首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanisms of resistance of Pseudomonas aeruginosa to benzalkonium chloride (BC) were studied. The effluence of cell components was observed in susceptible P. aeruginosa by electron microscopy, but resistant P. aeruginosa seemed to be undamaged. No marked changes in cell surface potential between Escherichia coli NIHJC-2 and a spheroplast strain were found. The contents of phospholipids (PL) and fatty and neutral lipids (FNL) in the cell walls of resistant P. aeruginosa were higher than those in the cell walls of susceptible P. aeruginosa. The amounts of BC adsorbed to PL and FNL of cell walls of BC-resistant P. aeruginosa were lower than those for BC-susceptible P. aeruginosa. Fifteen species of cellular fatty acids were identified by capillary gas chromatography and gas chromatography-mass spectrometry. The ability of BC to permeate the cell wall was reduced because of the increase in cellular fatty acids. These results suggested that the resistance of P. aeruginosa to BC is mainly a result of increased in the contents of PL and FNL. In resistant P. aeruginosa, the decrease in the amount of BC adsorbed is likely to be the result of increases in the contents of PL and FNL.  相似文献   

2.
Cell walls of Staphylococcus aureus R9/80 resistant to gramicidin S and actinomycin D were investigated. The strain was isolated after passages of a previously isolated strain of S. aureus with resistance to gramicidin and definite changes in the cell walls, a medium with increasing concentrations of actinomycin being used for the passages. The data on the study of the cell walls of the strain with the double resistance were compared with the results of the investigation of the cell walls of the strain susceptible to gramicidin, the gramicidin resistant strain (initial for strain R9/80) and the actinomycin adapted strain that also showed changes in the cell walls. The cell walls of the resistant strains had no significant changes in the peptidoglycane and glucosamine levels, as well as in the peptidoglycane amino acid composition. Teichoic acids of all the strains had different levels of substitution of ribite by D-alanine (a factor influencing the negative charge of teichoic acids and the wall at large). It was noted that all the strains resistant to the tested antibiotics had lower levels of teichoic acids in the cell walls. The resistant cells showed some increase of the lipid component in the walls: from 1.6% in the susceptible strain to 2.1-2.9% in the resistant cells. The main trend of the changes in the resistance development was revealed to be the thickening of the cell wall and its consolidation. The development of resistance to gramicidin, actinomycin and to both the antibiotics provoked respectively a 2.4-, 4- and 5.4-fold increase of the content of the main cell component. i.e. peptidoglycane in the cell biomass. The barrier role of the cell walls in the resistant strains and their ability to bind the antibiotic is discussed.  相似文献   

3.
The contents and composition of lipids in citrus leaves in relation to their general resistance to infection by strains of Xanthomonas campestris pv. citri (Xcc) were determined. The composition and contents of total polar lipids and phospholipids and the degree of fatty acid unsaturation were significantly different between resistant and susceptible species. Leaves from resistant plants had less phospholipids, but more free sterols than those from susceptible plants. The predominant fatty acids in the phospholipids were palmitic (16:0), linoleic (18:2) and α-linolenic acid (18:3). The degree of fatty acid unsaturation was higher in susceptible plants than in resistant plants. Major phospholipids in citrus leaves were phosphatidylchloline (PC), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), and phosphatidylinositol (PI). β-Sitosterol, campesterol and lanosterol were major sterols in the leaves of citrus plants with resistant species having a higher ratio of free sterols to total phospholipids than susceptible species. Differences in lipid metabolism may contribute to differences in Xcc-resistance of citrus leaves.  相似文献   

4.
Cell walls of tips and bases of laminae of flag leaves from 11 cultivars of winter wheat of varying susceptibility to Puccinia striiforntis yellow rust) were compared by examining their phenolic components released by treatment with a commercial cellulase. Isolated cell walls of both susceptible and resistant cultivars released water-soluble carbohydrate esters of phenolic acids, the major acid detected being trans-ferulic. There was no relationship between the amount of phenolic esters released by cellulase and susceptibility to yellow rust. The leaf lamina tips, which were much more susceptible to yellow rust than the corresponding bases, had lower cell wall contents than the bases and their walls were more degradable by cellulase. Examination of transverse sections of leaf laminae of cv. Little Joss showed that cells whose walls contained phenolic groups that gave a red colour reaction with p-nitrobenzene diazonium tetrafluoroborate, occupied a larger area of leaf lamina bases than of the tips. A greater percentage of the abaxial epidermal cells of the bases, compared with the tips, had walls that gave this red colour reaction. We suggest that the presence of phenolic groups in these walls may be related to the greater resistance of the bases to P. striiforntis.  相似文献   

