共查询到20条相似文献,搜索用时 0 毫秒
1.
Raili Laine Maija-Liisa Kettunen Carl G. Gahmberg Leevi K??ri?inen Ossi Renkonen 《Journal of virology》1972,10(3):433-438
Semliki Forest virus was grown in BHK-21 cells. The major classes of phospho-and glycolipids of the virus were analyzed for the compositions of fatty acids, aldehydes, and sphingosine bases, and the major glycerophospholipids were analyzed for the relative proportions of alkenyl-acyl, alkyl-acyl, and diacyl forms. All viral lipid classes proved to be mixtures of several molecular species. Each class contained a characteristic mixture of fatty chains, which was different in all other classes. All viral lipid classes resembled their counterparts of the host plasma membrane and also those of the endoplasmic reticulum. The gangliosides of the virus and the plasma membrane proved to be similar even at the level of individual molecular species. The number of certain lipid molecules in an average virion was less than the number of the protein molecules. 相似文献
2.
3.
Effects of Influenza A Virus NS1 Protein on Protein Expression: the NS1 Protein Enhances Translation and Is Not Required for Shutoff of Host Protein Synthesis 总被引:13,自引:0,他引:13 下载免费PDF全文
Mirella Salvatore Christopher F. Basler Jean-Patrick Parisien Curt M. Horvath Svetlana Bourmakina Hongyong Zheng Thomas Muster Peter Palese Adolfo García-Sastre 《Journal of virology》2002,76(3):1206-1212
The influenza A virus NS1 protein, a virus-encoded alpha/beta interferon (IFN-alpha/beta) antagonist, appears to be a key regulator of protein expression in infected cells. We now show that NS1 protein expression results in enhancement of reporter gene activity from transfected plasmids. This effect appears to be mediated at the translational level, and it is reminiscent of the activity of the adenoviral virus-associated I (VAI) RNA, a known inhibitor of the antiviral, IFN-induced, PKR protein. To study the effects of the NS1 protein on viral and cellular protein synthesis during influenza A virus infection, we used recombinant influenza viruses lacking the NS1 gene (delNS1) or expressing truncated NS1 proteins. Our results demonstrate that the NS1 protein is required for efficient viral protein synthesis in COS-7 cells. This activity maps to the amino-terminal domain of the NS1 protein, since cells infected with wild-type virus or with a mutant virus expressing a truncated NS1 protein-lacking approximately half of its carboxy-terminal end-showed similar kinetics of viral and cellular protein expression. Interestingly, no major differences in host cell protein synthesis shutoff or in viral protein expression were found among NS1 mutant viruses in Vero cells. Thus, another viral component(s) different from the NS1 protein is responsible for the inhibition of host protein synthesis during viral infection. In contrast to the earlier proposal suggesting that the NS1 protein regulates the levels of spliced M2 mRNA, no effects on M2 protein accumulation were seen in Vero cells infected with delNS1 virus. 相似文献
4.
5.
禽流感病毒NS1蛋白对细胞的影响 总被引:1,自引:0,他引:1
NS1蛋白为流感病毒非结构蛋白,只在病毒侵入宿主细胞后产生.目前NS1蛋白对细胞整体水平上的作用仍不清楚,为了解NS1蛋白在病毒感染细胞中的作用,构建了重组质粒pCMV-myc-NS1并将其转染A549细胞,利用双向电泳技术检测了受NS1蛋白调控的宿主蛋白,以期从蛋白质组水平上研究禽流感病毒与宿主细胞间的相互作用.同时,还检测了转染NS1对细胞增殖和细胞周期的影响.结果显示,NS1在细胞中的表达,能够明显引起宿主细胞代谢的变化,并通过阻滞细胞周期的正常进行而减缓细胞的增殖. 相似文献
6.
Resistance of Ribosomal Protein mRNA Translation to Protein Synthesis Shutoff Induced by Poliovirus 下载免费PDF全文
Beatrice Cardinali Lucia Fiore Nadia Campioni Alessandra De Dominicis Paola Pierandrei-Amaldi 《Journal of virology》1999,73(8):7070-7076
Poliovirus infection induces an overall inhibition of host protein synthesis, although some mRNAs continue to be translated, suggesting different translation requirements for cellular mRNAs. It is known that ribosomal protein mRNAs are translationally regulated and that the phosphorylation of ribosomal protein S6 is involved in the regulation. Here, we report that the translation of ribosomal protein mRNAs resists poliovirus infection and correlates with an increase in p70(s6k) activity and phosphorylation of ribosomal protein S6. 相似文献
7.
