanosine and 2'-deoxyguanosine themselves. The correlation calculated between C3'-endo (N) and gg conformational states in these compounds may result from destabilization of syn glycosidic bond conformers by the bulky N2 substituent. Results for a bis(ribofuranosyl) derivative of BuPG showed a strong correlation between N and gg states in both sugar rings, suggesting that both rings are anti and are stabilized by intramolecular hydrogen bonding between C3'-O and H8.  相似文献   

12.
Flavodoxins (Flds) are small proteins that shuttle electrons in a range of reactions in microorganisms. Flds contain a redox‐active cofactor, a flavin mononucleotide (FMN), and it is well established that when Flds are reduced by one electron, a peptide bond close to the FMN isoalloxazine ring flips to form a new hydrogen bond with the FMN N5H, stabilizing the one‐electron reduced state. Here, we present high‐resolution crystal structures of Flavodoxin 1 from Bacillus cereus in both the oxidized (ox) and one‐electron reduced (semiquinone, sq) state. We observe a mixture of conformers in the oxidized state; a 50:50 distribution between the established oxidized conformation where the peptide bond is pointing away from the flavin, and a conformation where the peptide bond is pointing toward the flavin, approximating the conformation in the semiquinone state. We use single‐crystal spectroscopy to demonstrate that the mixture of conformers is not caused by radiation damage to the crystal. This is the first time that such a mixture of conformers is reported in a wild‐type Fld. We therefore carried out a survey of published Fld structures, which show that several proteins have a pronounced conformational flexibility of this peptide bond. The degree of flexibility seems to be modulated by the presence, or absence, of stabilizing interactions between the peptide bond carbonyl and its surrounding amino acids. We hypothesize that the degree of conformational flexibility will affect the Fld ox/sq redox potential.  相似文献   

13.
The distinctive nucleus of kainoid amino acids, (2S,3R)-(+)-2-carboxypyrrolidine-3-acetic acid 6, was synthesized by a chemoenzymatic process, exploiting the diastereomeric cis/trans methyl pyroglutamate derivatives 10a-c/11a-c as key intermediates. These mixtures, when subjected to a kinetic resolution mediated by α-chymotrypsin, reacted diastereo-, regio-, and enantioselectively to give the trans derivatives (+)-10a-c possessing the correct (2S,3R) configuration. Subsequently, the desired product (2S,3R)-(+)-6 could be obtained after well-established transformations.  相似文献   

14.
N-Acetyl-(E)-dehydrophenylalanine N'-methylamide [Ac-(E)-DeltaPhe-NHMe], one of a few representative (E)-alpha,beta-dehydroamino acids, was studied by FTIR in dichloromethane and acetonitrile. To support spectroscopic interpretations and to gain some deeper insight into the Ac-(E)-DeltaPhe-NHMe molecule, the Ramachandran potential energy surface was calculated by the B3LYP/6-31G*//HF/3-21G method and the conformers localized were fully optimized at the B3LYP/6-31 + G** level. The spectra and calculations were compared with those of the related molecules Ac-DeltaAla-NHMe and Ac-(Z)-DeltaPhe-NHMe. The title compound assumes two conformational states in equilibrium in dichloromethane solution with a predominance of the extended conformer E. The Ac-(E)-DeltaPhe-NHMe spectrum is like that of Ac-DeltaAla-NHMe, particularly in the region of bands AI and AII, and unlike that of Ac-(Z)-DeltaPhe-NHMe. The positions of bands AI and II together with the nu(s)(N1--H1) band proves that the conformers E of both DeltaAla and (E)-DeltaPhe compounds are stabilized by the quite strong C5 hydrogen bonds N1--H1...O2. The same conclusion is drawn from the Ramachandran diagrams. The conformers E of both compounds are placed in the global minima and the gaps in energy order between them and the second conformer are large. The conformers E of DeltaAla and (E)-DeltaPhe, apart from the N1--H1...O2 hydrogen bond, show the Cbeta--H...O1 interaction, and Ac-(E)-DeltaPhe-NHMe displays the NH/pi interaction with the N2--H2 projecting in the first carbon atom of the phenyl ring. The C5 hydrogen bond is stronger in (E)-DeltaPhe than that in the DeltaAla compound. This is in agreement with interactions found in the calculated structures and can be explained by the influence of the phenyl ring in position (E). In acetonitrile, the molecule of Ac-(E)-DeltaPhe-NHMe loses its C5 hydrogen bond and becomes unfolded, whereas that of Ac-DeltaAla-NHMe does not vary practically. Adopting conformation E in a non-polar solvent seems to be a general feature of the (E)-DeltaXaa residues.  相似文献   

