首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
MARCKS, a major in vivo substrate of protein kinase C, interacts with plasma membranes in a phosphorylation-, myristoylation-, and calmodulin-dependent manner. Although we have previously observed that myristoylated and non-myristoylated MARCKS proteins behave differently during calmodulin-agarose chromatography, the role of protein myristoylation in the MARCKS-calmodulin interaction remained to be elucidated. Here we demonstrate that the myristoyl moiety together with the N-terminal protein domain is directly involved in the MARCKS-calmodulin interaction. Both myristoylated and non-myristoylated recombinant MARCKS bound to calmodulin-agarose at low ionic strengths, but only the former retained the affinity at high ionic strengths. A quantitative analysis obtained with dansyl (5-dimethylaminonaphthalene-1-sulfonyl)-calmodulin showed that myristoylated MARCKS has an affinity higher than the non-myristoylated protein. Furthermore, a synthetic peptide based on the N-terminal sequence was found to bind calmodulin only when it was myristoylated. Only the N-terminal peptide but not the canonical calmodulin-binding domain showed the ionic strength-independent calmodulin binding. A mutation study suggested that the importance of the positive charge in the N-terminal protein domain in the binding.  相似文献   

2.
We visualized the translocation of myristoylated alanine-rich protein kinase C substrate (MARCKS) in living Chinese hamster ovary-K1 cells using MARCKS tagged to green fluorescent protein (MARCKS-GFP). MARCKS-GFP was rapidly translocated from the plasma membrane to the cytoplasm after the treatment with phorbol ester, which translocates protein kinase C (PKC) to the plasma membrane. In contrast, PKC activation by hydrogen peroxide, which was not accompanied by PKC translocation, did not alter the intracellular localization of MARCKS-GFP. Non-myristoylated mutant of MARCKS-GFP was distributed throughout the cytoplasm, including the nucleoplasm, and was not translocated by phorbol ester or by hydrogen peroxide. Phosphorylation of wild-type MARCKS-GFP was observed in cells treated with phorbol ester but not with hydrogen peroxide, whereas non-myristoylated mutant of MARCKS-GFP was phosphorylated in cells treated with hydrogen peroxide but not with phorbol ester. Phosphorylation of both MARCKS-GFPs reduced the amount of F-actin. These findings revealed that PKC targeting to the plasma membrane is required for the phosphorylation of membrane-associated MARCKS and that a mutant MARCKS existing in the cytoplasm can be phosphorylated by PKC activated in the cytoplasm without translocation but not by PKC targeted to the membrane.  相似文献   

3.
Polysialic acid (PSA) is a homopolymeric glycan that plays crucial roles in the developing and adult nervous system. So far only a few PSA-binding proteins have been identified. Here, we identify myristoylated alanine-rich C kinase substrate (MARCKS) as novel PSA binding partner. Binding assays showed a direct interaction between PSA and a peptide comprising the effector domain of MARCKS (MARCKS-ED). Co-immunoprecipitation of PSA-carrying neural cell adhesion molecule (PSA-NCAM) with MARCKS and co-immunostaining of MARCKS and PSA at the cell membrane of hippocampal neurons confirm the interaction between PSA and MARCKS. Co-localization and an intimate interaction of PSA and MARCKS at the cell surface was seen by confocal microscopy and fluorescence resonance energy transfer (FRET) analysis after the addition of fluorescently labeled PSA or PSA-NCAM to live CHO cells or hippocampal neurons expressing MARCKS as a fusion protein with green fluorescent protein (GFP). Cross-linking experiments showed that extracellularly applied PSA or PSA-NCAM and intracellularly expressed MARCKS-GFP are in close contact, suggesting that PSA and MARCKS interact with each other at the plasma membrane from opposite sides. Insertion of PSA and MARCKS-ED peptide into lipid bilayers from opposite sides alters the electric properties of the bilayer confirming the notion that PSA and the effector domain of MARCKS interact at and/or within the plane of the membrane. The MARCKS-ED peptide abolished PSA-induced enhancement of neurite outgrowth from cultured hippocampal neurons indicating an important functional role for the interaction between MARCKS and PSA in the developing and adult nervous system.  相似文献   