5.
Cell walls in 2 strains of Staphylococcus aureus 209P, i.e. actinomycin D susceptible and resistant ones were comparatively investigated. The resistant cells contained much more wall material per a unit of the biomass weight vs the susceptible strain cells, that conformed to thickening of the resistant cell walls detected by electron microscopy and a sharp increase of their electron density. Investigation of peptidoglycans and teichoic acids did not reveal any significant alterations in the structure of the wall components in the actinomycin D resistant cells. Only some increase of glucosamine in the peptidoglycan fraction of the resistant cells vs the susceptible ones was observed. It was shown that preparations of the resistant cell walls and peptidoglycan isolated from the resistant cells were able to bind somewhat lower quantities of actinomycin D vs the analogous preparations of the susceptible cells. The significant decrease of the antibiotic binding by live cells of the resistant strain probably slightly depended on the structure characteristics of the main wall components. The barrier properties of the walls in resistant staphylococci are most likely defined by the wall thickening and consolidation while adapting to actinomycin D.  相似文献   

6.
Accurate localization of phytoalexins is a key for better understanding their role. This work aims to localize stilbenes, the main phytoalexins of grapevine. The cellular localization of stilbene fluorescence induced by Plasmopara viticola, the agent of downy mildew, was determined in grapevine leaves of very susceptible, susceptible, and partially resistant genotypes during infection. Laser scanning confocal microscopy and microspectrofluorimetry were used to acquire UV-excited autofluorescence three-dimensional images and spectra of grapevine leaves 5-6 days after inoculation. This noninvasive technique of investigation in vivo was completed with in vitro spectrofluorimetric studies on pure stilbenes as their fluorescence is largely affected by the physicochemical environment in various leaf compartments. Viscosity was the major physicochemical factor influencing stilbene fluorescence intensity, modifying fluorescence yield by more than two orders of magnitude. Striking differences in the localization of stilbene fluorescence induced by P. viticola were observed between the different genotypes. All inoculated genotypes displayed stilbene fluorescence in cell walls of guard cells and periclinal cell walls of epidermal cells. Higher fluorescence intensity was observed in guard-cell walls than in any other compartment due to increased local viscosity. In addition stilbene fluorescence was found in epidermal cell vacuoles of the susceptible genotype and in the infected spongy parenchyma of the partially resistant genotype. The very susceptible genotype was devoid of fluorescence both in the epidermal vacuoles and the mesophyll. This strongly suggests that the resistance of grapevine leaves to P. viticola is correlated with the pattern of localization of induced stilbenes in host tissues.  相似文献   

7.
In this paper, using the monocyte/macrophage cell line RAW264.7, we systematically investigate the impact of macrophage enrichment with unsaturated fatty acids on cellular radical synthesis. We found that the intracellular production of reactive nitrogen and oxygen intermediates depends on the activation status of the macrophages. For unstimulated macrophages PUFA enrichment resulted in an increase in cellular radical synthesis. For stimulated macrophages, instead, an impeding action of unsaturated fatty acids on the respiratory burst could be seen. Of particular importance, the impact of unsaturated fatty acids on the macrophage respiratory burst was also observed in RAW264.7 cells cocultivated with viable bacteria of the species Rhodococcus equi or Pseudomonas aeruginosa. PUFA supplementation of macrophages in the presence of R. equi or P. aeruginosa reduced the pathogen-stimulated synthesis of reactive nitrogen and oxygen intermediates. Furthermore, the unsaturated fatty acids were found to impede the expression of the myeloperoxidase gene and to reduce the activity of the enzyme. Hence, our data provide indications of a possible value of PUFA application to people suffering from chronic infections with R. equi and P. aeruginosa as a concomitant treatment to attenuate an excessive respiratory burst.  相似文献   

