首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many studies have demonstrated that the calcium-dependent proteolytic system (calpains and calpastatin) is involved in myoblast differentiation. It is also known that myogenic differentiation can be studied in vitro. In the present experiments, using a mouse muscle cell line (C2C12) we have analyzed both the sequences of appearance and the expression profiles of calpains 1, 2, 3 and calpastatin during the course of myoblast differentiation. Our results mainly show that the expression of ubiquitous calpains (calpain 1 and 2) and muscle-specific calpain (calpain 3) at the mRNAs level as well as at the protein level do not change significantly all along this biological process. In the same time, the specific inhibitor of ubiquitous calpains, calpastatin, presents a stable expression at mRNAs level as well as protein level, all along myoblast to myotube transition. A comparison with other myogenic cells is presented.  相似文献   

2.
Osamu Ueno 《Planta》1996,199(3):382-393
Eleocharis vivipara Link is a unique amphibious leafless sedge. The terrestrial form has Kranz anatomy and the biochemical traits of C4 plants while the submerged form develops structural and biochemical traits similar to those of C3 plants. The structural features of the culms, which are the photosynthetic organs, of the two forms were examined and compared. The culms of the terrestrial form have mesophyll cells and three bundle sheaths which consist of three kinds of cell, namely, the innermost Kranz cells that contain large numbers of organelles, the middle mestome sheath cells that lack chloroplasts, and the outermost parenchyma sheath cells that contain chloroplasts. The culms of the submerged form had a tendency towards reduction in numbers and size of Kranz cells and vascular bundles, as compared to the terrestrial form, and they had spherical mesophyll cells that were tightly packed without intercellular spaces inside the epidermis. The submerged form had a higher ratio of cross-sectional area of mesophyll cells plus parenchyma sheath cells to that of Kranz cells than the terrestrial form. The difference was mainly due to a decrease in the number and the size of the Kranz cells and to a marked increase in the size of the mesophyll cells and the parenchyma sheath cells in the submerged form, as compared to the terrestrial form. The Kranz cells of the terrestrial form had basically the structural characteristics of plants of the NAD-malic enzyme type, with the exception of the intracellular location of organelles. The Kranz cells of the submerged form included only a few organelles, and the percentage of organelles partitioned to the Kranz cells was significantly smaller in the submerged form than in the terrestrial form. In addition, the size of chloroplasts of the Kranz cells was 60–70% of that of the terrestrial form. These structural differences between the two forms may be related to the functional differences in their mechanisms of photosynthesis.Abbreviations KC Kranz cell - MC mesophyll cell - PSC parenchyma sheath cell - NAD-ME NAD-malic enzyme - VB vascular bundle This study was supported by Grants-in-Aid from the Ministry of Agriculture, Forestry and Fisheries of Japan (Integrated Research Program for the Use of Biotechnological Procedures for Plant Breeding) and from the Science and Technology Agency of Japan (Enhancement of Center-of-Excellence, the Special Coordination Funds for Promoting Science and Technology).  相似文献   

3.
We examined the utility of fluorescent fatty acid analog dyes for labeling larval trematodes to use in experimental infections. Our goals were to identify two dyes that label larval trematodes belonging to the species Maritrema novaezealandensis and Coitocaecum parvum, determine if the dyes influence survival and infectivity of larval trematodes and/or host mortality, and if larval trematodes labeled with alternative dyes could be distinguished post-infection. The two dyes tested, BODIPY FL C12 and BODIPY 558/568 C12, successfully labeled all treated larval trematodes, did not influence cercariae survival or infectivity, and did not influence host mortality in either host-parasite system. All larval parasites were fluorescent and distinguishable after 5 days in amphipod intermediate hosts. In addition, larval Acanthoparyphium sp. were strongly fluorescent with both dyes after 5 weeks within cockle hosts. This method should be extremely useful for experimental studies using trematode-host systems as models for addressing a range of ecological and evolutionary questions.  相似文献   