15.
The metabolic fate of l-[4-14C]ascorbic acid has been examined in the grape (Vitis labrusca L.) and lemon geranium (Pelargonium crispum L. L'Hér. cv. Prince Rupert) under conditions comparable to data from l-[1-14C]ascorbic acid and l-[6-14C]ascorbic acid experiments. In detached grape leaves and immature berries, l-[4-14C]ascorbic acid and l-[1-14C]ascorbic acid were equivalent precursors to carboxyl labeled (+)-tartaric acid. In geranium apices, l-[4-14C]ascorbic acid yielded internal labeled (+)-tartaric acid while l-[6-14C]ascorbic acid gave an equivalent conversion to carboxyl labeled (+)-tartaric acid. These findings clearly show that two distinct processes for the synthesis of (+)-tartaric acid from l-ascorbic acid exist in plants identified as (+)-tartaric acid accumulators. In grape leaves and immature berries, (+)-tartaric acid synthesis proceeds via preservation of a four-carbon fragment derived from carbons 1 through 4 of l-ascorbic acid while carbons 3 through 6 yield (+)-tartaric acid in geranium apices.  相似文献   

16.
The chiral β-nitroacrylate 2 derived from the (R)- or (S)-4-(3-hydroxy-4,4-dimethyl-2-oxopyrrolidin-1-yl) benzoic acid 1 acts as a reactive dienophile in a diastereoselective Diels-Alder reaction with 1,3-cyclohexadiene. The major cycloadducts have been isolated and transformed into enantiopure trans(2S,3S)- or (2R,3R)-N-Boc-3-aminobicyclic[2,2,2]octane-2-carboxylic acids 5. The trans-(2S,3S)- or (2R,3R)-N-Boc 3-(hydoxymethyl)-2-aminobicyclic[2,2,2]octane 6 derivatives were also obtained.  相似文献   

17.
2D NMR has been used to examine the structure and dynamics of a 12-mer DNA duplex, d(T(1)A(2)G(3)T(4)C(5)A(6)A(7)G(8)G(9)G(10)C(11)A(12))-d(T(13)G(14)C( 15)C(16)C(17)T(18)T(19)G(20)A(21)C(22)T(23)A(24)), containing a 10R adduct at dA(7) that corresponds to trans addition of the N(6)-amino group of dA(7) to (-)-(7S,8R,9R,10S)-7,8-dihydroxy-9, 10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene [(-)-(S,R,R,S)-BP DE-2]. This DNA duplex contains the base sequence for the major dA mutational hot spot in the HPRT gene when Chinese hamster V79 cells are given low doses of the highly carcinogenic (+)-(R,S,S,R)-BP DE-2 enantiomer. NOE data indicate that the hydrocarbon is intercalated on the 5'-side of the modified base as has been seen previously for other oligonucleotides containing BP DE-2 (10R)-dA adducts. 2D chemical exchange-only experiments indicate dynamic behavior near the intercalation site especially at the 10R adducted dA, such that this base interconverts between the normal anti conformation and a less populated syn conformation. Ab initio molecular orbital chemical shift calculations of nucleotide and dinucleotide fragments in the syn and anti conformations support these conclusions. Although this DNA duplex containing a 10R dA adduct exhibits conformational flexibility as described, it is nevertheless more conformationally stable than the corresponding 10S adducted duplex corresponding to trans opening of the carcinogenic isomer (+)-(R,S,S, R)-BP DE-2, which was too dynamic to permit NMR structure determination. UV and imino proton NMR spectral observations indicated pronounced differences between these two diastereomeric 12-mer duplexes, consistent with conformational disorder at the adduct site and/or an equilibrium with a nonintercalated orientation of the hydrocarbon in the duplex containing the 10S adduct. The existence of conformational flexibility around adducts may be related to the occurrence of multiple mutagenic outcomes resulting from a single DE adduct.  相似文献   

