首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multiaxial failure properties of trabecular bone are important for modeling of whole bone fracture and can provide insight into structure-function relationships. There is currently no consensus on the most appropriate form of multiaxial yield criterion for trabecular bone. Using experimentally validated, high-resolution, non-linear finite element models, biaxial plain strain boundary conditions were applied to seven bovine tibial specimens. The dependence of multiaxial yield properties on volume fraction was investigated to quantify the interspecimen heterogeneity in yield stresses and strains. Two specimens were further analyzed to determine the yield properties for a wide range of biaxial strain loading conditions. The locations and quantities of tissue level yielding were compared for on-axis, transverse, and biaxial apparent level yielding to elucidate the micromechanical failure mechanisms. As reported for uniaxial loading of trabecular bone, the yield strains in multiaxial loading did not depend on volume fraction, whereas the yield stresses did. Micromechanical analysis indicated that the failure mechanisms in the on-axis and transverse loading directions were mostly independent. Consistent with this, the biaxial yield properties were best described by independent curves for on-axis and transverse loading. These findings establish that the multiaxial failure of trabecular bone is predominantly governed by the strain along the loading direction, requiring separate analytical expressions for each orthotropic axis to capture the apparent level yield behavior.  相似文献   

2.
Data on the tensile and compressive properties of trabecular bone are needed to define input parameters and failure criteria for modeling total joint replacements. To help resolve differences in reports comparing tensile and compressive properties of trabecular bone, we have developed new methods, based on porous foam technology, for tensile testing of fresh/frozen trabecular bone specimens. Using bovine trabecular bone from an isotropic region from the proximal humerus as a model material, we measured ultimate strengths in tension and compression for two groups of 24 specimens each. The average ultimate strength in tension was 7.6 +/- 2.2 (95% C.I.) MPa and in compression was 12.4 +/- 3.2 MPa. This difference was statistically significant (p = 0.013) and was not related to density differences between the test groups (p = 0.28). Strength was related by a power-law function of the local apparent density, but, even accounting for density influences, isotropic bovine trabecular bone exhibits significantly lower strengths in tension than in compression.  相似文献   

3.
When compressed axially, cancellous bone often fails at an oblique angle along well-defined bands, highlighting the importance of cancellous bone shear properties. Torsion testing to determine shear properties of cancellous bone has often been conducted under conditions appropriate only for axis-symmetric specimens comprised of homogeneous and isotropic materials. However, most cancellous bone specimens do not meet these stringent test conditions. Therefore, the aim of this study was to design and validate a uniaxial, incremental torsional testing system for non-homogeneous orthotropic or non-axis-symmetric specimens.Precision and accuracy of the newly designed torsion system was validated by using Plexiglas rods and beams, where obtained material properties were compared to those supplied by the manufacturer. Additionally, the incremental step-wise application of angular displacement and simultaneous time-lapsed μCT imaging capability of the system was validated using whale cancellous bone specimens, with step-wise application of angular displacement yielding similar torsional mechanical properties to continuous application of angular displacement in a conventional torsion study.In conclusion, a novel torsion testing system for non-homogeneous, orthotropic materials using the incremental step-wise application of torsion and simultaneous time-lapsed μCT imaging was designed and validated.  相似文献   

4.
Trabecular bone tissue failure can be considered as consisting of two stages: damage and fracture; however, most failure analyses of 3D high-resolution trabecular bone samples are confined to damage mechanisms only, that is, without fracture. This study aims to develop a computational model of trabecular bone consisting of an explicit representation of complete failure, incorporating damage criteria, fracture criteria, cohesive forces, asymmetry and large deformation capabilities. Following parameter studies on a test specimen, and experimental testing of bone sample to complete failure, the asymmetric critical tissue damage and fracture strains of ovine vertebral trabecular bone were calibrated and validated to be compression damage ?1.16 %, tension damage 0.69 %, compression fracture ?2.91 % and tension fracture 1.98 %. Ultimate strength and post–ultimate strength softening were captured by the computational model, and the failure of individual struts in bending and shear was also predicted. This modelling approach incorporated a cohesive parameter that provided a facility to calibrate ductile–brittle behaviour of bone tissue in this non-linear geometric and non-linear constitutive property analyses tool. Finally, the full accumulation of tissue damage and tissue fracture has been monitored from range of small magnitude (normal daily loading) through to specimen yielding, ultimate strength and post–ultimate strength softening.  相似文献   

