首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Human infection with the protozoa Trypanosoma cruzi extends through North, Central, and South America, affecting 21 countries. Most human infections in the Western Hemisphere occur through contact with infected bloodsucking insects of the triatomine species. As T. cruzi can be detected in the blood of untreated infected individuals, decades after infection took place; the infection can be also transmitted through blood transfusion and organ transplant, which is considered the second most common mode of transmission for T. cruzi. The third mode of transmission is congenital infection. Economic hardship, political problems, or both, have spurred migration from Chagas endemic countries to developed countries. The main destination of this immigration is Australia, Canada, Spain, and the United States. In fact, human infection through blood or organ transplantation, as well as confirmed or potential cases of congenital infections has been described in Spain and in the United States. Estimates reported here indicates that in Australia in 2005-2006, 1067 of the 65,255 Latin American immigrants (16 per 1000) may be infected with T. cruzi, and in Canada, in 2001, 1218 of the 131,135 immigrants (9 per 1000) whose country of origin was identified may have been also infected. In Spain, a magnet for Latin American immigrants since the 2000, 6141 of 38,777 to 339,954 [corrected] legal immigrants in 2003 (25 per 1000), could be infected. In the United States, 56,028 to 357,205 of the 7,20 million, legal immigrants (8 to 50 per 1000), depending on the scenario, from the period 1981-2005 may be infected with T. cruzi. On the other hand, 33,193 to 336,097 of the estimated 5,6 million undocumented immigrants in 2000 (6 to 59 per 1000) could be infected. Non endemic countries receiving immigrants from the endemic ones should develop policies to protect organ recipients from T. cruzi infection, prevent tainting the blood supply with T. cruzi, and implement secondary prevention of congenital Chagas disease.  相似文献   

2.
Stability analysis and optimal vaccination of an SIR epidemic model   总被引:2,自引:1,他引:1  
Zaman G  Han Kang Y  Jung IH 《Bio Systems》2008,93(3):240-249
Almost all mathematical models of diseases start from the same basic premise: the population can be subdivided into a set of distinct classes dependent upon experience with respect to the relevant disease. Most of these models classify individuals as either a susceptible individual S, infected individual I or recovered individual R. This is called the susceptible-infected-recovered (SIR) model. In this paper, we describe an SIR epidemic model with three components; S, I and R. We describe our study of stability analysis theory to find the equilibria for the model. Next in order to achieve control of the disease, we consider a control problem relative to the SIR model. A percentage of the susceptible populations is vaccinated in this model. We show that an optimal control exists for the control problem and describe numerical simulations using the Runge-Kutta fourth order procedure. Finally, we describe a real example showing the efficiency of this optimal control.  相似文献   

3.
Mwasa A  Tchuenche JM 《Bio Systems》2011,105(3):190-200
Cholera, an acute gastro-intestinal infection and a waterborne disease continues to emerge in developing countries and remains an important global health challenge. We formulate a mathematical model that captures some essential dynamics of cholera transmission to study the impact of public health educational campaigns, vaccination and treatment as control strategies in curtailing the disease. The education-induced, vaccination-induced and treatment-induced reproductive numbers R(E), R(V), R(T) respectively and the combined reproductive number R(C) are compared with the basic reproduction number R(0) to assess the possible community benefits of these control measures. A Lyapunov functional approach is also used to analyse the stability of the equilibrium points. We perform sensitivity analysis on the key parameters that drive the disease dynamics in order to determine their relative importance to disease transmission and prevalence. Graphical representations are provided to qualitatively support the analytical results.  相似文献   

4.
The most important and effective measures against disease outbreaks in the absence of valid medicines or vaccine are quarantine and isolation strategies. In this paper optimal control theory is applied to a system of ordinary differential equation describing a two-strain avian influenza transmission via the Pontryagin's Maximum Principle. To this end, a pair of control variables representing the isolation strategies for individuals with avian and mutant strains were incorporated into the transmission model. The infection averted ratio (IAR) and the incremental cost-effectiveness ratio (ICER) were calculated to investigate the cost-effectiveness of all possible combinations of the control strategies. The simulation results show that the implementation of the combination strategy during the epidemic is the most cost-effective strategy for avian influenza transmission. This is followed by the control strategy involving isolation of individuals with the mutant strain. Also observed was the fact that low mutating and more virulent virus results in an increased control effort of isolating individuals with the avian strain; and high mutating with more virulent virus results in increased efforts in isolating individuals with the mutant strain.  相似文献   

