首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Considerable insight into intracellular Ca2+ responses has been obtained through the development of whole cell models that are based on molecular mechanisms, e.g., single channel kinetics of the inositol 1,4,5-trisphosphate (IP3) receptor Ca2+ channel. However, a limitation of most whole cell models to date is the assumption that IP3 receptor Ca2+ channels (IP3Rs) are globally coupled by a “continuously stirred” bulk cytosolic [Ca2+], when in fact open IP3Rs experience elevated “domain” Ca2+ concentrations. Here we present a 2N+2-compartment whole cell model of local and global Ca2+ responses mediated by N=100,000 diffusely distributed IP3Rs, each represented by a four-state Markov chain. Two of these compartments correspond to bulk cytosolic and luminal Ca2+ concentrations, and the remaining 2N compartments represent time-dependent cytosolic and luminal Ca2+ domains associated with each IP3R. Using this Monte Carlo model as a starting point, we present an alternative formulation that solves a system of advection-reaction equations for the probability density of cytosolic and luminal domain [Ca2+] jointly distributed with IP3R state. When these equations are coupled to ordinary differential equations for the bulk cytosolic and luminal [Ca2+], a realistic but minimal model of whole cell Ca2+ dynamics is produced that accounts for the influence of local Ca2+ signaling on channel gating and global Ca2+ responses. The probability density approach is benchmarked and validated by comparison to Monte Carlo simulations, and the two methods are shown to agree when the number of Ca2+ channels is large (i.e., physiologically realistic). Using the probability density approach, we show that the time scale of Ca2+ domain formation and collapse (both cytosolic and luminal) may influence global Ca2+ oscillations, and we derive two reduced models of global Ca2+ dynamics that account for the influence of local Ca2+ signaling on global Ca2+ dynamics when there is a separation of time scales between the stochastic gating of IP3Rs and the dynamics of domain Ca2+.  相似文献   

2.
In order to establish whether non-mitochondrial oxidase activity in human neutrophils is tightly related to cytosolic Ca2+ concentration, we simultaneously measured Ca2+ oscillations induced by ATP and oxidant production in single adherent neutrophils using confocal microscopy. ATP induced fast damped Ca2+ spikes with a period of 15 s and slower irregular spikes with a period greater than 50 s. Spikes in Ca2+ occurred in the absence of Ca2+ influx, but the amplitude was damped by inhibition of Ca2+ influx. Using the oxidation of hydroethidine as a cytosolic marker of oxidant production, we show that the generation of reactive oxygen species by neutrophils adherent to glass was accelerated by ATP. The step-up in NADPH oxidase activity followed the first elevation of cytosolic Ca2+ but, despite subsequent spikes in Ca2+ concentration, no oscillations in oxidase activity could be detected. ATP induced spikes in Ca2+ in a very reproducible way and we propose that the Ca2+ signal is an on-switch for oxidase activity, but the activity is apparently not directly correlated with spiking activity in cytosolic Ca2+.  相似文献   

3.

Background

Calcium (Ca2 +) oscillations are ubiquitous signals present in all cells that provide efficient means to transmit intracellular biological information. Either spontaneously or upon receptor ligand binding, the otherwise stable cytosolic Ca2 + concentration starts to oscillate. The resulting specific oscillatory pattern is interpreted by intracellular downstream effectors that subsequently activate different cellular processes. This signal transduction can occur through frequency modulation (FM) or amplitude modulation (AM), much similar to a radio signal. The decoding of the oscillatory signal is typically performed by enzymes with multiple Ca2 + binding residues that diversely can regulate its total phosphorylation, thereby activating cellular program. To date, NFAT, NF-κB, CaMKII, MAPK and calpain have been reported to have frequency decoding properties.

Scope of review

The basic principles and recent discoveries reporting frequency decoding of FM Ca2 + oscillations are reviewed here.

Major conclusions

A limited number of cellular frequency decoding molecules of Ca2 + oscillations have yet been reported. Interestingly, their responsiveness to Ca2 + oscillatory frequencies shows little overlap, suggesting their specific roles in cells.