5.
Damage in trabecular bone at small strains   总被引:5,自引:0,他引:5  
Evidence that damage decreases bone quality, increases fracture susceptibility, and serves as a remodeling stimulus motivates further study of what loading magnitudes induce damage in trabecular bone. In particular, whether damage occurs at the smaller strains characteristic of habitual, as opposed to traumatic, loading is not known. The overall goal of this study was to characterize damage accumulation in trabecular bone at small strains (0.20 - 0.45% strain). A continuum damage mechanics approach was taken whereby damage was quantified by changes in modulus and residual strain. Human vertebral specimens (n = 7) were tested in compression using a multi-cycle load - unload protocol in which the maximum applied strain for each cycle, epsilonmax, was increased incrementally from epsilonmax = 0.20% on the first loading cycle to epsilonmax = 0.45% on the last cycle. Modulus and residual strain were measured for each cycle. Both changes in modulus and residual strains commenced at small strains, beginning as early as 0.24 and 0.20% strain, respectively. Strong correlations between changes in modulus and residual strains were observed (r = 0.51 - 0.98). Fully nonlinear, high-resolution finite element analyses indicated that even at small apparent strains, tissue-level strains were sufficiently high to cause local yielding. These results demonstrate that damage in trabecular bone occurs at apparent strains less than half the apparent compressive yield strain reported previously for human vertebral trabecular bone. Further, these findings imply that, as a consequence of the highly porous trabecular structure, tissue yielding can initiate at very low apparent strains and that this local failure has detectable and negative consequences on the apparent mechanical properties of trabecular bone.  相似文献   

6.
The ability to predict trabecular failure using microstructure-based computational models would greatly facilitate study of trabecular structure–function relations, multiaxial strength, and tissue remodeling. We hypothesized that high-resolution finite element models of trabecular bone that include cortical-like strength asymmetry at the tissue level, could predict apparent level failure of trabecular bone for multiple loading modes. A bilinear constitutive model with asymmetric tissue yield strains in tension and compression was applied to simulate failure in high-resolution finite element models of seven bovine tibial specimens. Tissue modulus was reduced by 95% when tissue principal strains exceeded the tissue yield strains. Linear models were first calibrated for effective tissue modulus against specimen-specific experimental measures of apparent modulus, producing effective tissue moduli of (mean±S.D.) 18.7±3.4 GPa. Next, a parameter study was performed on a single specimen to estimate the tissue level tensile and compressive yield strains. These values, 0.60% strain in tension and 1.01% strain in compression, were then used in non-linear analyses of all seven specimens to predict failure for apparent tensile, compressive, and shear loading. When compared to apparent yield properties previously measured for the same type of bone, the model predictions of both the stresses and strains at failure were not statistically different for any loading case (p>0.15). Use of symmetric tissue strengths could not match the experimental data. These findings establish that, once effective tissue modulus is calibrated and uniform but asymmetric tissue failure strains are used, the resulting models can capture the apparent strength behavior to an outstanding level of accuracy. As such, these computational models have reached a level of fidelity that qualifies them as surrogates for destructive mechanical testing of real specimens.  相似文献   

7.
The purpose of this study was to investigate whether using a finite-element (FE) mesh composed entirely of hexahedral elements to model cortical and trabecular bone (all-hex model) would provide more accurate simulations than those with variable thickness shell elements for cortical bone and hexahedral elements for trabecular bone (hex–shell model) in the modeling human ribs. First, quasi-static non-injurious and dynamic injurious experiments were performed using the second, fourth, and tenth human thoracic ribs to record the structural behavior and fracture tolerance of individual ribs under anterior–posterior bending loads. Then, all-hex and hex–shell FE models for the three ribs were developed using an octree-based and multi-block hex meshing approach, respectively. Material properties of cortical bone were optimized using dynamic experimental data and the hex–shell model of the fourth rib and trabecular bone properties were taken from the literature. Overall, the reaction force–displacement relationship predicted by both all-hex and hex–shell models with nodes in the offset middle-cortical surfaces compared well with those measured experimentally for all the three ribs. With the exception of fracture locations, the predictions from all-hex and offset hex–shell models of the second and fourth ribs agreed better with experimental data than those from the tenth rib models in terms of reaction force at fracture (difference <15.4%), ultimate failure displacement and time (difference <7.3%), and cortical bone strains. The hex–shell models with shell nodes in outer cortical surfaces increased static reaction forces up to 16.6%, compared to offset hex–shell models. These results indicated that both all-hex and hex–shell modeling strategies were applicable for simulating rib responses and bone fractures for the loading conditions considered, but coarse hex–shell models with constant or variable shell thickness were more computationally efficient and therefore preferred.  相似文献   