5.
The aim of this paper is to investigate the effectiveness and cost-effectiveness of three malaria preventive measures (use of treated bednets, spray of insecticides and a possible treatment of infective humans that blocks transmission to mosquitoes). For this, we consider a mathematical model for the transmission dynamics of the disease that includes these measures. We first consider the constant control parameters’ case, we calculate the basic reproduction number and investigate the existence and stability of equilibria; the model is found to exhibit backward bifurcation. We then assess the relative impact of each of the constant control parameters measures by calculating the sensitivity index of the basic reproductive number to the model's parameters. In the time-dependent constant control case, we use Pontryagin's Maximum Principle to derive necessary conditions for the optimal control of the disease. We also calculate the Infection Averted Ratio (IAR) and the Incremental Cost-Effectiveness Ratio (ICER) to investigate the cost-effectiveness of all possible combinations of the three control measures. One of our findings is that the most cost-effective strategy for malaria control, is the combination of the spray of insecticides and treatment of infective individuals. This strategy requires a 100% effort in both treatment (for 20 days) and spray of insecticides (for 57 days). In practice, this will be extremely difficult, if not impossible to achieve. The second most cost-effective strategy which consists of a 100% use of treated bednets and 87% treatment of infective individuals for 42 and 100 days, respectively, is sustainable and therefore preferable.  相似文献   

6.
This article develops the concept of forms of capital as the basis of a model of immigrant incorporation. The model sets out the manner in which the social, financial, and human-cultural capital of immigrant families predict the sorting of immigrants into various labour market trajectories. For example, immigrants arriving with low stocks of financial and human-cultural capital are most likely to find employment in the ethnic economy, whereas immigrants with human-cultural capital that is fungible in the host society tend to gain employment in the broader mainstream economy. Event history analysis is employed to demonstrate the model on four patterns of job mobility common among immigrants: entrepreneurship, professional-managerial-technical jobs, employment in the public sector, and semi- or low-skilled factory work and low-paid service jobs. The findings show that the mix of capital immigrants arrive with, and subsequently accumulate, shapes the trajectory of their incorporation into the host society. The research is based on a field study of Asian immigrants in the greater Los Angeles area.  相似文献   

7.
This paper presents two new theoretical frameworks to investigate the impact of immigration on the transmission dynamics of tuberculosis. For the basic model, we present new analysis on the existence and stability of equilibria. Then, we use numerical simulations of the model to illustrate the behavior of the system. We apply the model to Canadian reported data on tuberculosis and observe a good agreement between the model prediction and the data. For the extended model, which incorporated the recruitment of the latent and infectious in immigrants to the basic model, we find that the usual threshold condition does not apply and a unique equilibrium exists for all parameter values. This indicates that the disease does not disappear and becomes endemic in host areas. This finding is also supported by numerical simulations with the extended model. Our study suggests that immigrants have a considerable influence on the overall transmission dynamics behavior of tuberculosis.  相似文献   

8.

Background

International migrants experience increased mortality from hepatocellular carcinoma compared to host populations, largely due to undetected chronic hepatitis B infection (HBV). We conducted a systematic review of the seroprevalence of chronic HBV and prior immunity in migrants arriving in low HBV prevalence countries to identify those at highest risk in order to guide disease prevention and control strategies.

Methods and Findings

Medline, Medline In-Process, EMBASE and the Cochrane Database of Systematic Reviews were searched. Studies that reported HBV surface antigen or surface antibodies in migrants were included. The seroprevalence of chronic HBV and prior immunity were pooled by region of origin and immigrant class, using a random-effects model. A random-effects logistic regression was performed to explore heterogeneity. The number of chronically infected migrants in each immigrant-receiving country was estimated using the pooled HBV seroprevalences and country-specific census data. A total of 110 studies, representing 209,822 immigrants and refugees were included. The overall pooled seroprevalence of infection was 7.2% (95% CI: 6.3%–8.2%) and the seroprevalence of prior immunity was 39.7% (95% CI: 35.7%–43.9%). HBV seroprevalence differed significantly by region of origin. Migrants from East Asia and Sub-Saharan Africa were at highest risk and migrants from Eastern Europe were at an intermediate risk of infection. Region of origin, refugee status and decade of study were independently associated with infection in the adjusted random-effects logistic model. Almost 3.5 million migrants (95% CI: 2.8–4.5 million) are estimated to be chronically infected with HBV.

Conclusions

The seroprevalence of chronic HBV infection is high in migrants from most world regions, particularly among those from East Asia, Sub-Saharan Africa and Eastern Europe, and more than 50% were found to be susceptible to HBV. Targeted screening and vaccination of international migrants can become an important component of HBV disease control efforts in immigrant-receiving countries.  相似文献   

9.