M. YOSHIDA 《Nature: New biology》1972,239(93):178-180
DURING development of T4 phage in E. coli, control at the translational level may play an important part in switching the reading of early to late T4 messenger RNAs. In vitro experiments have shown that protein factors isolated from ribosomes of T4 infected cells can restrict translation of either host mRNA or R17 phage RNA, whilst permitting normal translation of late T4 mRNA1–4. This alteration of specificity has been attributed to an initiation factor F35,6. It is unlikely that this switch is related to the shut-off of host protein synthesis which occurs immediately after infection7,8, because they occur at distinctly different times in vivo1, 3. 相似文献
8.
Human MxA Protein Confers Resistance to Semliki Forest Virus and Inhibits the Amplification of a Semliki Forest Virus-Based Replicon in the Absence of Viral Structural Proteins 总被引:10,自引:4,他引:10 下载免费PDF全文
Heinrich Landis Angela Simon-Jdicke Andreas Klti Claudio Di Paolo Jens-Jrg Schnorr Sibylle Schneider-Schaulies Hans Peter Hefti Jovan Pavlovic 《Journal of virology》1998,72(2):1516-1522
Mx proteins form a small family of interferon (IFN)-induced GTPases with potent antiviral activity against various negative-strand RNA viruses. To examine the antiviral spectrum of human MxA in homologous cells, we stably transfected HEp-2 cells with a plasmid directing the expression of MxA cDNA. HEp-2 cells are permissive for many viruses and are unable to express endogenous MxA in response to IFN. Experimental infection with various RNA and DNA viruses revealed that MxA-expressing HEp-2 cells were protected not only against influenza virus and vesicular stomatitis virus (VSV) but also against Semliki Forest virus (SFV), a togavirus with a single-stranded RNA genome of positive polarity. In MxA-transfected cells, viral yields were reduced up to 1,700-fold, and the degree of inhibition correlated well with the expression level of MxA. Furthermore, expression of MxA prevented the accumulation of 49S RNA and 26S RNA, indicating that SFV was inhibited early in its replication cycle. Very similar results were obtained with MxA-transfected cells of the human monocytic cell line U937. The results demonstrate that the antiviral spectrum of MxA is not restricted to negative-strand RNA viruses but also includes SFV, which contains an RNA genome of positive polarity. To test whether MxA protein exerts its inhibitory activity against SFV in the absence of viral structural proteins, we took advantage of a recombinant vector based on the SFV replicon. The vector contains only the coding sequence for the viral nonstructural proteins and the bacterial LacZ gene, which was cloned in place of the viral structural genes. Upon transfection of vector-derived recombinant RNA, expression of the β-galactosidase reporter gene was strongly reduced in the presence of MxA. This finding indicates that viral components other than the structural proteins are the target of MxA action. 相似文献
9.
Lucie Kalvodova Julio L. Sampaio Sandra Cordo Christer S. Ejsing Andrej Shevchenko Kai Simons 《Journal of virology》2009,83(16):7996-8003
Although enveloped virus assembly in the host cell is a crucial step in the virus life cycle, it remains poorly understood. One issue is how viruses include lipids in their membranes during budding from infected host cells. To analyze this issue, we took advantage of the fact that baby hamster kidney cells can be infected by two different viruses, namely, vesicular stomatitis virus and Semliki Forest virus, from the Rhabdoviridae and Togaviridae families, respectively. We purified the host plasma membrane and the two different viruses after exit from the host cells and analyzed the lipid compositions of the membranes by quantitative shotgun mass spectrometry. We observed that the lipid compositions of these otherwise structurally different viruses are virtually indistinguishable, and only slight differences were detected between the viral lipid composition and that of the plasma membrane. Taken together, the facts that the lipid compositions of the two viruses are so similar and that they strongly resemble the composition of the plasma membrane suggest that these viruses exert little selection in including lipids in their envelopes.Enveloped viruses acquire their lipid envelope from the membranes of host cells (43). In this process, the nucleocapsid or the nucleocapsid-matrix complex of the viruses buds out of the cell and becomes enveloped by a segment of the host membrane. This membrane segment is modified during the budding process, such that virally encoded membrane proteins are included in the viral envelope, while most host proteins are excluded. Since viruses usually do not carry lipid-synthesizing enzymes, the lipids in the viral envelope are derived from the host membrane. The lipid compositions of enveloped viruses have been studied for years (2, 15, 17, 18, 23, 25, 34, 36, 38, 40). One question that remains to be answered is whether the lipids are included passively, and thus the lipid composition of the envelope reflects the lipid composition of the host membrane, or whether lipid sorting occurs, leading to selective inclusion of some lipids and exclusion of others. This issue has been complicated by the fact that the lipid bilayer is no longer considered a homogenous liquid but contains fluctuating nanoscale assemblies of sphingolipids, saturated phospholipids, cholesterol (Chol), and proteins, called lipid rafts (13, 44). Lipid rafts can be induced to coalesce—usually by protein-protein interactions—into larger, dynamic platforms