8.
Fatigue loading of bone, from the activities of daily living in the elderly, or from prolonged exercise in the young, can lead to increased risk of fracture. Elderly patients with osteoporosis are particularly prone to fragility fractures of the vertebrae, where load is carried primarily by trabecular bone. In this study, specimens of bovine trabecular bone were loaded in compressive fatigue at four different normalized stresses to one of six maximum strains. The resulting change in modulus and residual strain accumulation were measured over the life of the fatigue test. The number of cycles to reach a given maximum compressive strain increased with decreasing normalized stress. Modulus reduction and specimen residual strain increased with increasing maximum compressive strain, but few differences were observed between specimens loaded to the same maximum strain at different normalized stresses.  相似文献   

9.
With the prevalent use of DXA-measured BMD to assess pathologic hip fractures and its recently reported lack of reliability to predict fracture or account for efficacy of anti-resorptive therapy, it is reasonable to assess whether variations in the primary and secondary tensile and compressive trabecular microstructure can account for variations in proximal femur strength in comparison to DXA-measured BMD. To that end, microstructural and densitometric measures of trabecular bone specimens, from discrete sites within the proximal femur, were correlated with their mechanical properties. We hypothesize that accounting for regional variations in trabecular microstructure will improve predictions of proximal femur strength and stiffness compared to bone density measured by DXA. Forty-seven samples (seven donors) from seven distinct sites of human proximal femur underwent DXA and muCT imaging and mechanical testing. The results revealed significant variations in BMC, morphometric indices and mechanical properties within the proximal femur. This work has demonstrated that the mechanical performance of each sub-region is highly dependent on the corresponding trabecular microstructure. BMD measured by DXA at standard regions of interest cannot resolve the variations in trabecular density and microstructure that govern the mechanical behavior of the proximal femur. This work suggests that a quantitative Singh index that uses high resolution QCT to monitor the trabecular microstructure at specific sub-regions of the proximal femur may allow better predictions of hip fracture risk in individual patients and an improved assessment of changing bone structure in response to pharmacological interventions.  相似文献   

10.
Damage accumulation under compressive fatigue loading is believed to contribute significantly to non-traumatic, age-related vertebral fractures in the human spine. Only few studies have explored trabecular bone fatigue behavior under compressive loading and none examined the influence of trabecular architecture on fatigue life. In this study, trabecular bone samples of human lumbar and thoracic vertebrae (4 donors from age 29 to 86, n=29) were scanned with a microCT system prior to compressive fatigue testing to determine morphology-mechanical relationships for this relevant loading mode. Inspired from previous fabric-based relationships for elastic properties and quasi-static strength of trabecular bone, a simple power relationship between volume fraction, fabric eigenvalue, applied stress and the number of cycles to failure is proposed. The experimental results demonstrate a high correlation for this relationship (R2=0.95) and detect a significant contribution of the degree of anisotropy towards prediction of fatigue life. Step-wise regression for total and residual strains at failure suggested a weak, but significant correlation with volume fraction. From the obtained results, we conclude that the applied stress normalized by volume fraction and axial fabric eigenvalue can estimate fatigue life of human vertebral trabecular bone in axial compressive loading.  相似文献   

11.
The mechanical characteristics of cancellous bone at the upper femoral region   总被引:10,自引:0,他引:10  
Mechanical behaviour of trabecular bone at the upper femoral region of human bones has been studied by compression tests on trabecular bone specimens removed from normal femora obtained at autopsy. Compression tests were performed along three different axes of loading on wet specimens and high loading rates. Femoral head specimens proved to be the strongest for any axis of loading.

Large variation in compressive strength and modulus of elasticity is seen within and between femoral bone samples. Anisotropy and differences in anisotropy for the different regions have been observed. A significant correlation between mechanical properties (σ max − E) and bone mineral content of the specimen was found.