18.
The intramolecular conformation of puromycin, a broad spectrum antibiotic, in solution has been investigated by proton magnetic resonance (PMR) spectroscopy. A comparison of the proton chemical shift and proton-proton coupling constant data of puromycin with puromycin aminonucleoside suggests that puromycin in solution exists as an equilibrium blend of extended and folded conformers. These folded conformers are the result of flexibility around the C alpha -C beta bond of the aminoacyl segment of puromycin. One of the folded conformers predicted by PMR is in excellent agreement with the x-ray data.  相似文献   

19.
One carbonyl oxygen of the cyclic hexapeptide cyclo(-Gly1-Pro2-Phe3-Val4-Phe5-Phe6-) (A) can be selectively exchanged with sulphur using Yokoyama's reagent. Surprisingly it was not the C=] of Gly1 but that of Phe5 which was substituted and cyclo(-Gly1-Pro2-Phe3-Val4-Phe5 psi [CS-NH]Phe6-) (B) was obtained. Thionation results in a conformational change of the peptide backbone although the C=O of Phe5 and the corresponding C=S are not involved in internal hydrogen bonds. Two isomers in slow exchange, containing a cis Gly1-Pro2 bond in a beta VIa-turn (minor) and a trans Gly-Pro bond in a beta II'-turn (major), were analyzed by restrained molecular dynamics in vacuo and in DMSO as well as using time dependent distance constraints. It is impossible to fit all experimental data to a static structure of each isomer. Interpreting the conflicting NOEs, local segment flexibility is found. MD simulations lead to a dynamic model for each structure with evidence of an equilibrium between a beta I- and beta II-turn about the Val4-Phe5 amide bond in both the cis and trans isomers. Additionally proton relaxation rates in the rotating frame (R1 rho) were measured to verify the assumption of this fast beta I/beta II equilibrium within each isomer. Significant contributions to R1 rho-rates from intramolecular motions were found for both isomers. Therefore it is possible to distinguish between at least four conformers interconverting on different time scales based on NMR data and MD refinement. This work shows that thionation is a useful modification of peptides for conformation-activity investigations.  相似文献   

20.
Ab initio MO calculations were carried out at the MP2/6-311++G(d,p) level to investigate the conformational energy of 2-substituted oxanes and 1,3-dioxanes. It has been found that the Gibbs free energies of the axial conformers are smaller than those of the corresponding equatorial conformers in every case when the 2-substituent Z is electron withdrawing (OCH(3), F, Cl, Br). The difference in Gibbs energy between the equatorial and axial conformers DeltaG(eq-ax) increases from Z=OCH(3) to F, Cl, and then to Br. In the axial conformers, the interatomic distance between Z and the axial C-H, separated by four covalent bonds, has been found to be appreciably shorter than the van der Waals distance, suggesting the importance of the five-membered CH/n (CH/O or CH/halogen) hydrogen bond in stabilizing these conformations. Natural bonding orbital (NBO) charges of the relevant atoms have been shown to be different between the two conformers: more positive for H and more negative for C in the axial conformers than in the corresponding equatorial conformers. In view of the above findings, we suggest that the CH/n hydrogen bond plays an important role in stabilizing the axial conformation in 2-substituted oxanes and 1,3-dioxanes, and by implication, in the anomeric effect in carbohydrate chemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号