that function in signal transduction, intracellular membrane transport, and other membrane functions (45). It was also proposed that viruses make use of these membrane domains during their exit from cells (29, 32).A major complication in comparing viral envelopes with host cell membranes is the difficulty in obtaining host cell membranes of purity similar to that of the easily purified viruses. Many studies are faulted by the impurity of the cell membranes analyzed. Moreover, the early work in this field employed conventional analytical methods (such as thin-layer chromatography) that provide only semiquantitative estimates of the total abundance of the major lipid classes. Most importantly, lipid species diversity could not be analyzed. Recent developments in mass spectrometry (MS) have enabled comprehensive and quantitative analyses of lipidomes at the level of individual molecular species. The lipidomes of human immunodeficiency virus (HIV), murine leukemia virus (6, 7), and several bacteriophages (20, 21) were recently analyzed by these new methods.This paper focuses on two well-characterized enveloped viruses, Semliki Forest virus (SFV) and vesicular stomatitis virus (VSV). SFV is an RNA virus belonging to the Togaviridae family of the Alphaviridae that acquires its envelope by budding from the host cell plasma membrane (PM) (46). Early studies analyzed the lipid composition of the viral envelope and also that of the host cell PM (39, 40). These studies revealed strong similarity between the envelope of SFV and the host PM, but one important discrepancy was the higher Chol-to-phospholipid ratio in the virus.VSV is an RNA virus belonging to the Rhabdoviridae family and also hijacks its envelope from the host cell PM (35), but the lipid specificity of the budding process remains controversial. The most recent studies claim that VSV buds from localized regions that do not reflect the average composition of the PM (23, 36). It has also been claimed that lipid rafts are involved in VSV envelope assembly during budding (37).We used BHK-21 cells as host cells to purify SFV and VSV. The purposes of this study were (i) to establish a robust, comprehensive, and quantitative method to analyze lipidomes, including the full complement of glycerolipid, glycerophospholipid, and sphingolipid species as well as Chol; (ii) to establish a protocol for purification of PM suitable for MS analysis; and (iii) to analyze and compare the lipidomes of SFV, VSV, and the BHK-21 PM.We found that the lipidomes of SFV and VSV are similar in molecular composition and are closely related to that of the BHK-21 PM. The small differences observed could be explained by the high degrees of curvature generated during the viral budding process. 相似文献
10.
11.
Inhibition of Cellular Protein Synthesis by Simultaneous Pretreatment of Host Cells with Fowl Plague Virus and Actinomycin D: a Method for Studying Early Protein Synthesis of Several RNA Viruses 下载免费PDF全文
A method is described for analysis of viral protein synthesis early after infection when minute amounts of viral proteins are effectively concealed by large amounts of produced host-specific proteins. The method is superior to a radioimmune assay, since all virus-induced proteins can be measured independent of their immunological reactivity. Host-specific protein synthesis can be suppressed by infection with fowl plague virus. Addition of actinomycin D 1.25 h postinfection does not prevent this suppression, but it does block effectively the formation of fowl plague virus-specific proteins. Such cells synthesize only small amounts of cellular proteins, as revealed by polyacrylamide electrophoresis. They can be superinfected with several different enveloped viruses, however, without significant diminution of virus yields. In pretreated cells the eclipse is shortened for Semliki Forest virus, Sindbis virus, and vesicular stomatitis virus, but prolonged for Newcastle disease virus. The onset of protein synthesis, specific for the superinfecting virus, could be clearly demonstrated within 1 h after superinfection. At this time, in cells superinfected with Semliki Forest virus, great amounts of NSP 78 (nonstructural protein; molecular weight, 78 × 103) and reduced amounts of the core protein C could be demonstrated. The precursor glycoprotein NSP 68 is followed by a new polypeptide, NSP 65; three proteins with molecular weights exceeding 100 × 103 were observed which are missing later in the infectious cycle. Similar results were obtained after superinfection with Sindbis virus. The formation of a new polypeptide with a molecular weight of about 80 × 103 was detected. After superinfection with vesicular stomatitis virus or Newcastle disease virus the formation of new proteins, characteristic for the early stage of infection, was not observed. 相似文献
12.
Timing Is Everything: Coordinated Control of Host Shutoff by Influenza A Virus NS1 and PA-X Proteins
Like all viruses, influenza viruses (IAVs) use host translation machinery to decode viral mRNAs. IAVs ensure efficient translation of viral mRNAs through host shutoff, a process whereby viral proteins limit the accumulation of host proteins through subversion of their biogenesis. Despite its small genome, the virus deploys multiple host shutoff mechanisms at different stages of infection, thereby ensuring successful replication while limiting the communication of host antiviral responses. In this Gem, we review recent data on IAV host shutoff proteins, frame the outstanding questions in the field, and propose a temporally coordinated model of IAV host shutoff. 相似文献
13.