Tests on whole bone structures demonstrate that removal of the central part of the trabecular bone at the proximal femur reduces the strength for impact loading considerably (± 50%).  相似文献   


12.
Trabecular bone fractures heal through intramembraneous ossification. This process differs from diaphyseal fracture healing in that the trabecular marrow provides a rich vascular supply to the healing bone, there is very little callus formation, woven bone forms directly without a cartilage intermediary, and the woven bone is remodelled to form trabecular bone. Previous studies have used numerical methods to simulate diaphyseal fracture healing or bone remodelling, however not trabecular fracture healing, which involves both tissue differentiation and trabecular formation. The objective of this study was to determine if intramembraneous bone formation and remodelling during trabecular bone fracture healing could be simulated using the same mechanobiological principles as those proposed for diaphyseal fracture healing. Using finite element analysis and the fuzzy logic for diaphyseal healing, the model simulated formation of woven bone in the fracture gap and subsequent remodelling of the bone to form trabecular bone. We also demonstrated that the trabecular structure is dependent on the applied loading conditions. A single model that can simulate bone healing and remodelling may prove to be a useful tool in predicting musculoskeletal tissue differentiation in different vascular and mechanical environments.  相似文献   

13.
For a better understanding of traumatic bone fractures, knowledge of the mechanical behavior of bone at high strain rates is required. Importantly, it needs to be clarified how quasistatic mechanical testing experiments relate to real bone fracture. This merits investigating the mechanical behavior of bone with an increase in strain rate. Various studies examined how cortical and trabecular bone behave at varying strain rates, but no one has yet looked at this question using individual trabeculae. In this study, three-point bending tests were carried out on bovine single trabeculae excised from a proximal femur to test the trabecular material's strain rate sensitivity. An experimental setup was designed, capable of measuring local strains at the surface of such small specimens, using digital image correlation. Microdamage was detected using the bone whitening effect. Samples were tested through two orders of magnitude, at strain rates varying between 0.01 and 3.39 s(-1). No linear relationship was observed between the strain rate and the Young's modulus (1.13-16.46 GPa), the amount of microdamage, the maximum tensile strain at failure (14.22-61.65%) and at microdamage initiation (1.95-12.29%). The results obtained in this study conflict with previous studies reporting various trends for macroscopic cortical and trabecular bone samples with an increase in strain rate. This discrepancy might be explained by the bone type, the small sample geometry, the limited range of strain rates tested here, the type of loading and the method of microdamage detection. Based on the results of this study, the strain rate can be ignored when modeling trabecular bone.  相似文献   

14.
Despite the importance of multiaxial failure of trabecular bone in many biomechanical applications, to date no complete multiaxial failure criterion for human trabecular bone has been developed. By using experimentally validated nonlinear high-resolution, micromechanical finite-element models as a surrogate for multiaxial loading experiments, we determined the three-dimensional normal strain yield surface and all combinations of the two-dimensional normal-shear strain yield envelope. High-resolution finite-element models of three human femoral neck trabecular bone specimens obtained through microcomputed tomography were used. In total, 889 multiaxial-loading cases were analyzed, requiring over 41,000 CPU hours on parallel supercomputers. Our results indicated that the multiaxial yield behavior of trabecular bone in strain space was homogeneous across the specimens and nearly isotropic. Analysis of stress-strain curves along each axis in the 3-D normal strain space indicated uncoupled yield behavior whereas substantial coupling was seen for normal-shear loading. A modified super-ellipsoid surface with only four parameters fit the normal strain yield data very well with an arithmetic error +/-SD less than -0.04 +/- 5.1%. Furthermore, the principal strains associated with normal-shear loading showed excellent agreement with the yield surface obtained for normal strain loading (arithmetic error +/- SD < 2.5 +/- 6.5%). We conclude that the four-parameter "Modified Super-Ellipsoid" yield surface presented here describes the multiaxial failure behavior of human femoral neck trabecular bone very well.  相似文献   