Background

Without intervention, up to 25% of individuals chronically infected with hepatitis B virus (HBV) die of late complications, including cirrhosis and liver cancer. The United States, which in 1991 implemented a strategy to eliminate HBV transmission through universal immunization, is a country of low prevalence. Approximately 3,000–5,000 U.S.-acquired cases of chronic hepatitis B have occurred annually since 2001. Many more chronically infected persons migrate to the United States yearly from countries of higher prevalence. Although early identification of chronic HBV infection can reduce the likelihood of transmission and late complications, immigrants are not routinely screened for HBV infection during or after immigration.

Methods

To estimate the number of imported cases of chronic hepatitis B, we multiplied country-specific prevalence estimates by the yearly number of immigrants from each country during 1974–2008.

Results

During 1974–2008, 27.9 million immigrants entered the U.S. Sixty-three percent were born in countries of intermediate or high chronic hepatitis B prevalence (range 2%–31%). On average, an estimated 53,800 chronic hepatitis B cases were imported to the U.S. yearly from 2004 through 2008. The Philippines, China, and Vietnam contributed the most imported cases (13.4%, 12.5%, and 11.0%, respectively). Imported cases increased from an estimated low of 105,750 during the period 1974–1977 to a high of 268,800 in 2004–2008.

Conclusions

Imported chronic hepatitis B cases account for approximately 95% of new U.S. cases. Earlier case identification and management of infected immigrants would strengthen the U.S. strategy to eliminate HBV transmission, and could delay disease progression and prevent some deaths among new Americans.  相似文献   

10.
We investigate how age-structure and differences in certain demographic traits between residents and immigrants of a single species act to determine the evolutionarily stable dispersal strategy in a two-patch environment that is heterogeneous in space but constant in time. These two factors have been neglected in previous models of the evolution of dispersal, which generally consider organisms with very simple life-cycles and assume that, whatever their origin, individuals in a given habitat have the same bio-demographic characteristics. However, there is increasing empirical evidence that dispersing individuals have different demographic properties from phylopatric ones. We develop a matrix model in which recruitment depends on local population densities. We assume that dispersal entails a proportional cost to immigrant fecundity, which can be compensated by differences in survival rates between immigrants and residents. The evolutionarily stable strategies (ESS) for dispersal are identified using a combination of analytical expressions and numerical simulations. Our results show that philopatry is selected (1) when dispersal rates do not vary in space, (2) when the metapopulation is a source-sink system and (3) when dispersal rates vary in space (asymmetric dispersal) and immigrants do not compensate for their reduced fecundity. We observe that non-zero asymmetric dispersal rates may be evolutionarily stable when (1) immigrants and residents are demographically alike and (2) immigrants compensate totally for their reduced fecundity through an increase in adult survival. Under these conditions, we find that the ESS occurs when the fitnesses at equilibrium in the two habitats, measured in our model by the realized reproductive rates, are each equal to unity. A comparison with previous studies suggests a unifying rule for the evolution of dispersal: the dispersal rates which permit the spatial homogenization of fitnesses are ESSs. This condition provides new insight into the evolutionary stability of source-sink systems. It also supports the hypothesis that immigrants have adapted demographic strategies, rather than the hypothesis that dispersal is costly and immigrants are at a disavantage compared with residents.  相似文献   

11.
Given that individuals are genetically heterogeneous in their degree of resistance to infection, a model is proposed to formulate appropriate choices that will limit the spread of an infectious disease. The model is illustrated with data on S. aureus mastitis and is based on parameters characterizing the spread of the disease (contact rate, probability of infection after contact, and rate of recovery after infection), the demography (replacement and culling rates) and the genetic composition (degree of relationship and heritability of the disease trait) of the animal population. To decrease infection pressure, it is possible to apply non-genetic procedures that increase the culling (e.g., culling of chronically infected cows) and recovery (e.g., antibiotic therapy) rates of infected cows. But the contribution of the paper is to show that genetic management of infectious disease is also theoretically possible as a control measure complementary to non-genetic actions. Indeed, the probability for an uninfected individual to become infected after contact with an infected one is partially related to their degree of kinship: the more closely they are related, the more likely they are to share identical genes like those associated to the non-resistance to infection. Different prospective genetic management procedures are proposed to decrease the contact rate between infected and uninfected relatives and keep the number of secondary cases generated by one infected animal below 1.  相似文献   

