首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Since many proteins express their functional activity by interacting with other proteins and forming protein complexes, it is very useful to identify sets of proteins that form complexes. For that purpose, many prediction methods for protein complexes from protein-protein interactions have been developed such as MCL, MCODE, RNSC, PCP, RRW, and NWE. These methods have dealt with only complexes with size of more than three because the methods often are based on some density of subgraphs. However, heterodimeric protein complexes that consist of two distinct proteins occupy a large part according to several comprehensive databases of known complexes. In this paper, we propose several feature space mappings from protein-protein interaction data, in which each interaction is weighted based on reliability. Furthermore, we make use of prior knowledge on protein domains to develop feature space mappings, domain composition kernel and its combination kernel with our proposed features. We perform ten-fold cross-validation computational experiments. These results suggest that our proposed kernel considerably outperforms the naive Bayes-based method, which is the best existing method for predicting heterodimeric protein complexes.  相似文献   

2.
Detecting protein complexes from protein interaction networks is one major task in the postgenome era. Previous developed computational algorithms identifying complexes mainly focus on graph partition or dense region finding. Most of these traditional algorithms cannot discover overlapping complexes which really exist in the protein-protein interaction (PPI) networks. Even if some density-based methods have been developed to identify overlapping complexes, they are not able to discover complexes that include peripheral proteins. In this study, motivated by recent successful application of generative network model to describe the generation process of PPI networks and to detect communities from social networks, we develop a regularized sparse generative network model (RSGNM), by adding another process that generates propensities using exponential distribution and incorporating Laplacian regularizer into an existing generative network model, for protein complexes identification. By assuming that the propensities are generated using exponential distribution, the estimators of propensities will be sparse, which not only has good biological interpretation but also helps to control the overlapping rate among detected complexes. And the Laplacian regularizer will lead to the estimators of propensities more smooth on interaction networks. Experimental results on three yeast PPI networks show that RSGNM outperforms six previous competing algorithms in terms of the quality of detected complexes. In addition, RSGNM is able to detect overlapping complexes and complexes including peripheral proteins simultaneously. These results give new insights about the importance of generative network models in protein complexes identification.  相似文献   

3.

Background

Protein complexes can be identified from the protein interaction networks derived from experimental data sets. However, these analyses are challenging because of the presence of unreliable interactions and the complex connectivity of the network. The integration of protein-protein interactions with the data from other sources can be leveraged for improving the effectiveness of protein complexes detection algorithms.

Methods

We have developed novel semantic similarity method, which use Gene Ontology (GO) annotations to measure the reliability of protein-protein interactions. The protein interaction networks can be converted into a weighted graph representation by assigning the reliability values to each interaction as a weight. Following the approach of that of the previously proposed clustering algorithm IPCA which expands clusters starting from seeded vertices, we present a clustering algorithm OIIP based on the new weighted Protein-Protein interaction networks for identifying protein complexes.

Results

The algorithm OIIP is applied to the protein interaction network of Sacchromyces cerevisiae and identifies many well known complexes. Experimental results show that the algorithm OIIP has higher F-measure and accuracy compared to other competing approaches.
  相似文献   

4.
Wang J  Liu B  Li M  Pan Y 《BMC genomics》2010,11(Z2):S10

Background

Identification of protein complexes in large interaction networks is crucial to understand principles of cellular organization and predict protein functions, which is one of the most important issues in the post-genomic era. Each protein might be subordinate multiple protein complexes in the real protein-protein interaction networks. Identifying overlapping protein complexes from protein-protein interaction networks is a considerable research topic.