15.
Trabecular bone fracture is closely related to the trabecular architecture, microdamage accumulation, and bone tissue properties. Micro-finite-element models have been used to investigate the elastic and yield properties of trabecular bone but have only seen limited application in modeling the microstructure dependent fracture of trabecular bone. In this research, dynamic fracture in two-dimensional (2D) micrographs of ovine (sheep) trabecular bone is modeled using the cohesive finite element method. For this purpose, the bone tissue is modeled as an orthotropic material with the cohesive parameters calculated from the experimental fracture properties of the human cortical bone. Crack propagation analyses are carried out in two different 2D orthogonal sections cut from a three-dimensional 8 mm diameter cylindrical trabecular bone sample. The two sections differ in microstructural features such as area fraction (ratio of the 2D space occupied by bone tissue to the total 2D space), mean trabecula thickness, and connectivity. Analyses focus on understanding the effect of the rate of loading as well as on how the rate variation interacts with the microstructural features to cause anisotropy in microdamage accumulation and in the fracture resistance. Results are analyzed in terms of the dependence of fracture energy dissipation on the microstructural features as well as in terms of the changes in damage and stresses associated with the bone architecture variation. Besides the obvious dependence of the fracture behavior on the rate of loading, it is found that the microstructure strongly influences the fracture properties. The orthogonal section with lesser area fraction, low connectivity, and higher mean trabecula thickness is more resistant to fracture than the section with high area fraction, high connectivity, and lower mean trabecula thickness. In addition, it is found that the trabecular architecture leads to inhomogeneous distribution of damage, irrespective of the symmetry in the applied loading with the fracture of the entire bone section rapidly progressing to bone fragmentation once the accumulated damage in any trabeculae reaches a critical limit.  相似文献   

16.
Failure of bone under monotonic and cyclic loading is related to the bone mineral density, the quality of the bone matrix, and the evolution of microcracks. The theory of linear elastic fracture mechanics has commonly been applied to describe fracture in bone. Evidence is presented that bone failure can be described through a non-linear theory of fracture. Thereby, deterministic size effects are introduced. Concepts of a non-linear theory are applied to discern how the interaction among bone matrix constituents (collagen and mineral), microcrack characteristics, and trabecular architecture can create distinctively differences in the fracture resistance at the bone tissue level. The non-linear model is applied to interpret pre-clinical data concerning the effects of anti-osteoporotic agents on bone properties. The results show that bisphosphonate (BP) treatments that suppress bone remodeling will change trabecular bone in ways such that the size of the failure process zone relative to the trabecular thickness is reduced. Selective estrogen receptor modulators (SERMs) that suppress bone remodeling will change trabecular bone in ways such that the size of the failure process zone relative to the trabecular thickness is increased. The consequences of these changes are reflected in bone mechanical response and predictions are consistent with experimental observations in the animal model which show that BP treatment is associated with more brittle fracture and microcracks without altering the average length of the cracks, whereas SERM treatments lead to a more ductile fracture and mainly increase crack length with a smaller increase in microcrack density. The model suggests that BPs may be more effective in cases in which bone mass is very low, whereas SERMS may be more effective when milder osteoporotic symptoms are present.  相似文献   

17.
Accumulation of microdamage in aging and disease can cause skeletal fragility and is one of several factors contributing to osteoporotic fractures. To better understand the role of microdamage in fragility fracture, the mechanisms of bone failure must be elucidated on a tissue-level scale where interactions between bone matrix properties, the local biomechanical environment, and bone architecture are concurrently examined for their contributions to microdamage formation. A technique combining histological damage assessment of individual trabeculae with linear finite element solutions of trabecular von Mises and principal stress and strain was used to compare the damage initiation threshold between pre-menopausal (32-37 years, n=3 donors) and post-menopausal (71-80 years, n=3 donors) femoral cadaveric bone. Strong associations between damage morphology and stress and strain parameters were observed in both groups, and an age-related decrease in undamaged trabecular von Mises stress was detected. In trabeculae from younger donors, the 95% CI for von Mises stress on undamaged regions ranged from 50.7-67.9MPa, whereas in trabeculae from older donors, stresses were significantly lower (38.7-50.2, p<0.01). Local microarchitectural analysis indicated that thinner, rod-like trabeculae oriented along the loading axis are more susceptible to severe microdamage formation in older individuals, while only rod-like architecture was associated with severe damage in younger individuals. This study therefore provides insight into how damage initiation and morphology relate to local trabecular microstructure and the associated stresses and strains under loading. Furthermore, by comparison of samples from pre- and post-menopausal women, the results suggest that trabeculae from younger individuals can sustain higher stresses prior to microdamage initiation.  相似文献   