General significance

Frequency modulation of Ca2 + oscillations provides an efficient means to differentiate biological responses in the cell, both in health and in disease. Thus, it is crucial to identify and characterize all cellular frequency decoding molecules to understand how cells control important cell programs.  相似文献   

4.
Dynamic features of Ca2+ interactions with transport and regulatory sites control the Ca2+-fluxes in mammalian Na+/Ca2+(NCX) exchangers bearing the Ca2+-binding regulatory domains on the cytosolic 5L6 loop. The crystal structure of Methanococcus jannaschii NCX (NCX_Mj) may serve as a template for studying ion-transport mechanisms since NCX_Mj does not contain the regulatory domains. The turnover rate of Na+/Ca2+ exchange (kcat = 0.5 ± 0.2s−1) in WT–NCX_Mj is 103–104 times slower than in mammalian NCX. In NCX_Mj, the intrinsic equilibrium (Kint) for bidirectional Ca2+ movements (defined as the ratio between the cytosolic and extracellular Km of Ca2+/Ca2+ exchange) is asymmetric, Kint = 0.15 ± 0.5. Therefore, the Ca2+ movement from the cytosol to the extracellular side is ∼7-times faster than in the opposite direction, thereby representing a stabilization of outward-facing (extracellular) access. This intrinsic asymmetry accounts for observed differences in the cytosolic and extracellulr Km values having a physiological relevance. Bidirectional Ca2+ movements are also asymmetric in mammalian NCX. Thus, the stabilization of the outward-facing access along the transport cycle is a common feature among NCX orthologs despite huge differences in the ion-transport kinetics. Elongation of the cytosolic 5L6 loop in NCX_Mj by 8 or 14 residues accelerates the ion transport rates (kcat) ∼10 fold, while increasing the Kint values 100–250-fold (Kint = 15–35). Therefore, 5L6 controls both the intrinsic equilibrium and rates of bidirectional Ca2+ movements in NCX proteins. Some additional structural elements may shape the kinetic variances among phylogenetically distant NCX variants, although the intrinsic asymmetry (Kint) of bidirectional Ca2+ movements seems to be comparable among evolutionary diverged NCX variants.  相似文献   

5.
We examined crosstalk between the insulin receptor and G protein-coupled receptor (GPCR) signaling pathways in individual human pancreatic cancer PANC-1 cells. Treatment of cells with insulin (10 ng/ml) for 5 min markedly enhanced the proportion of cells that display an increase in intracellular [Ca2+] induced by picomolar concentrations of the GPCR agonist neurotensin. Interestingly, insulin increased the proportion of a subpopulation of cells that exhibit intracellular [Ca2+] oscillations in response to neurotensin at concentrations as low as 50-200 pM. Insulin enhanced GPCR-induced Ca2+ signaling in a time- and dose-dependent manner; a marked potentiation was obtained after an exposure to a concentration of 10 ng/ml for 5 min. Treatment with the mTORC1 inhibitor rapamycin abrogated the increase in GPCR-induced [Ca2+]i oscillations produced by insulin. Our results identify a novel aspect in the crosstalk between insulin receptor and GPCR signaling systems in pancreatic cancer cells, namely that insulin increases the number of [Ca2+]i oscillating cells induced by physiological concentrations of GPCR agonists through an mTORC1-dependent pathway.  相似文献   

6.
The results here are the first demonstration of a family of carbohydrate fermentation products opening Ca2+ channels in bacteria. Methylglyoxal, acetoin (acetyl methyl carbinol), diacetyl (2,3 butane dione), and butane 2,3 diol induced Ca2+ transients in Escherichia coli, monitored by aequorin, apparently by opening Ca2+ channels. Methylglyoxal was most potent (K1/2 = 1 mM, 50 mM for butane 2,3 diol). Ca2+ transients depended on external Ca2+ (0.1-10 mM), and were blocked by La3+ (5 mM). The metabolites affected growth, methylglyoxal being most potent, blocking growth completely up to 5 h without killing the cells. But there was no affect on the number of viable cells after 24 h. These results were consistent with carbohydrate products activating a La3+-sensitive Ca2+ channel, rises in cytosolic Ca2+ possibly protecting against certain toxins. They have important implications in bacterial-host cell signalling, and where numbers of different bacteria compete for the same substrates, e.g., the gut in lactose and food intolerance.  相似文献   