Result

As an effective algorithm in identifying overlapping module structures, clique percolation method (CPM) has a wide range of application in social networks and biological networks. However, the recognition accuracy of algorithm CPM is lowly. Furthermore, algorithm CPM is unfit to identifying protein complexes with meso-scale when it applied in protein-protein interaction networks. In this paper, we propose a new topological model by extending the definition of k-clique community of algorithm CPM and introduced distance restriction, and develop a novel algorithm called CP-DR based on the new topological model for identifying protein complexes. In this new algorithm, the protein complex size is restricted by distance constraint to conquer the shortcomings of algorithm CPM. The algorithm CP-DR is applied to the protein interaction network of Sacchromyces cerevisiae and identifies many well known complexes.

Conclusion

The proposed algorithm CP-DR based on clique percolation and distance restriction makes it possible to identify dense subgraphs in protein interaction networks, a large number of which correspond to known protein complexes. Compared to algorithm CPM, algorithm CP-DR has more outstanding performance.
  相似文献   

5.
In this paper, we present a method based on local density and random walks (LDRW) for core-attachment complexes detection in protein-protein interaction (PPI) networks whether they are weighted or not. Our LDRW method consists of two stages. Firstly, it finds all the protein-complex cores based on local density of subnetwork. Then it uses random walks with restarts for finding the attachment proteins of each detected core to form complexes. We evaluate the effectiveness of our method using two different yeast PPI networks and validate the biological significance of the predicted protein complexes using known complexes in the Munich Information Center for Protein Sequence (MIPS) and Gene Ontology (GO) databases. We also perform a comprehensive comparison between our method and other existing methods. The results show that our method can find more protein complexes with high biological significance and obtains a significant improvement. Furthermore, our method is able to identify biologically significant overlapped protein complexes.  相似文献   

6.
To understand the function of protein complexes and their association with biological processes, a lot of studies have been done towards analyzing the protein-protein interaction (PPI) networks. However, the advancement in high-throughput technology has resulted in a humongous amount of data for analysis. Moreover, high level of noise, sparseness, and skewness in degree distribution of PPI networks limits the performance of many clustering algorithms and further analysis of their interactions.In addressing and solving these problems we present a novel random walk based algorithm that converts the incomplete and binary PPI network into a protein-protein topological similarity matrix (PP-TS matrix). We believe that if two proteins share some high-order topological similarities they are likely to be interacting with each other. Using the obtained PP-TS matrix, we constructed and used weighted networks to further study and analyze the interaction among proteins. Specifically, we applied a fully automated community structure finding algorithm (Auto-HQcut) on the obtained weighted network to cluster protein complexes. We then analyzed the protein complexes for significance in biological processes. To help visualize and analyze these protein complexes we also developed an interface that displays the resulting complexes as well as the characteristics associated with each complex.Applying our approach to a yeast protein-protein interaction network, we found that the predicted protein-protein interaction pairs with high topological similarities have more significant biological relevance than the original protein-protein interactions pairs. When we compared our PPI network reconstruction algorithm with other existing algorithms using gene ontology and gene co-expression, our algorithm produced the highest similarity scores. Also, our predicted protein complexes showed higher accuracy measure compared to the other protein complex predictions.  相似文献   

7.
We introduce clustering with overlapping neighborhood expansion (ClusterONE), a method for detecting potentially overlapping protein complexes from protein-protein interaction data. ClusterONE-derived complexes for several yeast data sets showed better correspondence with reference complexes in the Munich Information Center for Protein Sequence (MIPS) catalog and complexes derived from the Saccharomyces Genome Database (SGD) than the results of seven popular methods. The results also showed a high extent of functional homogeneity.  相似文献   