4.
5.
The Golan Heights borders the Upper Jordan Valley on its eastern side and likely served as a prime foraging area for hominin groups that inhabited the Upper Jordan Valley during the Mid-Pleistocene. This study tests the hypothesis that Mid-Pleistocene climate in the Golan region was similar to that of the present day. Carbon isotope composition of present day plant communities and soil organic carbon from the Golan were compared to those of paleosols from Nahal Orvim to reconstruct Mid-Pleistocene paleoclimatic conditions. After correcting the paleosol values for recent changes in atmospheric carbon isotope values and potential biodegradation, the isotopic results show a strong similarity to those of present day local plants and soils. These results indicate that during the Mid-Pleistocene, the Golan was dominated by C3 vegetation, shared similar climatic conditions with the present day, and displayed long-term environmental stability. The span of time of paleosol formation is unknown and might cover multiple climatic episodes; thus, although short climatic fluctuations may have occurred, their impact was not substantial enough to be detected in the Nahal Orvim paleosols. This study concludes that the Golan slopes provided hominins and large grazers with a reliable and highly nutritious foraging area that complemented the Jordan Valley riparian ecosystem.  相似文献   

6.
Effects of polyploidy on photosynthesis   总被引:2,自引:0,他引:2  
In polyploid plants the photosynthetic rate per cell is correlated with the amount of DNA per cell. The photosynthetic rate per unit leaf area is the product of the rate per cell times the number of photosynthetic cells per unit area. Therefore, the photosynthetic rate per unit leaf area will increase if there is a less than proportional increase in cell volume at higher ploidal levels, or if cell packing is altered to allow more cells per unit leaf area. In autopolyploids (Medicago sativa, C3 species, and Pennisetum americanum, C4 species) there is a doubling of photosynthesis per cell and of cell volume in the tetraploid compared to the diploid. However, there is a proportional decrease in number of cells per unit leaf area with this increase in ploidy such that the rate of photosynthesis per leaf area does not change. There is more diversity in the relationship between ploidal level (gene dosage) and photosynthetic rates per unit leaf area in allopolyploids. This is likely to reflect the effects of natural selection on leaf anatomy, and novel genetic interactions from contributed genomes which can occur with allopolyploidy. In allopolyploid wheat (C3 species) a higher cell volume per unit DNA at the higher ploidal level is negatively correlated with photosynthesis rate per unit leaf area. Although photosynthesis per cell increases with ploidy, photosynthesis per leaf area decreases, being lowest in the allohexaploid, cultivated bread wheat (Triticum aestivum). Alternatively, doubling of photosynthetic rate per cell with doubling of DNA, with apparent natural selection for decreased cell volume per unit DNA, results in higher rates of photosynthesis per leaf area in octaploid compared to tetraploid Panicum virgatum (C4) which may be a case of allopolyploidy. Similar responses probably occur in Festuca arundinacea. Therefore, in some systems anatomical factors affecting photosynthesis are also affected by ploidal level. It is important to evaluate that component as well as determining the effect on biochemical processes. Current information on polyploidy and photosynthesis in several species is discussed with respect to anatomy, biochemistry and bases for expressing photosynthetic rates.Abbreviations Chl chlorophyll - RuBPC ribulose-1,5-bisphosphate carboxylase  相似文献   

7.
A fundamental shift has taken place in agricultural research and world food production. In the past, the principal driving force was to increase the yield potential of food crops and to maximize productivity. Today, the drive for productivity is increasingly combined with a desire for sustainability. For farming systems to remain productive, and to be sustainable in the long-term, it will be necessary to replenish the reserves of nutrients which are removed or lost from the soil. In the case of nitrogen (N), inputs into agricultural systems may be in the form of N-fertilizer, or be derived from atmospheric N2 via biological N2 fixation (BNF).Although BNF has long been a component of many farming systems throughout the world, its importance as a primary source of N for agriculture has diminished in recent decades as increasing amounts of fertilizer-N are used for the production of food and cash crops. However, international emphasis on environmentally sustainable development with the use of renewable resources is likely to focus attention on the potential role of BNF in supplying N for agriculture. This paper documents inputs of N via symbiotic N2 fixation measured in experimental plots and in farmers' fields in tropical and temperate regions. It considers contributions of fixed N from legumes (crop, pasture, green manures and trees), Casuarina, and Azolla, and compares the relative utilization of N derived from these sources with fertilizer N.  相似文献   