4.
Cell-matrix adhesions differentially regulate fascin phosphorylation   总被引:10,自引:0,他引:10       下载免费PDF全文
Cell adhesion to individual macromolecules of the extracellular matrix has dramatic effects on the subcellular localization of the actin-bundling protein fascin and on the ability of cells to form stable fascin microspikes. The actin-binding activity of fascin is down-regulated by phosphorylation, and we used two differentiated cell types, C2C12 skeletal myoblasts and LLC-PK1 kidney epithelial cells, to examine the hypothesis that cell adhesion to the matrix components fibronectin, laminin-1, and thrombospondin-1 differentially regulates fascin phosphorylation. In both cell types, treatment with the PKC activator 12-tetradecanoyl phorbol 13-acetate (TPA) or adhesion to fibronectin led to a diffuse distribution of fascin after 1 h. C2C12 cells contain the PKC family members alpha, gamma, and lambda, and PKCalpha localization was altered upon cell adhesion to fibronectin. Two-dimensional isoelectric focusing/SDS-polyacrylamide gels were used to determine that fascin became phosphorylated in cells adherent to fibronectin and was inhibited by the PKC inhibitors calphostin C and chelerythrine chloride. Phosphorylation of fascin was not detected in cells adherent to thrombospondin-1 or to laminin-1. LLC-PK1 cells expressing green fluorescent protein (GFP)-fascin also displayed similar regulation of fascin phosphorylation. LLC-PK1 cells expressing GFP-fascin S39A, a nonphosphorylatable mutant, did not undergo spreading and focal contact organization on fibronectin, whereas cells expressing a GFP-fascin S39D mutant with constitutive negative charge spread more extensively than wild-type cells. In contrast, C2C12 cells coexpressing S39A fascin with endogenous fascin remained competent to form microspikes on thrombospondin-1, and cells that expressed fascin S39D attached to thrombospondin-1 but did not form microspikes. Blockade of PKCalpha activity by TPA-induced down-regulation led to actin association of wild-type fascin in fibronectin-adherent C2C12 and LLC-PK1 cells but did not alter the distribution of S39A or S39D fascins. The association of fascin with actin in fibronectin-adherent cells was also evident in the presence of an inhibitory antibody to integrin alpha5 subunit. These novel results establish matrix-initiated PKC-dependent regulation of fascin phosphorylation at serine 39 as a mechanism whereby matrix adhesion is coupled to the organization of cytoskeletal structure.  相似文献   

5.
In the mammalian brain, nitric oxide (NO) has been implicated in neuronal signal transmissions. NO stimulates guanylate cyclase to increase intracellular cGMP, which in turn activates cGMP-dependent protein kinases (PKG), but the targets of PKG in the brain have not fully been understood. In this study, we examined cGMP-dependent phosphorylation of proteins in rat brain and found that one of the possible substrates was myristoylated alanine-rich C-kinase substrate (MARCKS), an actin-binding membrane-associated protein that regulates cell adhesion. In addition, possible degradation products of MARCKS were observed after transfection of PKG or stimulation with 8pCPT-cGMP. Western blot analysis showed that the MARCKS protein levels were decreased when the cells were stimulated with 8pCPT-cGMP. These results suggest that MARCKS is a target of PKG, and PKG-dependent phosphorylation of MARCKS results in its degradation to reduce its protein levels in the cells.  相似文献   

6.
A simple adhesion assay was used to measure the interaction between rat oligodendrocytes and various substrata, including a matrix secreted by glial cells. Oligodendrocytes bound to surfaces coated with fibronectin, vitronectin and a protein component of the glial matrix. The binding of cells to all of these substrates was inhibited by a synthetic peptide (GRGDSP) modeled after the cell-binding domain of fibronectin. The component of the glial matrix responsible for the oligodendrocyte interaction is a protein which is either secreted by the glial cells or removed from serum by products of these cultures; serum alone does not promote adhesion to the same extent as the glial-derived matrix. The interaction of cells with this glial-derived matrix requires divalent cations and is not mediated by several known RGD-containing extracellular proteins, including fibronectin, vitronectin, thrombospondin, type I and type IV collagen, and tenascin.  相似文献   

7.
Hisactophilins are myristoylated proteins that are rich in histidine residues and known to exist in Dictyostelium cells in a plasma membrane-bound and a soluble cytoplasmic state. Intracellular translocation of these proteins in response to pH changes was monitored using hisactophilin fusions with green fluorescent protein (GFP) and confocal laser scanning microscopy. Both the normal and a mutated non-myristoylated fusion protein shuffled within the cells in a pH-dependent manner. After lowering the pH, these proteins translocated within minutes between the cytoplasm, the plasma membrane and the nucleus. The role of histidine clusters on the surface of hisactophilin molecules in binding of the proteins to the plasma membrane and in their transfer to the nucleus is discussed on the basis of a pH switch mechanism.  相似文献   