8.
Using indirect protein-protein interactions for protein complex prediction   总被引:1,自引:0,他引:1  
Protein complexes are fundamental for understanding principles of cellular organizations. As the sizes of protein-protein interaction (PPI) networks are increasing, accurate and fast protein complex prediction from these PPI networks can serve as a guide for biological experiments to discover novel protein complexes. However, it is not easy to predict protein complexes from PPI networks, especially in situations where the PPI network is noisy and still incomplete. Here, we study the use of indirect interactions between level-2 neighbors (level-2 interactions) for protein complex prediction. We know from previous work that proteins which do not interact but share interaction partners (level-2 neighbors) often share biological functions. We have proposed a method in which all direct and indirect interactions are first weighted using topological weight (FS-Weight), which estimates the strength of functional association. Interactions with low weight are removed from the network, while level-2 interactions with high weight are introduced into the interaction network. Existing clustering algorithms can then be applied to this modified network. We have also proposed a novel algorithm that searches for cliques in the modified network, and merge cliques to form clusters using a "partial clique merging" method. Experiments show that (1) the use of indirect interactions and topological weight to augment protein-protein interactions can be used to improve the precision of clusters predicted by various existing clustering algorithms; and (2) our complex-finding algorithm performs very well on interaction networks modified in this way. Since no other information except the original PPI network is used, our approach would be very useful for protein complex prediction, especially for prediction of novel protein complexes.  相似文献   

9.
Ou-Yang  Le  Yan  Hong  Zhang  Xiao-Fei 《BMC bioinformatics》2017,18(13):463-34

Background

The accurate identification of protein complexes is important for the understanding of cellular organization. Up to now, computational methods for protein complex detection are mostly focus on mining clusters from protein-protein interaction (PPI) networks. However, PPI data collected by high-throughput experimental techniques are known to be quite noisy. It is hard to achieve reliable prediction results by simply applying computational methods on PPI data. Behind protein interactions, there are protein domains that interact with each other. Therefore, based on domain-protein associations, the joint analysis of PPIs and domain-domain interactions (DDI) has the potential to obtain better performance in protein complex detection. As traditional computational methods are designed to detect protein complexes from a single PPI network, it is necessary to design a new algorithm that could effectively utilize the information inherent in multiple heterogeneous networks.

Results

In this paper, we introduce a novel multi-network clustering algorithm to detect protein complexes from multiple heterogeneous networks. Unlike existing protein complex identification algorithms that focus on the analysis of a single PPI network, our model can jointly exploit the information inherent in PPI and DDI data to achieve more reliable prediction results. Extensive experiment results on real-world data sets demonstrate that our method can predict protein complexes more accurately than other state-of-the-art protein complex identification algorithms.

Conclusions

In this work, we demonstrate that the joint analysis of PPI network and DDI network can help to improve the accuracy of protein complex detection.
  相似文献   

10.
目的:鉴定疾病蛋白对深入理解致心律失常性右心室心肌病(ARVC)致病机制至关重要。可以采用计算生物学的方法,在ARVC疾病相关网络中挖掘新的潜在的致病蛋白。方法:本文整合HPRD和BioGRID的蛋白质互作数据,获得了较为全面且真实可靠的蛋白质互作数据;通过结合文本挖掘和统计学检验筛选出ARVC种子蛋白,应用最近邻居扩增的方法,构建ARVC蛋白质互作网络(PPIN),并采用PRINCESS法则对网络中每对互作蛋白加权;最后,基于ARVC关联得分策略对网络中的每个蛋白质打分并排秩。结果:分析发现排秩前50的候选蛋白大都与ARVC关系密切,如PRKCA,CDH1,SMAD4,SMAD2,CDH5,CTNNA1,DSC1等在调节心肌收缩、细胞程序性死亡、心脏的发育过程及维持桥粒的完整性方面起重要作用。结论:我们提出的方法为鉴定与ARVC致病机制相关的新致病蛋白提供了有效的途径。  相似文献   

11.

Background

Identifying protein complexes from protein-protein interaction (PPI) network is one of the most important tasks in proteomics. Existing computational methods try to incorporate a variety of biological evidences to enhance the quality of predicted complexes. However, it is still a challenge to integrate different types of biological information into the complexes discovery process under a unified framework. Recently, attributed network embedding methods have be proved to be remarkably effective in generating vector representations for nodes in the network. In the transformed vector space, both the topological proximity and node attributed affinity between different nodes are preserved. Therefore, such attributed network embedding methods provide us a unified framework to integrate various biological evidences into the protein complexes identification process.