Early Events in Parvovirus Replication: Lack of Integration by Minute Virus of Mice into Host Cell DNA 下载免费PDF全文
Viral DNA sequences were not detected in high-molecular-weight host DNA until well after the onset of viral DNA replication. 相似文献
14.
15.
Neuroblastoma Cell Membranes: Specificity for Cell Fusion Mediated by a Temperature-Sensitive Mutant of Vesicular Stomatitis Virus 总被引:1,自引:0,他引:1
Abstract: Temperature-sensitive mutant G3 1 of vesicular stomatitis virus induces mouse neuroblastoma N-18 cells to fuse during infections that are nonpermissive for virus replication, but BHK-21 cells do not undergo the viral glycoprotein-mediated cell fusion. The viral glycoprotein was expressed at the cell surface of both N-18 and BHK-21 cells; therefore, the host cell specificity did not stem from an absence of the viral glycoprotein at the surface of BHK-21 cells. Cell fusion readily occurred between infected and uninfected N-18 cells in mixed cultures, demonstrating that the viral glycoprotein was interacting with an uninfected cell for the initial cell-cell interaction of the cell fusion. Mixing infected BHK-21 cells with uninfected N-18 cells resulted in cell fusion initiated by BHK-21 cell-synthesized viral glycoprotein, but 88% of the nucleiin polykaryocytes were N-18 nuclei. The N-18 cell fusion specificity was readily apparent when infected N-18 cells were mixed with uninfected BHK-21 cells; 98% of the nuclei in polykaryocytes were N-18 nuclei. Similar results also were obtained with mixed cultures of N-18 cells and primary astroglial cells. Thus, the viral glycoprotein synthesized in any of the cell types could initiate cell fusion, but the properties of plasma membranes of neuroblastoma cells appeared to be much more suitable for cell-cell fusion. 相似文献
16.
Magdalena Anna Krzyzaniak Michael Thomas Zumstein Juan Atilio Gerez Paola Picotti Ari Helenius 《PLoS pathogens》2013,9(4)
Respiratory Syncytial Virus (RSV) is a highly pathogenic member of the Paramyxoviridae that causes severe respiratory tract infections. Reports in the literature have indicated that to infect cells the incoming viruses either fuse their envelope directly with the plasma membrane or exploit clathrin-mediated endocytosis. To study the entry process in human tissue culture cells (HeLa, A549), we used fluorescence microscopy and developed quantitative, FACS-based assays to follow virus binding to cells, endocytosis, intracellular trafficking, membrane fusion, and infection. A variety of perturbants were employed to characterize the cellular processes involved. We found that immediately after binding to cells RSV activated a signaling cascade involving the EGF receptor, Cdc42, PAK1, and downstream effectors. This led to a series of dramatic actin rearrangements; the cells rounded up, plasma membrane blebs were formed, and there was a significant increase in fluid uptake. If these effects were inhibited using compounds targeting Na+/H+ exchangers, myosin II, PAK1, and other factors, no infection was observed. The RSV was rapidly and efficiently internalized by an actin-dependent process that had all hallmarks of macropinocytosis. Rather than fusing with the plasma membrane, the viruses thus entered Rab5-positive, fluid-filled macropinosomes, and fused with the membranes of these on the average 50 min after internalization. Rab5 was required for infection. To find an explanation for the endocytosis requirement, which is unusual among paramyxoviruses, we analyzed the fusion protein, F, and could show that, although already cleaved by a furin family protease once, it underwent a second, critical proteolytic cleavage after internalization. This cleavage by a furin-like protease removed a small peptide from the F1 subunits, and made the virus infectious. 相似文献
17.
18.
Pavla Strnadova Hongwei Ren Robert Valentine Michela Mazzon Trevor R. Sweeney Ian Brierley Geoffrey L. Smith 《PLoS pathogens》2015,11(9)
Vaccinia virus (VACV) is the prototypic orthopoxvirus and the vaccine used to eradicate smallpox. Here we show that VACV strain Western Reserve protein 169 is a cytoplasmic polypeptide expressed early during infection that is excluded from virus factories and inhibits the initiation of cap-dependent and cap-independent translation. Ectopic expression of protein 169 causes the accumulation of 80S ribosomes, a reduction of polysomes, and inhibition of protein expression deriving from activation of multiple innate immune signaling pathways. A virus lacking 169 (vΔ169) replicates and spreads normally in cell culture but is more virulent than parental and revertant control viruses in intranasal and intradermal murine models of infection. Intranasal infection by vΔ169 caused increased pro-inflammatory cytokines and chemokines, infiltration of pulmonary leukocytes, and lung weight. These alterations in innate immunity resulted in a stronger CD8+ T-cell memory response and better protection against virus challenge. This work illustrates how inhibition of host protein synthesis can be a strategy for virus suppression of innate and adaptive immunity. 相似文献