7.
The divalent cation, Ca2+, plays crucial roles in plant growth, development and stress resistance. Limonium bicolor seedlings were treated with 200 mM NaCl combined with three levels of Ca2+ (0 mM, 5 mM and 20 mM) for 15 days to study the effects of Ca2+ on development and salt-secretion rates of salt glands. It was shown that the 4th leaf areas of L. bicolor seedlings under 20 mM Ca2+ treatment were significantly higher than those under 0 mM and 5 mM Ca2+ treatments. The total number and the densities of salt glands per leaf increased markedly with increased Ca2+ concentrations. The diameters of salt glands increased by 59% and 63% as Ca2+ concentration increased from zero to 5 mM and 20 mM, respectively. Under 20 mM Ca2+ treatment, the salt-secretion rate per leaf was obviously higher than that treated with 5 mM Ca2+, but there was no significant difference in the salt-secretion rates per salt gland between the two groups. Under 0 mM Ca2+ treatment, leaf-cell membrane permeability increased significantly, which led to serious leakage of ions and a significant increase in Na+ loss rate. The results showed that the increase of Ca2+ concentration markedly enhanced development and salt-secretion rates of salt glands in the leaves of L. bicolor, the increase of salt secretion per leaf is due to the efficiency of the secretion process per salt gland and the number of salt glands, the salt-secretion rates per salt gland have a relationship with the diameters of salt glands.  相似文献   

8.
The aim of this study was to investigate the possible relationship between NADPH oxidase activity and changes in cytosolic Ca2+ in response to different agonists. Treatment of neutrophils with leukotriene B4 (LTB4) demonstrated characteristic changes to cytoslic Ca2+ yielding an EC50 of 4 nM. The pA2 values for the specific LTB4 receptor (BLT) antagonists, U-75302 and LY-255283 were 6.32 and 6.38, respectively. Similarly, neutrophils treated with N-formyl-l-methionyl-l-leucyl-l-phenylalanine (FMLP) and platelet activating factor (PAF) exhibited changes in cytoslic Ca2+ in a dose dependant manner with pD2 values of 9.0 and 9.9, respectively. The phorbol ester PMA prevented elevations in cytosolic Ca2+ in response to LTB4, FMLP and PAF with IC50 values of 5.88, 1.44 and 5.71 nM, respectively. In addition, potent NADPH oxidase inhibitors apocynin and diphenyleneiodonium (DPI) inhibited FMLP mediated cytosolic Ca2+ release. These results demonstrate that inhibition of the NADPH oxidase suppresses cytosolic Ca2+ release in FMLP activated human neutrophils.  相似文献   

9.
Phenylephrine (PE)-induced oscillatory fluctuations in intracellular Ca2+ concentration ([Ca2+]i) of vascular smooth muscle have been observed in many blood vessels isolated from a wide variety of mammals. Paradoxically, until recently similar observations in humans have proven elusive. In this study, we report for the first time observations of adrenergically-stimulated [Ca2+]i oscillations in human mesenteric artery smooth muscle. In arterial segments preloaded with Fluo-4 AM and mounted on a myograph on the stage of a confocal microscope, we observed PE-induced oscillations in [Ca2+]i, which initiated and maintained vasoconstriction. These oscillations present some variability, possibly due to compromised health of the tissue. This view is corroborated by our ultrastructural analysis of the cells, in which we found only (5 ± 2)% plasma membrane-sarcoplasmic reticulum apposition, markedly less than measured in healthy tissue from laboratory animals. We also partially characterized the oscillations by using the inhibitory drugs 2-aminoethoxydiphenyl borate (2-APB), cyclopiazonic acid (CPA) and nifedipine. After PE contraction, all drugs provoked relaxation of the vessel segments, sometimes only partial, and reduced or inhibited oscillations, except CPA, which rarely caused relaxation. These preliminary results point to a potential involvement of the sarcoplasmic reticulum Ca2+ and inositol 1,4,5-trisphosphate receptor (IP3R) in the maintenance of the Ca2+ oscillations observed in human blood vessels.  相似文献   

10.
Oscillations of intracellular Ca2+ provide a novel mechanism for sustained activation of cellular processes. Receptor-activated oscillations are mainly thought to occur through rhythmic IP3-dependent store discharge. However, as shown here in HEK293 cells 1 nM orexin-A (Ox-A) acting at OX1 receptors (OX1R) triggered oscillatory Ca2+ responses, requiring external Ca2+. These responses were attenuated by interference with TRPC3 channel (but not TRPC1/4) function using dominant negative constructs, elevated Mg2+ (a blocker of many TRP channels) or inhibition of phospholipase A2. These treatments did not affect Ca2+ oscillations elicited by high concentrations of Ox-A (100 nM) in the absence of external Ca2+. OX1R are thus able to activate TRPC(3)-channel-dependent oscillatory responses independently of store discharge.  相似文献   

11.