Results

In this article, we propose a new method called GANE to predict protein complexes based on Gene Ontology (GO) attributed network embedding. Firstly, it learns the vector representation for each protein from a GO attributed PPI network. Based on the pair-wise vector representation similarity, a weighted adjacency matrix is constructed. Secondly, it uses the clique mining method to generate candidate cores. Consequently, seed cores are obtained by ranking candidate cores based on their densities on the weighted adjacency matrix and removing redundant cores. For each seed core, its attachments are the proteins with correlation score that is larger than a given threshold. The combination of a seed core and its attachment proteins is reported as a predicted protein complex by the GANE algorithm. For performance evaluation, we compared GANE with six protein complex identification methods on five yeast PPI networks. Experimental results showes that GANE performs better than the competing algorithms in terms of different evaluation metrics.

Conclusions

GANE provides a framework that integrate many valuable and different biological information into the task of protein complex identification. The protein vector representation learned from our attributed PPI network can also be used in other tasks, such as PPI prediction and disease gene prediction.
  相似文献   

12.
Tu S  Chen R  Xu L 《Proteome science》2011,9(Z1):S18
BACKGROUND: Identifying biologically relevant protein complexes from a large protein-protein interaction (PPI) network, is essential to understand the organization of biological systems. However, high-throughput experimental techniques that can produce a large amount of PPIs are known to yield non-negligible rates of false-positives and false-negatives, making the protein complexes difficult to be identified. RESULTS: We propose a binary matrix factorization (BMF) algorithm under the Bayesian Ying-Yang (BYY) harmony learning, to detect protein complexes by clustering the proteins which share similar interactions through factorizing the binary adjacent matrix of a PPI network. The proposed BYY-BMF algorithm automatically determines the cluster number while this number is pre-given for most existing BMF algorithms. Also, BYY-BMF's clustering results does not depend on any parameters or thresholds, unlike the Markov Cluster Algorithm (MCL) that relies on a so-called inflation parameter. On synthetic PPI networks, the predictions evaluated by the known annotated complexes indicate that BYY-BMF is more robust than MCL for most cases. On real PPI networks from the MIPS and DIP databases, BYY-BMF obtains a better balanced prediction accuracies than MCL and a spectral analysis method, while MCL has its own advantages, e.g., with good separation values.  相似文献   

13.

Background

Recent computational techniques have facilitated analyzing genome-wide protein-protein interaction data for several model organisms. Various graph-clustering algorithms have been applied to protein interaction networks on the genomic scale for predicting the entire set of potential protein complexes. In particular, the density-based clustering algorithms which are able to generate overlapping clusters, i.e. the clusters sharing a set of nodes, are well-suited to protein complex detection because each protein could be a member of multiple complexes. However, their accuracy is still limited because of complex overlap patterns of their output clusters.

Results

We present a systematic approach of refining the overlapping clusters identified from protein interaction networks. We have designed novel metrics to assess cluster overlaps: overlap coverage and overlapping consistency. We then propose an overlap refinement algorithm. It takes as input the clusters produced by existing density-based graph-clustering methods and generates a set of refined clusters by parameterizing the metrics. To evaluate protein complex prediction accuracy, we used the f-measure by comparing each refined cluster to known protein complexes. The experimental results with the yeast protein-protein interaction data sets from BioGRID and DIP demonstrate that accuracy on protein complex prediction has increased significantly after refining cluster overlaps.