8.
The preceding communication (Roos, D.S. and P.W. Choppin, 1985, J. Cell Biol. 101:1578-1590) described the lipid composition of a series of mouse fibroblast cell lines which vary in susceptibility to the fusogenic effects of polyethylene glycol (PEG). Two alterations in lipid content were found to be directly correlated with resistance to PEG-induced cell fusion: increases in fatty acyl chain saturation, and the elevation of neutral glycerides, including an unusual ether-linked compound. In this study, we have probed the association between lipid composition and cell fusion through the use of fatty acid supplements to the cellular growth medium, and show that the fusibility of cells can be controlled by altering their acyl chain composition. The parental Clone 1D cells contain moderately unsaturated fatty acids with a ratio of saturates to polyunsaturates (S/P) approximately 1 and fuse virtually to completion following a standard PEG treatment. By contrast, the lipids of a highly fusion-resistant mutant cell line, F40, are highly saturated (S/P approximately 4). When the S/P ratio of Clone 1D cells was increased to approximate that normally found in F40 cells by growth in the presence of high concentrations of saturated fatty acids, they became highly resistant to PEG. Reduction of the S/P ratio of F40 cells by growth in cis-polyunsaturated fatty acids rendered them susceptible to fusion. Cell lines F8, F16, etc., which are normally intermediate between Clone 1D and F40 in both lipid composition and fusion response, can be altered in either direction (towards either increased or decreased susceptibility to fusion) by the addition of appropriate fatty acids to the growth medium. Although trans-unsaturated fatty acids have phase-transition temperatures roughly similar to saturated compounds, and might therefore be expected to affect membrane fluidity in a similar manner, trans-unsaturated fatty acids exerted the same effect as cis-unsaturates on the control of PEG-induced cell fusion. This observation suggests that the control of cell fusion by alteration of fatty acid content is not due to changes in membrane fluidity, and thus that the fatty acids are involved in some other way in the modulation of cell fusion.  相似文献   

9.
Pseudomonas aeruginosa transposable bacteriophages D3112 and B3 were found to require pili for infection. Seventy mutants of P. aeruginosa PAO selected by resistance to D3112 or B3 were also resistant to the phage not used in the selection and suggested that the receptors of these two phages are identical. Of five resistant mutants examined, all were defective in the production of pili and did not adsorb either phage. P. aeruginosa PAK strains altered in pilus expression, such as hyperpiliated or nonpiliated mutants, adsorbed the phage but were not productively infected, implying that an additional host function was required for infection. The cell-associated lipopolysaccharide was not required for D3112 or B3 infection, since mutants deficient in O side-chain and core biosynthesis were still capable of adsorption and productive infection. This is in contrast to Escherichia coli mutator phages Mu and D108, which are dependent on lipopolysaccharide for adsorption. The P. aeruginosa phages adsorbed only to cells grown on solid media or in liquid media supplemented with agents that increase the macroviscosity, such as polyvinylpyrrolidone. Adsorption time course studies of D3112 and B3 using cells grown in solid media revealed similar but not identical adsorption patterns. These studies suggested that expression of the D3112 and B3 cell receptor is induced by growth on solid media.  相似文献   

10.
Lipids of antibiotic-resistant and related -susceptible strains of the Enterobacteriaceae were extracted with chloroform-methanol and characterized by thin-layer chromatography, densitometry, and fatty acid analysis using gas chromatography. Quantitative differences which correlated with antibiotic resistance existed among the phospholipids and fatty acids. A relatively higher concentration of a ninhydrin-positive phospholipid concentration with a lower amount of phosphatidylethanolamine was observed in antibiotic-resistant strains of serratia marcescens. Bacterial strains which harbored R-factor 222 had a higher ratio of phosphatidylglycerol to diphosphatidylglycerol than their respective parent strains while those strains which were resistant to the polymyxins had a lower ratio of these phospholipids. Differences in the relative amounts of certain unsaturated and cyclopropane fatty acids were observed between susceptible and resistant strains. Such differences, however, were dependent upon a particular genus and species.  相似文献   