18.
Microdamage propagation in trabecular bone due to changes in loading mode   总被引:6,自引:0,他引:6  
Microdamage induced by falls or other abnormal loads that cause shear stress in trabecular bone could impair the mechanical properties of the proximal femur or spine. Existing microdamage may also increase the initiation and propagation of further microdamage during subsequent normal, on-axis, loading conditions, resulting in atraumatic or "spontaneous" fractures. Microdamage formation due to shear and compressive strains was studied in 14 on-axis cylindrical bovine tibial trabecular bone specimens. Microdamage was induced by a torsional overload followed by an on-axis compressive overload and quantified microscopically. Fluorescent agents were used to label microdamage and differentiate damage due to the two loading modes. Both the microcrack density and diffuse damage area caused by the torsional overload increased with increasing shear strain from the center to the edge of the specimen. However, the mean microcrack length was uniform across the specimen, suggesting that microcrack length is limited by microstructural features. The mean density of microcracks caused by compressive overloading was slightly higher near the center of the specimen, and the diffuse damage area was uniform across the specimen. Over 20% of the microcracks formed in the initial torsional overloading propagated during compression. Moreover the propagating microcracks were, on average, longer than microcracks formed by a single overload. As such, changes in loading mode can cause propagation of microcracks beyond the microstructural barriers that normally limit the length. Damage induced by in vivo off-axis loads such as falls may similarly propagate during subsequent normal loading, which could affect both remodeling activity and fracture susceptibility.  相似文献   

19.
Assessment of the mechanical properties of trabecular bone is of major biological and clinical importance for the investigation of bone diseases, fractures and their treatments. Finite element (FE) methods are getting increasingly popular for quantifying the elastic and failure properties of trabecular bone. In particular, voxel-based FE methods have been previously used to calculate the effective elastic properties of trabecular microstructures. However, in most studies, bone tissue moduli were assumed or back-calculated to match the apparent elastic moduli from experiments, which often lead to surprisingly low values when compared to nanoindentation results. In this study, voxel-based FE analysis of trabecular bone is combined with physical measures of volume fraction, micro-CT (microCT) reconstructions, uniaxial mechanical tests and specimen-specific nanoindentation tests for proper validation of the method. Cylindrical specimens of cancellous bone were extracted from human femurs and their volume fraction determined with Archimede's method. Uniaxial apparent modulus of the specimens was measured with an improved tension-compression testing protocol that minimizes boundary artefacts. Their microCT reconstructions were segmented to match the measured bone volume fraction and used to create full-size voxel models with 30-45 microm element size. For each specimen, linear isotropic elastic material properties were defined based on specific nanoindentation measurements of its embedded bone tissue. Linear FE analyses were finally performed to simulate the uniaxial mechanical tests. Additional parametric analyses were performed to evaluate the potential errors on the predicted apparent modulus arising from variations in segmentation threshold, tissue modulus, and the use of 125-mm(3) cubic sub-regions. The results demonstrate an excellent correspondence between experimental measures and FE predictions of uniaxial apparent modulus. In conclusion, the adopted voxel-based FE approach is found to be a robust method to predict the linear elastic properties of human cancellous bone, provided segmentation of the microCT reconstructions is carefully calibrated, tissue modulus is known a priori and the entire region of interest is included in the analysis.  相似文献   

20.
While autologous bone grafts are highly suitable for use in spinal arthrodesis, their use is also associated with problems (traumatization, complications). Ceramic bone substitute materials provide an attractive alternative for lumbar interbody spinal fusion. The aim of the present study was to investigate the mechanical properties of various types of ceramic using a specific fusion method. Ten specimens each of 7 different types of ceramic were tested using a hydraulic testing machine with two different sample holders: polyurethane foam (mechanical properties similar to cancellous bone) and aluminium. The parameters axial compression and axial torque were investigated. With the polyurethane foam holders, none of the ceramic implants failed under compression, while under axial rotation, two types of ceramic failed. With the aluminium holders, 3 ceramics showed no failure up to 25 kN under compression, while under torsion all the ceramics failed. One type of ceramic showed specific fracture properties with a higher load-bearing capacity after failure in comparison with all the other types studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号