Conclusions

The effectiveness of the proposed cluster overlap refinement approach for protein complex detection has been validated in this study. Analyzing overlaps of the clusters from protein interaction networks is a crucial task for understanding of functional roles of proteins and topological characteristics of the functional systems.
  相似文献   

14.
MOTIVATION: The increasing availability of large-scale protein-protein interaction (PPI) data has fueled the efforts to elucidate the building blocks and organization of cellular machinery. Previous studies have shown cross-species comparison to be an effective approach in uncovering functional modules in protein networks. This has in turn driven the research for new network alignment methods with a more solid grounding in network evolution models and better scalability, to allow multiple network comparison. RESULTS: We develop a new framework for protein network alignment, based on reconstruction of an ancestral PPI network. The reconstruction algorithm is built upon a proposed model of protein network evolution, which takes into account phylogenetic history of the proteins and the evolution of their interactions. The application of our methodology to the PPI networks of yeast, worm and fly reveals that the most probable conserved ancestral interactions are often related to known protein complexes. By projecting the conserved ancestral interactions back onto the input networks we are able to identify the corresponding conserved protein modules in the considered species. In contrast to most of the previous methods, our algorithm is able to compare many networks simultaneously. The performed experiments demonstrate the ability of our method to uncover many functional modules with high specificity. AVAILABILITY: Information for obtaining software and supplementary results are available at http://bioputer.mimuw.edu.pl/papers/cappi.  相似文献   

15.
The mass spectrometry (MS) technology in clinical proteomics is very promising for discovery of new biomarkers for diseases management. To overcome the obstacles of data noises in MS analysis, we proposed a new approach of knowledge-integrated biomarker discovery using data from Major Adverse Cardiac Events (MACE) patients. We first built up a cardiovascular-related network based on protein information coming from protein annotations in Uniprot, protein-protein interaction (PPI), and signal transduction database. Distinct from the previous machine learning methods in MS data processing, we then used statistical methods to discover biomarkers in cardiovascular-related network. Through the tradeoff between known protein information and data noises in mass spectrometry data, we finally could firmly identify those high-confident biomarkers. Most importantly, aided by protein-protein interaction network, that is, cardiovascular-related network, we proposed a new type of biomarkers, that is, network biomarkers, composed of a set of proteins and the interactions among them. The candidate network biomarkers can classify the two groups of patients more accurately than current single ones without consideration of biological molecular interaction.  相似文献   

16.
Predicting protein functions with message passing algorithms   总被引:2,自引:0,他引:2  
MOTIVATION: In the last few years, a growing interest in biology has been shifting toward the problem of optimal information extraction from the huge amount of data generated via large-scale and high-throughput techniques. One of the most relevant issues has recently emerged that of correctly and reliably predicting the functions of a given protein with that of functions exploiting information coming from the whole network of proteins physically interacting with the functionally undetermined one. In the present work, we will refer to an 'observed' protein as the one present in the protein-protein interaction networks published in the literature. METHODS: The method proposed in this paper is based on a message passing algorithm known as Belief Propagation, which accepts the network of protein's physical interactions and a catalog of known protein's functions as input, and returns the probabilities for each unclassified protein of having one chosen function. The implementation of the algorithm allows for fast online analysis, and can easily be generalized into more complex graph topologies taking into account hypergraphs, i.e. complexes of more than two interacting proteins. RESULTS: Benchmarks of our method are the two Saccharomyces cerevisiae protein-protein interaction networks and the Database of Interacting Proteins. The validity of our approach is successfully tested against other available techniques. CONTACT: leone@isiosf.isi.it SUPPLEMENTARY INFORMATION: http://isiosf.isi.it/~pagnani  相似文献   