11.
The roots of date palm contain four cell wall‐bound phenolic acids identified as p‐hydroxybenzoic, p‐coumaric, ferulic and sinapic acids. The ferulic acid represents the major phenolic compound since it constitutes 48.2–55.8% of cell wall‐bound phenolic acids. All these phenolic acids were present in the resistant cultivar (BSTN) and the susceptible cultivar (JHL). However, the pre‐infection contents of p‐coumaric, ferulic and sinapic acids were greater in the resistant cultivar than in the susceptible one. For the contents of p‐hydroxybenzoic acid, there was no significant difference between the resistant cultivar and the susceptible cultivar. Similarly, the pre‐infection contents of lignin were approximately equal for both cultivars. Inoculation of the date palm roots by Fusarium oxysporum f. sp. albedinis induced important modifications to the contents of the cell wall‐bound phenolic compounds and lignin, which made it possible to distinguish between resistant and susceptible cultivars. The post‐infection contents of cell wall‐bound phenolic compounds underwent a rapid and intense increase with a maximum accumulation on the tenth day for p‐hydroxybenzoic acid (1.54 μmol/g), p‐coumaric acid (2.77 μmol/g) and ferulic acid (2.64 μmol/g) and on the fifteenth day for sinapic acid (1.85 μmol/g). The maximum contents accumulated in the resistant cultivar were greater than those in the susceptible cultivar, namely, 11 times for p‐hydroxybenzoic acid, 2.6 times for p‐coumaric acid, 1.8 times for ferulic acid and 12.3 times for sinapic acid. In the susceptible cultivar, p‐coumaric acid and ferulic acid contents also increased after inoculation although they did not reach the pre‐infection contents of the resistant cultivar. The contents of p‐hydroxybenzoic acid in the susceptible cultivar roots did not present post‐infection modification and those of sinapic acid decreased instead. The lignin contents increased in both cultivars with a maximum accumulation on the fifteenth day. However, the maximum contents accumulated in the resistant cultivar roots were 1.5 times greater than those of the susceptible cultivar. These results showed clear differences between the resistant BSTN and the susceptible JHL cultivars. The implication of cell wall‐bound phenolic compounds and lignin in the resistance of date palm to F. oxysporum f. sp. albedinis appears to be dependent on the speed and intensity of their accumulation with greater contents in the first stage of infection.  相似文献   

12.
Age-dependent content of polymerized lipids in Sphagnum fuscum   总被引:1,自引:0,他引:1  
The polymerized lipids of Sphagnum fuscum cell wall fragments were found to be composed of long chain hydroxy acids, long chain dicarboxylic acids, fatty alcohols and fatty acids. Their content, on a dry weight basis, was low in the topmost 3 cm of the shoot and increased with shoot age (and depth). A pronounced increase (16-fold) occurred in the contents of hydroxy acids which comprised 76% of the totals at the depth of 40–43 cm. The increase at the depth of 40-43 cm is considered to be at least partly associated with the frequently found destruction of the most suscptible part, the thin-walled stem center. The results suggest that aliphatic lipid polymers are present and acumulated in cell walls resistant to breakdown.  相似文献   

13.
Fusariosis, caused by the fungus Fusarium subglutinans f. sp. ananas (Syn. F. guttiforme), is one of the main phytosanitary threats to pineapple (Ananas comosus var. comosus). Identification of plant cell responses to pathogens is important in understanding the plant–pathogen relationship and establishing strategies to improve and select resistant cultivars. Studies of the structural properties and phenolic content of cell walls in resistant (Vitoria) and susceptible (Perola) pineapple cultivars, related to resistance to the fungus, were performed. The non-chlorophyll base of physiologically mature leaves was inoculated with a conidia suspension. Analyses were performed post-inoculation by light, atomic force, scanning and transmission electron microscopy, and measurement of cell wall-bound phenolic compounds. Non-inoculated leaves were used as controls to define the constitutive tissue characteristics. Analyses indicated that morphological differences, such as cell wall thickness, cicatrization process and lignification, were related to resistance to the pathogen. Atomic force microscopy indicated a considerable difference in the mechanical properties of the resistant and susceptible cultivars, with more structural integrity, associated with higher levels of cell wall-bound phenolics, found in the resistant cultivar. p-Coumaric and ferulic acids were shown to be the major phenolics bound to the cell walls and were found in higher amounts in the resistant cultivar. Leaves of the resistant cultivar had reduced fungal penetration and a faster and more effective cicatrization response compared to the susceptible cultivar.  相似文献   