8.
Osamu Ueno 《Planta》1996,199(3):394-403
Eleocharis vivipara link, an amphibious leafless sedge, develops traits of C4 photosynthesis and Kranz anatomy in the terrestrial form but develops C3-like traits with non-Kranz anatomy when submerged. The cellular localization of C3 and C4 enzymes in the photosynthetic cells of the two forms was investigated by immunogold labeling and electron microscopy. The terrestrial form has mesophyll cells and three kinds of bundle sheath cell, namely, parenchyma sheath cells, non-chlorophyllous mestome sheath cells, and Kranz cells. Phosphoenol-pyruvate carboxylase (PEPCase) was present in the cytosol of both the mesophyll cells and the parenchyma sheath cells, with higher-density labeling in the latter, but not in the Kranz cells. Pyruvate, Pi dikinase (PPDK) was found at high levels in the chloroplasts of both the mesophyll cells and the parenchyma sheath cells with some-what stronger labeling in the latter. This enzyme was also absent from the Kranz cells. Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) was found in the chloroplasts of all types of photosynthetic cell, but labeling was significantly less intense in the parenchyma sheath cells than in other types of cell. The submerged form also has three types of photosynthetic cell, as well as non-chlorophyllous mestome sheath cells, but it lacks the traits of Kranz anatomy as a consequence of modification of the cells. Rubisco was densely distributed in the chloroplasts of all the photosynthetic cells. However, PEPCase and PPDK were found in both the mesophyll cells and the parenchyma sheath cells but at lower levels than in the terrestrial form. These data reveal that the terrestrial form has a unique pattern of cellular localization of C3 and C4 enzymes, and they suggest that this pattern and the changes in the extent of accumulation of the various enzymes are the main factors responsible for the difference in photosynthetic traits between the two forms.Abbreviations CAM crassulacean acid metabolism - MC meso phyll cell - PSC parenchyma sheath cell - KC Kranz cell - PEP-Case phosphoenolpyruvate carboxylase - PPDK pyruvate, Pi dikinase - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - LS large subunit - RuBP ribulose-1,5-bisphosphate This study was supported by Grants-in-Aid from the Ministry of Agriculture, Forestry and Fisheries of Japan (Integrated Research Program for the Use of Biotechnological Procedures for Plant Breeding) and from the Science and Technology Agency of Japan (Enhancement of Center-of-Excellence, the Special Coordination Funds for Promoting Science and Technology). The author is grateful to Drs M. Matsuoka and S. Muto for providing the antisera and Dr. M. Samejima for his advice at the early stages of this study.  相似文献   