Background

These experiments were employed to explore the mechanisms underlying baicalin action on Candida albicans.

Methodology and principal findings

We detected the baicalin inhibition effects on three isotope-labeled precursors of 3H-UdR, 3H-TdR and 3H-leucine incorporation into C. albicans using the isotope incorporation technology. The activities of Succinate Dehydrogenase (SDH), cytochrome oxidase (CCO) and Ca2+–Mg2+ ATPase, cytosolic Ca2+ concentration, the cell cycle and apoptosis, as well as the ultrastructure of C.albicans were also tested. We found that baicalin inhibited 3H-UdR, 3H-TdR and 3H-leucine incorporation into C.albicans (P < 0.005). The activities of the SDH and Ca2+–Mg2+ ATPase of C.albicans in baicalin groups were lower than those in control group (P < 0.05). Ca2+ concentrations of C. albicans in baicalin groups were much higher than those in control group (P < 0.05). The ratio of C.albicans at the G0/G1 stage increased in baicalin groups in dose dependent manner (P < 0.01). There were a significant differences in the apoptosis rate of C.albicans between baicalin and control groups (P < 0.01). After 12–48 h incubation with baicalin (1 mg/ml), C. albicans shown to be markedly damaged under transmission electron micrographs.

Innovation and significance

Baicalin can increase the apoptosis rate of C. albicans. These effects of Baicalin may involved in its inhibiting the activities of the SDH and Ca2+–Mg2+ ATPase, increasing cytosolic Ca2+ content and damaging the ultrastructure of C. albicans.  相似文献   

12.
In this study, we numerically analyzed the nonlinear Ca2+-dependent gating dynamics of a single, nonconducting inositol 1,4,5-trisphosphate receptor (IP3R) channel, using an exact and fully stochastic simulation algorithm that includes channel gating, Ca2+ buffering, and Ca2+ diffusion. The IP3R is a ubiquitous intracellular Ca2+ release channel that plays an important role in the formation of complex spatiotemporal Ca2+ signals such as waves and oscillations. Dynamic subfemtoliter Ca2+ microdomains reveal low copy numbers of Ca2+ ions, buffer molecules, and IP3Rs, and stochastic fluctuations arising from molecular interactions and diffusion do not average out. In contrast to models treating calcium dynamics deterministically, the stochastic approach accounts for this molecular noise. We varied Ca2+ diffusion coefficients and buffer reaction rates to tune the autocorrelation properties of Ca2+ noise and found a distinct relation between the autocorrelation time τac, the mean channel open and close times, and the resulting IP3R open probability PO. We observed an increased PO for shorter noise autocorrelation times, caused by increasing channel open times and decreasing close times. In a pure diffusion model the effects become apparent at elevated calcium concentrations, e.g., at [Ca2+] = 25 μM, τac = 0.082 ms, the IP3R open probability increased by ≈20% and mean open times increased by ≈4 ms, compared to a zero noise model. We identified the inactivating Ca2+ binding site of IP3R subunits as the primarily noise-susceptible element of the De Young and Keizer model. Short Ca2+ noise autocorrelation times decrease the probability of Ca2+ association and consequently increase IP3R activity. These results suggest a functional role of local calcium noise properties on calcium-regulated target molecules such as the ubiquitous IP3R. This finding may stimulate novel experimental approaches analyzing the role of calcium noise properties on microdomain behavior.  相似文献   