12.
Kar TK  Ghosh B 《Bio Systems》2012,109(2):220-232
In the present paper, we develop a simple two species prey-predator model in which the predator is partially coupled with alternative prey. The aim is to study the consequences of providing additional food to the predator as well as the effects of harvesting efforts applied to both the species. It is observed that the provision of alternative food to predator is not always beneficial to the system. A complete picture of the long run dynamics of the system is discussed based on the effort pair as control parameters. Optimal augmentations of prey and predator biomass at final time have been investigated by optimal control theory. Also the short and large time effects of the application of optimal control have been discussed. Finally, some numerical illustrations are given to verify our analytical results with the help of different sets of parameters.  相似文献   

13.
In the present paper, we consider a mathematical model of ecosystem population interaction where the population suffers from a susceptible–infectious–susceptible disease. Dispersal of both the susceptible and the infective is incorporated using reaction–diffusion equations. We first study the stability criteria of the basic (non-spatial) model around the disease-free and the infected steady states. We find that the loss rate of the infective species controls disease prevalence. Also without predation pressure, the disease will continue to exist among the population. Then we analyze the spatial model with species dispersal in constant as well as in time-varying form. It is observed that though constant dispersal is unable to generate diffusion-driven instability, dispersal with sinusoidal variation in dispersion rate can generate diffusive instability when the wave number of the perturbation lies within a given range. Numerical simulations are performed to illustrate analytical studies.  相似文献   

14.
Chagas disease is a vector-borne parasitic disease that infects mammals, including humans, through much of Latin America. This work presents a mathematical model for the dynamics of domestic transmission in the form of four coupled nonlinear differential equations. The four equations model the number of domiciliary vectors, the number of infected domiciliary vectors, the number of infected humans, and the number of infected domestic animals. The main interest of this work lies in its study of the effects of insecticide spraying and of the recovery of vector populations with cessation of spraying. A novel aspect in the model is that yearly spraying, which is currently used to prevent transmission, is taken into account. The model's predictions for a representative village are discussed. In particular, the model predicts that if pesticide use is discontinued, the vector population and the disease can return to their pre-spraying levels in approximately 5–8 years.  相似文献   

15.
Two traditional theories of adaptation of immigrants in the United States, assimilation and pluralism, are based on the assumption that the two processes, Americanization and ethnic attachment, are mutually exclusive. Such an assumption of mutual exclusiveness or zero‐sum model limits the utility of the two theories. A conceptual model is presented in this article which includes an additive mode of adaptation based on the idea of non‐exclusive‐ness between the two processes. Korean immigrants’ social and cultural adaptation has been tested with the model. Data were collected through interviewing 622 Korean adult (20 years old or more) immigrants residing in the Chicago area in 1986. The data empirically confirm the additive mode of adaptation in addition to assimilative replacement and pluralistic ethnic attachment. Theoretical implications of various modes of adaptation observed from this study are discussed.  相似文献   

16.
We formulate and analyse a stochastic epidemic model for the transmission dynamics of a tick-borne disease in a single population using a continuous-time Markov chain approach. The stochastic model is based on an existing deterministic metapopulation tick-borne disease model. We compare the disease dynamics of the deterministic and stochastic models in order to determine the effect of randomness in tick-borne disease dynamics. The probability of disease extinction and that of a major outbreak are computed and approximated using the multitype Galton–Watson branching process and numerical simulations, respectively. Analytical and numerical results show some significant differences in model predictions between the stochastic and deterministic models. In particular, we find that a disease outbreak is more likely if the disease is introduced by infected deer as opposed to infected ticks. These insights demonstrate the importance of host movement in the expansion of tick-borne diseases into new geographic areas.  相似文献   

17.
The C-biotype of Moniliophthora perniciosa is the causal agent of witches’ broom disease of Theobroma cacao L. While this disease is of major economic importance, the pathogenicity mechanisms and plant responses underlying the disease are difficult to study given the cacao tree’s long life cycle and the limited availability of genetic and genomic resources for this system. The S-biotype of M. perniciosa infects solanaceous hosts, particularly pepper (Capsicum annuum) and tomato (Solanum lycopersicum). These species are much more amenable for performing studies of mechanisms underpinning host-pathogen interactions as compared to cacao. A phylogenetic analysis performed in this study demonstrated that S-biotype strains clustered with C-biotype strains, indicating that these biotypes are not genetically distinct. A comparative analysis demonstrated that disease progression in tomato infected with the S- biotype is similar to that described for cacao infected with the C- biotype. The major symptoms observed in both systems are swelling of the infected shoots and activation and proliferation of axillary meristems. Cellular changes observed in infected tissues correspond to an increase in cell size and numbers of xylem vessels and phloem parenchyma along the infected stem. Observations revealed that fungal colonization is biotrophic during the first phase of infection, with appearance of calcium oxalate crystals in close association with hyphal growth. In summary, despite different host specificity, both biotypes of M. perniciosa exhibit similar disease-related characteristics, indicating a degree of conservation of pathogenicity mechanisms between the two biotypes.  相似文献   