9.
Belowground biomass is a critical factor regulating ecosystem functions of coastal marshes, including soil organic matter (SOM) accumulation and the ability of these systems to keep pace with sea-level rise. Nevertheless, belowground biomass responses to environmental and vegetation changes have been given little emphasis marsh studies. Here we present a method using stable carbon isotopes and color to identify root and rhizomes of Schoenoplectus americanus (Pers.) Volk. ex Schinz and R. Keller (C3) and Spartina patens (Ait.) Muhl. (C4) occurring in C3− and C4-dominated communities in a Chesapeake Bay brackish marsh. The functional significance of the biomass classes we identified is underscored by differences in their chemistry, depth profiles, and variation in biomass and profiles relative to abiotic and biotic factors. C3 rhizomes had the lowest concentrations of cellulose (29.19%) and lignin (14.43%) and the lowest C:N (46.97) and lignin:N (0.16) ratios. We distinguished two types of C3 roots, and of these, the dark red C3 roots had anomalously high C:N (195.35) and lignin:N (1.14) ratios, compared with other root and rhizome classes examined here and with previously published values. The C4-dominated community had significantly greater belowground biomass (4119.1 g m−2) than the C3-dominated community (3256.9 g m−2), due to greater total root biomass and a 3.6-fold higher C3-root:rhizome ratio in the C4-dominated community. C3 rhizomes were distributed significantly shallower in the C4-dominated community, while C3 roots were significantly deeper. Variability in C3 rhizome depth distributions was explained primarily by C4 biomass, and C3 roots were explained primarily by water table height. Our results suggest that belowground biomass in this system is sensitive to slight variations in water table height (across an 8 cm range), and that the reduced overlap between C3 and C4 root profiles in the C4-dominated community may account for the greater total root biomass observed in that community. Given that future elevated atmospheric CO2 and accelerated sea-level rise are likely to increase C3 abundance in Atlantic and Gulf coast marshes, investigations that quantify how patterns of C3 and C4 belowground biomass respond to environmental and biological factors stand to improve our understanding of ecosystem-wide impacts of global changes on coastal wetlands.  相似文献   

10.
《Free radical research》2013,47(6):587-604
Abstract

Reactive oxygen species (ROS) are critically important chemical intermediates in biological studies, due to their multiple physiologically essential functions and their often pathologically deleterious effects. Consequently, it is vital that their presence in biological samples has to be quantifiable. However, their high activity, very short life span and extremely low concentrations make ROS measurement a scientifically challenging subject for researchers. One of the widespread methods for ROS detection, based on the oxidation of the non-fluorescent probe 2′,7′-dichlorodihydrofluorescein (DCFH2) to yield the highly fluorescent 2′,7′-dichlorofluorescein (DCF), was developed more than 40 years ago. However, from its initial application, argumentative questions have arisen regarding its action mechanisms, reaction principles and especially its specificity. Herein, the authors attempt to undertake a comprehensive review: to describe the basic characteristics of DCFH2; to discuss the present views of the mechanisms of its fluorescence formation; to summarize the fluorescence formation interferents; to outline its application in biological research; and to underline its advantages and disadvantages in ROS detection as well as for the methodological considerations that arise during analysis.  相似文献   

11.
Two C3 dicotyledonous crops and five C4 monocotyledons treated with three levels of nitrogen were used to evaluate quantitatively the relationship between the allocation of absorbed light energy in PSII and photosynthetic rates (P N) in a warm condition (25–26°C) at four to five levels [200, 400, 800, 1,200 (both C3 and C4) and 2,000 (C4 only) μmol m−2 s−1] of photosynthetic photon flux density (PPFD). For plants of the same type (C3 or C4), there was a linear positive correlation between the fraction of absorbed light energy that was utilized in PSII photochemistry (P) and P N, regardless of the broad range of their photosynthetic rates due to species-specific effect and/or nitrogen application; meanwhile, the fraction of absorbed light energy that was dissipated through non-photochemical quenching (D) showed a negative linear regression with P N for each level of PPFD. The intercept of regression lines between P and P N of C3 and C4 plants decreased, and that between D and P N increased with increasing PPFD. With P and D as the main components of energy dissipation and complementary to each other, the fraction of excess absorbed light energy (E) was unchanged by P N under the same level of PPFD. At the same level of P N, C4 plants had lower P and higher D than C3 plants, due to the fact that C4 plants with little or no photorespiration is considered a limited energy sink for electrons. Nevertheless there was a significant negative linear correlation between D and P when data from both C3 and C4 plants at varied PPFD levels was merged. The slope of regression lines between P and D was 0.85, indicating that in plants of both types, most of the unnecessary absorbed energy (ca. 85%) could dissipate through non-photochemical quenching, when P was inhibited by low P N due to species-specific effect and nitrogen limitation at all levels of illumination used in the experiment.  相似文献   