14.
The lipid composition of cells of Pseudomonas aeruginosa strains resistant to polymyxin was compared with the lipid composition of cells of polymyxin-sensitive strains as to their content of readily extractable lipids (RELs), acid-extractable lipids, the fatty acid composition of RELs, and the contents of various phospholipids in the REL fraction. The polymyxin-resistant strains had an increased content of RELs, but a decreased phospholipid content. The REL fraction from the polymyxin-resistant strains had an increased content of unsaturated fatty acids accompanied by a decreased content of cyclopropane fatty acids as compared with the fatty acid composition of RELs from polymyxin-sensitive strains. The phosphatidylethanolamine content was greatly reduced in the polymyxin-resistant strains, whereas the content of an unidentified lipid, thought to be a neutral lipid lacking either a phosphate, free amino, or choline moiety, was greatly increased. Cell envelopes of the polymyxin-resistant strains contained reduced concentrations of Mg2+ and Ca2+ as compared with the cell envelopes of polymyxin-sensitive strains. It appears that polymyxin resistance in these strains is associated with a significant alteration in the lipid composition and divalent cation content of the cell envelope.  相似文献   

15.
The fatty acid composition of Pseudomonas aeruginosa 1C destroying anionic surfactant alkyl sulfates was studied after its cultivation under different conditions which caused different resistance of the cells against sodium dodecyl sulfate (SDS). The content of monounsaturated fatty acids (in particular, octadecenoic acid) increased while the content of cyclopropane fatty acids decreased in cells resistant against SDS.  相似文献   

16.
目的了解耐环丙沙星铜绿假单胞菌的流行情况,分析耐环丙沙星铜绿假单胞菌的耐药性,比较耐环丙沙星铜绿假单胞菌与环丙沙星敏感铜绿假单胞菌的耐药性差异。方法选择贵阳医学院第三附属医院2011年6月至2014年11月下呼吸道感染标本中分离出的231株耐环丙沙星铜绿假单胞菌与环丙沙星敏感铜绿假单胞菌,按照《全国临床检验操作规程》进行微生物病原菌鉴定。采用Kirby-Bauer琼脂扩散法进行药敏试验,结果使用SPSS 17.0软件进行统计分析。结果下呼吸道感染标本中共分离出铜绿假单胞菌231株,其中耐环丙沙星铜绿假单胞菌检出率25.54%。从科室分布看,神经外科分离率最高,占47.46%,其次ICU、呼吸内科与消化内科分别占18.64%、13.56%、10.17%;下呼吸道感染耐环丙沙星铜绿假单胞菌菌株与环丙沙星敏感铜绿假单胞菌菌株对头孢曲松、阿米卡星、亚胺培南、哌拉西林/他唑巴坦、头孢哌酮/舒巴坦等19种抗菌药物的耐药率分别为95.65%,71.83%;42.86%,7.69%;17.39%,2.70%;33.33%,11.02%;22.22%,8.00%。下呼吸道感染耐环丙沙星铜绿假单胞菌菌株耐药率明显高于环丙沙星敏感铜绿假单胞菌菌株,差异具有统计学意义(P0.05)。结论耐环丙沙星铜绿假单胞菌表现为多重耐药性,给临床治疗带来很大的困难。因此严格掌握抗菌药物的选用是延缓病原菌对抗菌药物耐药的有效方法。  相似文献   