17.
Recent advances in functional genomics have helped generate large-scale high-throughput protein interaction data. Such networks, though extremely valuable towards molecular level understanding of cells, do not provide any direct information about the regions (domains) in the proteins that mediate the interaction. Here, we performed co-evolutionary analysis of domains in interacting proteins in order to understand the degree of co-evolution of interacting and non-interacting domains. Using a combination of sequence and structural analysis, we analyzed protein-protein interactions in F1-ATPase, Sec23p/Sec24p, DNA-directed RNA polymerase and nuclear pore complexes, and found that interacting domain pair(s) for a given interaction exhibits higher level of co-evolution than the non-interacting domain pairs. Motivated by this finding, we developed a computational method to test the generality of the observed trend, and to predict large-scale domain-domain interactions. Given a protein-protein interaction, the proposed method predicts the domain pair(s) that is most likely to mediate the protein interaction. We applied this method on the yeast interactome to predict domain-domain interactions, and used known domain-domain interactions found in PDB crystal structures to validate our predictions. Our results show that the prediction accuracy of the proposed method is statistically significant. Comparison of our prediction results with those from two other methods reveals that only a fraction of predictions are shared by all the three methods, indicating that the proposed method can detect known interactions missed by other methods. We believe that the proposed method can be used with other methods to help identify previously unrecognized domain-domain interactions on a genome scale, and could potentially help reduce the search space for identifying interaction sites.  相似文献   

18.
Zaki N  Berengueres J  Efimov D 《Proteins》2012,80(10):2459-2468
Detecting protein complexes from protein‐protein interaction (PPI) network is becoming a difficult challenge in computational biology. There is ample evidence that many disease mechanisms involve protein complexes, and being able to predict these complexes is important to the characterization of the relevant disease for diagnostic and treatment purposes. This article introduces a novel method for detecting protein complexes from PPI by using a protein ranking algorithm (ProRank). ProRank quantifies the importance of each protein based on the interaction structure and the evolutionarily relationships between proteins in the network. A novel way of identifying essential proteins which are known for their critical role in mediating cellular processes and constructing protein complexes is proposed and analyzed. We evaluate the performance of ProRank using two PPI networks on two reference sets of protein complexes created from Munich Information Center for Protein Sequence, containing 81 and 162 known complexes, respectively. We compare the performance of ProRank to some of the well known protein complex prediction methods (ClusterONE, CMC, CFinder, MCL, MCode and Core) in terms of precision and recall. We show that ProRank predicts more complexes correctly at a competitive level of precision and recall. The level of the accuracy achieved using ProRank in comparison to other recent methods for detecting protein complexes is a strong argument in favor of the proposed method. Proteins 2012;. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
Yu L  Gao L  Kong C 《Proteomics》2011,11(19):3826-3834
In this paper, we present a method for core-attachment complexes identification based on maximal frequent patterns (CCiMFP) in yeast protein-protein interaction (PPI) networks. First, we detect subgraphs with high degree as candidate protein cores by mining maximal frequent patterns. Then using topological and functional similarities, we combine highly similar protein cores and filter insignificant ones. Finally, the core-attachment complexes are formed by adding attachment proteins to each significant core. We experimentally evaluate the performance of our method CCiMFP on yeast PPI networks. Using gold standard sets of protein complexes, Gene Ontology (GO), and localization annotations, we show that our method gains an improvement over the previous algorithms in terms of precision, recall, and biological significance of the predicted complexes. The colocalization scores of our predicted complex sets are higher than those of two known complex sets. Moreover, our method can detect GO-enriched complexes with disconnected cores compared with other methods based on the subgraph connectivity.  相似文献   

20.
It has been a challenging task to integrate high-throughput data into investigations of the systematic and dynamic organization of biological networks. Here, we presented a simple hierarchical clustering algorithm that goes a long way to achieve this aim. Our method effectively reveals the modular structure of the yeast protein-protein interaction network and distinguishes protein complexes from functional modules by integrating high-throughput protein-protein interaction data with the added subcellular localization and expression profile data. Furthermore, we take advantage of the detected modules to provide a reliably functional context for the uncharacterized components within modules. On the other hand, the integration of various protein-protein association information makes our method robust to false-positives, especially for derived protein complexes. More importantly, this simple method can be extended naturally to other types of data fusion and provides a framework for the study of more comprehensive properties of the biological network and other forms of complex networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号