12.
Cyanobacteria represent an ancient group of photosynthetic prokaryotes, whose ubiquity, metabolic flexibility and adaptive abilities have made them a subject of research worldwide. These structurally simple organisms combine in themselves interesting facets of plant and bacterial metabolism, which is amenable to genetic exploitation. Despite their globally recognized significance in the sustenance of fertility in rice based cropping systems, they have not been tapped for their extraordinary repertoire of activities, especially their beneficial role as biological agents in remediation and amelioration of soil and water environment and as sinks for greenhouse gases. The information available on these aspects and future lines of research for more efficient utilization of these microorganisms is presented.  相似文献   

13.
廖文婷  邓红兵  李若男  郑华 《生态学报》2018,38(5):1750-1757
水利工程建设在给人类带来抗旱防洪效益、发电效益、航运效益、养殖等效益的同时,也对河流水文动态产生了一系列的影响,主要表现为对径流的调节。基于宜昌站1890—2014年径流数据,综合采用径流集中度、集中期和相位差分析等多种方法,分析了水利工程建设对径流年内分配以及枯水期的影响。结果表明:宜昌站径流集中度呈现缓慢下降趋势并在2004年发生突变,2003年以后径流集中度相对于2003年以前下降0.06(下降幅度为12.98%),说明葛洲坝水利枢纽、三峡工程建成以后宜昌站径流在年内分配变得平缓,洪峰被有效削弱,且三峡工程对宜昌站径流集中度减少的贡献率大于葛洲坝水利枢纽(贡献率分别为92.03%和7.97%);葛洲坝和三峡水利枢纽建成后,宜昌站径流重心提前8d(集中期从8月9日提前至7月31日);宜昌站进入枯水期的时间提前约20d(三峡大坝建设以前,宜昌站在12月7—11日进入枯水期,建设以后在11月底进入枯水期),水利工程对水文过程的影响可能导致下游枯水期污染加剧和湿地生境提前缩小,进而影响下游水环境和湿地生物多样性。上述结果定量揭示了水利工程对水文过程的影响及其潜在生态效应,可为认识水利工程的生态影响以及流域生态环境变化的驱动因素提供科学依据。  相似文献   

14.
The intracellular localization of phosphoenolpyruvate (PEP) carboxylase in plants belonging to the C4, Crassulacean acid metabolism (CAM) and C3 types was invetigated using an immunocytochemical method with an immune serum raised against the sorghum leaf enzyme. The plants studied were sorghum, maize (C4 type), kalanchoe (CAM type), french bean, and spinach (C3 type). In the green leaves of C4 plants, it was shown that the carboxylase was located in the mesophyll and stomatic cells, being largely cytosolic in the mesophyll cells. Similarly, in CAM plants, the enzyme was found mainly outside the chloroplasts. In contrast, in C3 plants, the PEP carboxylase appeared to be distributed between the cytosol and the chloroplasts of foliar parenchyma. Examination of sections from etiolated leaves showed fluorescence emission from etioplasts and cytosol for the parenchyma of french bean as well as for the bundle sheath and mesophyll of sorghum leaves. This data indicated that during the greening process photoregulation and evolution of PEP carboxylase is dependent on the tissue and on the metabolic type of the plant considered.Abbreviations CAM Crassulacean acid metabolism - PEP phosphoenolpyruvate  相似文献   

15.
16.
The stable carbon isotope ratio of fossil tooth enamel carbonate is determined by the photosynthetic systems of plants at the base of the animal's foodweb. In subtropical Africa, grasses and many sedges have C(4)photosynthesis and transmit their characteristically enriched 13C/(12)C ratios (more positive delta13C values) along the foodchain to consumers. We report here a carbon isotope study of ten specimens of Australopithecus africanus from Member 4, Sterkfontein (ca. 2.5 to 2.0Ma), compared with other fossil mammals from the same deposit. This is the most extensive isotopic study of an early hominin species that has been achieved so far. The results show that this hominin was intensively engaged with the savanna foodweb and that the dietary variation between individuals was more pronounced than for any other early hominin or non-human primate species on record. Suggestions that more than one species have been incuded in this taxon are not supported by the isotopic evidence. We conclude that Australopithecus africanus was highly opportunistic and adaptable in its feeding habits.  相似文献   