17.
The effects of changes in the fatty acid composition of Pseudomonas aeruginosa induced by growth conditions on its resistance to two quaternary ammonium compounds (QAC) were investigated. The temperature and growth phase were the most influential parameters affecting the fatty acid composition of this bacterium. Furthermore, the formation of saturated fatty acids and cyclopropane fatty acids was stimulated by increasing the temperature, whereas the proportion of unsaturated fatty acids fell. The degree of saturation and the proportion of cyclopropane fatty acids increased in the course of the exponential and stationary phases. These modifications mostly concerned the inner membrane of the bacterium. Resistance of P. aeruginosa to both QAC tested was not significantly influenced by temperature and growth phase variations. Thus, resistance to the two QAC did not seem to be dependent on modifications of the fatty acid composition of the inner membrane.  相似文献   

18.
Bacteria with intrinsic resistance to antibiotics are a worrisome health problem. It is widely believed that intrinsic antibiotic resistance of bacterial pathogens is mainly the consequence of cellular impermeability and activity of efflux pumps. However, the analysis of transposon-tagged Pseudomonas aeruginosa mutants presented in this article shows that this phenotype emerges from the action of numerous proteins from all functional categories. Mutations in some genes make P. aeruginosa more susceptible to antibiotics and thereby represent new targets. Mutations in other genes make P. aeruginosa more resistant and therefore define novel mechanisms for mutation-driven acquisition of antibiotic resistance, opening a new research field based in the prediction of resistance before it emerges in clinical environments. Antibiotics are not just weapons against bacterial competitors, but also natural signalling molecules. Our results demonstrate that antibiotic resistance genes are not merely protective shields and offer a more comprehensive view of the role of antibiotic resistance genes in the clinic and in nature.  相似文献   

19.
The peroxisome proliferator-activated receptor alpha (PPARalpha) has been implicated as a key control of fatty acid catabolism during the cellular fasting. However, little is known regarding changes of individual fatty acids in hepatic triacylglycerol (TG) and phospholipid (PL) as a result of starvation. In the present work, the effects of 72 h fasting on hepatic TG and PL fatty acid profiles in PPARalpha-null (KO) mice and their wild-type (WT) counterparts were investigated. Our results indicated that mice deficient in PPARalpha displayed hepatomegaly and hypoketonemia following 72 h starvation. Histochemical analyses revealed that severe fatty infiltration was observed in the livers of KO mice under fasted conditions. Furthermore, 72 h fasting resulted in a 2.8-fold higher accumulation of hepatic TG in KO mice than in WT mice fasted for the same length of time. Surprisingly, the total hepatic PL contents in fasted KO mice decreased by 45%, but no significant change in hepatic PL content was observed in WT mice following starvation. Gas chromatographic analysis indicated that KO mice were deprived of arachidonic (20:4n-6) and docosahexaenoic (22:6n-3) acids during fasting. Taken together, these results show that PPARalpha plays an important role in regulation of fatty acid metabolism as well as phospholipid homeostasis during energy deprivation.  相似文献   

20.
Mesenterocins 52A (Mes52A) and 52B (Mes52B) are antimicrobial peptides produced by Leuconostoc mesenteroides subsp. mesenteroides FR 52. Mes52A is a class IIa bacteriocin of lactic acid bacteria with a broad spectrum of activity. Mes52B is an atypical class II bacteriocin with a narrow spectrum of activity. Four Leuconostoc and Weissella wild-type strains were selected for their susceptibility or insensitivity to these mesenterocins. Four strains resistant to Mes52A or Mes52B were generated from the three susceptible wild-type strains by increasing bacteriocin concentrations in culture media. These resistant strains were at least 30 times more resistant than the wild-type strains. No cross-resistance to Mes52A and Mes52B was observed in these strains. No significant differences in membrane fatty acid composition were observed among the three susceptible wild-type strains and the four resistant strains cultured in MRS broth. Thus, the mesenterocin resistance is unlikely to be due to changes in membrane fatty acid composition. When cultured with Mes52A or Mes52B, the membranes of insensitive and resistant strains contained more saturated fatty acids (1 to 10% more) and less unsaturated fatty acids (3 to 6% less), resulting in a more rigid membrane. Thus, the presence of mesenterocin in the culture media of insensitive or resistant strains induced a significant increase in saturated fatty acid contents and a decrease in unsaturated fatty acid contents. Weissella paramesenteroides DSM 20288BR, resistant to Mes52B, responded atypically, probably due to the production of an inhibitor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号