13.
Cytosolic Ca2+ dynamics are important in the regulation of insulin secretion from the pancreatic β-cells within islets of Langerhans. These dynamics are sculpted by the endoplasmic reticulum (ER), which takes up Ca2+ when cytosolic levels are high and releases it when cytosolic levels are low. Calcium uptake into the ER is through sarcoendoplasmic reticulum Ca2+-ATPases, or SERCA pumps. Two SERCA isoforms are expressed in the β-cell: the high Ca2+ affinity SERCA2b pump and the low affinity SERCA3 pump. Recent experiments with islets from SERCA3 knockout mice have shown that the cytosolic Ca2+ oscillations from the knockout islets are characteristically different from those of wild type islets. While the wild type islets often exhibit compound Ca2+ oscillations, composed of fast oscillations superimposed on much slower oscillations, the knockout islets rarely exhibit compound oscillations, but produce slow (single component) oscillations instead. Using mathematical modeling, we provide an explanation for this difference. We also investigate the effect that SERCA2b inhibition has on the model β-cell. Unlike SERCA3 inhibition, we demonstrate that SERCA2b inhibition has no long-term effect on cytosolic Ca2+ oscillations unless a store-operated current is activated.  相似文献   

14.
Summary Using Ca2+- and K+-selective microelectrodes, the cytosolic free Ca2+ and K+ concentrations were measured in mouse fibroblastic L cells. When the extracellular Ca2+ concentration exceeded several micromoles, spontaneous oscillations of the intracellular free Ca2+ concentration were observed in the submicromolar ranges. During the Ca2+ oscillations, the membrane potential was found to oscillate concomitantly. The peak of cyclic increases in the free Ca2+ level coincided in time with the peak of periodic hyperpolarizations. Both oscillations were abolished by reducing the extracellular Ca2+ concentration down to 10–7 m or by applying a Ca2+ channel blocker, nifedipine (50 m). In the presence of 0.5mm quinine, an inhibitor of Ca2+-activated K+ channel, sizable Ca2+ oscillations still persisted, while the potential oscillations were markedly suppressed. Oscillations of the intracellular K+ concentration between about 145 and 140mm were often associated with the potential oscillations. The minimum phase of the K+ concentration was always 5 to 6 sec behind the peak hyperpolarization. Thus, it is concluded that the oscillation of membrane potential results from oscillatory increases in the intracellular Ca2+ level, which, in turn, periodically stimulate Ca2+-activated K+ channels.  相似文献   

15.
16.
It is well established that intracellular calcium ([Ca2+]i) controls the inotropic state of the myocardium, and evidence mounts that a “Ca2+ clock” controls the chronotropic state of the heart. Recent findings describe a calcium-activated nonselective cation channel (NSCCa) in various cardiac preparations sharing hallmark characteristics of the transient receptor potential melastatin 4 (TRPM4). TRPM4 is functionally expressed throughout the heart and has been implicated as a NSCCa that mediates membrane depolarization. However, the functional significance of TRPM4 in regards to Ca2+ signaling and its effects on cellular excitability and pacemaker function remains inconclusive. Here, we show by Fura2 Ca-imaging that pharmacological inhibition of TRPM4 in HL-1 mouse cardiac myocytes by 9-phenanthrol (10 μM) and flufenamic acid (10 and 100 μM) decreases Ca2+ oscillations followed by an overall increase in [Ca2+]i. The latter occurs also in HL-1 cells in Ca2+-free solution and after depletion of sarcoplasmic reticulum Ca2+ with thapsigargin (10 μM). These pharmacologic agents also depolarize HL-1 cell mitochondrial membrane potential. Furthermore, by on-cell voltage clamp we show that 9-phenanthrol reversibly inhibits membrane current; by fluorescence immunohistochemistry we demonstrate that HL-1 cells display punctate surface labeling with TRPM4 antibody; and by immunoblotting using this antibody we show these cells express a 130–150 kDa protein, as expected for TRPM4. We conclude that 9-phenanthrol inhibits TRPM4 ion channels in HL-1 cells, which in turn decreases Ca2+ oscillations followed by a compensatory increase in [Ca2+]i from an intracellular store other than the sarcoplasmic reticulum. We speculate that the most likely source is the mitochondrion.  相似文献   