17.
Experimental evolution provides a powerful manipulative tool for probing evolutionary process and mechanism. As this approach to hypothesis testing has taken purchase in biology, so too has the number of experimental systems that use it, each with its own unique strengths and weaknesses. The depth of biological knowledge about Caenorhabditis nematodes, combined with their laboratory tractability, positions them well for exploiting experimental evolution in animal systems to understand deep questions in evolution and ecology, as well as in molecular genetics and systems biology. To date, Caenorhabditis elegans and related species have proved themselves in experimental evolution studies of the process of mutation, host–pathogen coevolution, mating system evolution and life-history theory. Yet these organisms are not broadly recognized for their utility for evolution experiments and remain underexploited. Here, we outline this experimental evolution work undertaken so far in Caenorhabditis, detail simple methodological tricks that can be exploited and identify research areas that are ripe for future discovery.  相似文献   

18.
Intertidal sedimentary environments are complex systems governed by interactions between physical, chemical and biological processes and parameters. Tidally induced flow and wave action are known to be an integral driving force behind the erosion, transport, deposition and consolidation cycle (ETDC) of intertidal sediments. Whilst considerable advances have been made in understanding both the physical and biological processes and their interactions in these systems, it is clear that there are gaps in our understanding. One factor that has been largely ignored to date is that of rain. Visual observations in the field and associated data indicated that rain showers during low tide are correlated with a reduction in the erosion threshold of intertidal cohesive sediments. This paper presents preliminary field and laboratory data showing the importance of rain in reducing the erosion threshold of cohesive intertidal sediments. The implications for our knowledge of, and modelling of the ETDC cycle of cohesive intertidal sediments are discussed.  相似文献   

19.
Ceramides have been implicated in the initiation of apoptosis by permeabilizing the mitochondrial outer membrane to small proteins, including cytochrome c. In addition, ceramides were shown to form large metastable channels in planar membranes and liposomes, indicating that these lipids permeabilize membranes directly. Here we analyze molecular models of ceramide channels and test their stability in molecular dynamics simulations. The structural units are columns of four to six ceramides H-bonded via amide groups and arranged as staves in either a parallel or antiparallel manner. Two cylindrical assemblies of 14 columns (four or six molecules per column) were embedded in a fully hydrated palmitoyloleoyl-phosphatidylcholine phospholipid bilayer, and simulated for 24 ns in total. After equilibration, the water-filled pore adopted an hourglass-like shape as headgroups of ceramides and phospholipids formed a smooth continuous interface. The structure-stabilizing interactions were both hydrogen bonds between the headgroups (including water-mediated interactions) and packing of the hydrocarbon tails. Ceramide's essential double bond reduced the mobility of the hydrocarbon tails and stabilized their packing. The six-column assembly remained stable throughout a 10-ns simulation. During simulations of four-column assemblies, pairs of columns displayed the tendency of splitting out from the channels, consistent with the previously proposed mechanism of channel disassembly.  相似文献   

20.
Summary Three cultivation systems were compared. In one system the alders were grown hydroponically. In the two other systems the alders were planted in gravel and either given water and nutrients at intervals or the nutrient solution was continuously supplied. Alders continuously supplied with nutrients and water showed a significantly more rapid growth, higher biomass production and higher nitrogen content than did alders given nutrients and water at intervals or alders hydroponically grown. Alders continuously supplied with water and nutrients had a constant RE (relative efficiency of nitrogenase) of about 0.80 throughout the experimental period while alders supplied with water and nutrients at intervals showed a slight decrease in RE at the end of the experimental period. No strict relationship was found between RE and nitrogen content or between RE and plant productivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号