18.
Tufto J 《Genetical research》2000,76(3):285-293
The evolution of a quantitative trait subject to stabilizing selection and immigration, with the immigrants deviating from the local optimum, is considered under a number of different models of the underlying genetic basis of the trait. By comparing exact predictions under the infinitesimal model obtained using numerical methods with predictions of a simplified approximate model based on ignoring linkage disequilibrium, the increase in the expressed genetic variance as a result of linkage disequilibrium generated by migration is shown to be relatively small and negligible, provided that the genetic variance relative to the squared deviation of immigrants from the local optimum is sufficiently large or selection and migration is sufficiently weak. Deviation from normality is shown to be less important by comparing predictions of the infinitesimal model with a model presupposing normality. For a more realistic symmetric model, involving a finite number of loci only, no linkage and equal effects and frequencies across loci, additional changes in the genetic variance arise as a result of changes in underlying allele frequencies. Again, provided that the genetic variance relative to the squared deviation of the immigrants from the local optimum is small, the difference between the predictions of infinitesimal and the symmetric model are small unless the number of loci is very small. However, if the genetic variance relative to the squared deviation of the immigrants from the local optimum is large, or if selection and migration are strong, both linkage disequilibrium and changes in the genetic variance as a result of changes in underlying allele frequencies become important.  相似文献   

19.
Plant disease mathematical models including continuous cultural control strategy and impulsive cultural control strategy are proposed and investigated. This novel theoretical framework could result in an objective criterion on how to control plant disease transmission by replanting of healthy plants and removal of infected plants. Firstly, continuous replanting of healthy plants and removing of infected plants is taken. The existence and stability of disease-free equilibrium and positive equilibrium are studied and continuous cultural control strategy is given. Secondly, plant disease model with impulsive replanting of healthy plants and removing of infected plants is also considered. Using Floquet's theorem and small amplitude perturbation, the sufficient conditions under which the infected plant free periodic solution is locally stable are obtained. Moreover, permanence of the system is investigated. Under certain parameter spaces, it is shown that a nontrivial periodic solution emerges via a supercritical bifurcation. Finally, our findings are confirmed by means of numerical simulations. The modeling methods and analytical analysis presented can serve as an integrating measure to identify and design appropriate plant disease control strategies.  相似文献   

20.
Kyasanur Forest disease virus (KFDV) and Alkhumra hemorrhagic fever virus (AHFV) are genetically closely-related, tick-borne flaviviruses that cause severe, often fatal disease in humans. Flaviviruses in the tick-borne encephalitis (TBE) complex typically cause neurological disease in humans whereas patients infected with KFDV and AHFV predominately present with hemorrhagic fever. A small animal model for KFDV and AHFV to study the pathogenesis and evaluate countermeasures has been lacking mostly due to the need of a high biocontainment laboratory to work with the viruses. To evaluate the utility of an existing mouse model for tick-borne flavivirus pathogenesis, we performed serial sacrifice studies in BALB/c mice infected with either KFDV strain P9605 or AHFV strain Zaki-1. Strikingly, infection with KFDV was completely lethal in mice, while AHFV caused no clinical signs of disease and no animals succumbed to infection. KFDV and high levels of pro-inflammatory cytokines were detected in the brain at later time points, but no virus was found in visceral organs; conversely, AHFV Zaki-1 and elevated levels of cytokines were found in the visceral organs at earlier time points, but were not detected in the brain. While infection with either virus caused a generalized leukopenia, only AHFV Zaki-1 induced hematologic abnormalities in infected animals. Our data suggest that KFDV P9605 may have lost its ability to cause hemorrhagic disease as the result of multiple passages in suckling mouse brains. However, likely by virtue of fewer mouse passages, AHFV Zaki-1 has retained the ability to replicate in visceral organs, cause hematologic abnormalities, and induce pro-inflammatory cytokines without causing overt disease. Given these striking differences, the use of inbred mice and the virus passage history need to be carefully considered in the interpretation of animal studies using these viruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号