17.
Rewarming patients from accidental hypothermia are regularly complicated with cardiovascular instability ranging from minor depression of cardiac output to fatal circulatory collapse also termed “rewarming shock”. Since altered Ca2+ handling may play a role in hypothermia-induced heart failure, we studied changes in Ca2+ homeostasis in in situ hearts following hypothermia and rewarming. A rat model designed for studies of the intact heart in a non-arrested state during hypothermia and rewarming was used. Rats were core cooled to 15 °C, maintained at 15 °C for 4 h and thereafter rewarmed. As time-matched controls, one group of animals was kept at 37 °C for 5 h. Total intracellular myocardial Ca2+ content ([Ca2+]i) was measured using 45Ca2+. Following rewarming we found a significant reduction of stroke volume and cardiac output compared to prehypothermic control values as well as to time-matched controls. Likewise, we found that hypothermia and rewarming resulted in a more than six-fold increase in [Ca2+]i to 3.01 ± 0.43 μmol/g dry weight compared to 0.44 ± 0.05 μmol/g dry weight in normothemia control. These findings indicate that hypothermia-induced alterations in the Ca2+-handling result in Ca2+ overload during hypothermia, which may contribute to myocardial failure during and after rewarming.  相似文献   

18.
Calmodulin (CaM) binding to the intracellular C-terminal tail (CTT) of the cardiac L-type Ca2+ channel (CaV1.2) regulates Ca2+ entry by recognizing sites that contribute to negative feedback mechanisms for channel closing. CaM associates with CaV1.2 under low resting [Ca2+], but is poised to change conformation and position when intracellular [Ca2+] rises. CaM binding Ca2+, and the domains of CaM binding the CTT are linked thermodynamic functions. To better understand regulation, we determined the energetics of CaM domains binding to peptides representing pre-IQ sites A1588, and C1614 and the IQ motif studied as overlapping peptides IQ1644 and IQ1650 as well as their effect on calcium binding. (Ca2+)4-CaM bound to all four peptides very favorably (Kd ≤ 2 nM). Linkage analysis showed that IQ1644-1670 bound with a Kd ~ 1 pM. In the pre-IQ region, (Ca2+)2-N-domain bound preferentially to A1588, while (Ca2+)2-C-domain preferred C1614. When bound to C1614, calcium binding in the N-domain affected the tertiary conformation of the C-domain. Based on the thermodynamics, we propose a structural mechanism for calcium-dependent conformational change in which the linker between CTT sites A and C buckles to form an A-C hairpin that is bridged by calcium-saturated CaM.  相似文献   

19.
Unitary potential (UP) depolarizations are the basic intracellular events responsible for pacemaker activity in interstitial cells of Cajal (ICCs), and are generated at intracellular sites termed “pacemaker units”. In this study, we present a mathematical model of the transmembrane ion flows and intracellular Ca2+ dynamics from a single ICC pacemaker unit acting at near-resting membrane potential. This model quantitatively formalizes the framework of a novel ICC pacemaking mechanism that has recently been proposed. Model simulations produce spontaneously rhythmic UP depolarizations with an amplitude of ∼3 mV at a frequency of 0.05 Hz. The model predicts that the main inward currents, carried by a Ca2+-inhibited nonselective cation conductance, are activated by depletion of sub-plasma-membrane [Ca2+] caused by sarcoendoplasmic reticulum calcium ATPase Ca2+ sequestration. Furthermore, pacemaker activity predicted by our model persists under simulated voltage clamp and is independent of [IP3] oscillations. The model presented here provides a basis to quantitatively analyze UP depolarizations and the biophysical mechanisms underlying their production.  相似文献   

20.
At fertilization in mammals the sperm activates the egg by triggering a series of oscillations in the intracellular free Ca2+ concentration. The precise sequence of events that occur between sperm-egg contact and the increases in intracellular Ca2+ remains unknown. Here, we discuss recent evidence supporting the hypothesis that a cytosolic sperm protein enters the egg after gamete membrane fusion and triggers Ca2+ oscillations from within the egg cytoplasm. Biochemical studies suggest that there exists a novel sperm protein, named oscillin, that specifically comigrates with Ca2+ oscillation-inducing activity. Oscillin has been immunolocalised to the region of the sperm that first fuses with the egg. The concept of a specific protein that triggers Ca2+ oscillations may have wider physiological significance since sperm oscillin can induce Ca2+ oscillations in somatic cells, such as neurons and hepatocytes. Unravelling the novel signalling system involved in mammalian fertilization may help reveal some fundamental molecular mechanisms responsible for triggering cytoplasmic Ca2+ oscillations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号