8.
We have developed two rat mAbs that recognize different subunits of the human fibroblast fibronectin receptor complex and have used them to probe the function of this cell surface heterodimer. mAb 13 recognizes the integrin class 1 beta polypeptide and mAb 16 recognizes the fibronectin receptor alpha polypeptide. We tested these mAbs for their inhibitory activities in cell adhesion, spreading, migration, and matrix assembly assays using WI38 human lung fibroblasts. mAb 13 inhibited the initial attachment as well as the spreading of WI38 cells on fibronectin and laminin substrates but not on vitronectin. Laminin-mediated adhesion was particularly sensitive to mAb 13. In contrast, mAb 16 inhibited initial cell attachment to fibronectin substrates but had no effect on attachment to either laminin or vitronectin substrates. When coated on plastic, both mAbs promoted WI38 cell spreading. However, mAb 13 (but not mAb 16) inhibited the radial outgrowth of cells from an explant on fibronectin substrates. mAb 16 also did not inhibit the motility of individual fibroblasts on fibronectin in low density culture and, in fact, substantially accelerated migration rates. In assays of the assembly of an extracellular fibronectin matrix by WI38 fibroblasts, both mAbs produced substantial inhibition in a concentration-dependent manner. The inhibition of matrix assembly resulted from impaired retention of fibronectin on the cell surface. Treatment of cells with mAb 16 also resulted in a striking redistribution of cell surface fibronectin receptors from a streak-like pattern to a relatively diffuse distribution. Concomitant morphological changes included decreases in thick microfilament bundle formation and reduced adhesive contacts of the streak-like and focal contact type. Our results indicate that the fibroblast fibronectin receptor (a) functions in initial fibroblast attachment and in certain types of adhesive contact, but not in the later steps of cell spreading; (b) is not required for fibroblast motility but instead retards migration; and (c) is critically involved in fibronectin retention and matrix assembly. These findings suggest a central role for the fibronectin receptor in regulating cell adhesion and migration.  相似文献   

9.
Neutrophil migration from the blood to inflammatory sites follows a cascade of events, in which adhesion to endothelial cells and extracellular matrix proteins is essential. S100A8, S100A9, and S100A12 are small abundant proteins found in human neutrophil cytosol and presumed to be involved in leukocyte migration. Here we investigated the S100 proteins' activities in neutrophil tissue migration by evaluating their effects on neutrophil adhesion to certain extracellular matrix proteins. S100A9 induced adhesion only to fibronectin and was the only S100 protein that stimulated neutrophil adhesion to this extracellular matrix protein. Experiments with blocking antibodies revealed that neither beta1 nor beta3 integrins were strongly involved in neutrophil adhesion to fibronectin, contrary to what the literature predicted. In contrast, neutrophil adhesion to fibronectin was completely inhibited by anti-beta2 integrins, suggesting that S100A9-induced specific activation of beta2 integrin is essential to neutrophil adhesion.  相似文献   

10.
Activated monocytic cells and neutrophils adhere to substrates coated with a wide variety of proteins including albumins, catalase, casein, and various extracellular matrix proteins. This adhesion can be specifically inhibited by antibodies directed to the beta 2 integrin subunit. This adhesion to protein substrates shares some similarities with two known protein-protein recognition systems with little apparent binding specificity, namely, the interactions of heat shock proteins and histocompatibility antigens with denatured proteins or peptides. Cell adhesion and affinity chromatography experiments were performed to test the hypothesis that monocytes and neutrophils adhere to and migrate on protein substrates due to the presence of cell surface receptors that recognize common protein structures such as denatured protein epitopes. Adhesion experiments revealed that activated monocytic cells adhere more rapidly and extensively on substrates coated with denatured protein versus native protein. Both adhesion and migration on such substrates in vitro was dependent on beta 2 integrins since blocking antibodies completely interfered with these cellular responses. Affinity chromatography experiments revealed that the Mac-1 and p150,95 integrins could be isolated from monocyte-differentiated HL-60 cells or neutrophils on a denatured protein-Sepharose column. Much greater yields of the receptors were obtained on a denatured versus native protein Sepharose column. The binding of these receptors was specific in that the LFA-1 beta 2 integrin did not bind to the denatured protein column. These data provide evidence that the adhesion of activated monocytes and neutrophils to many protein substrates in vitro is due to the ability of Mac-1 and p150,95 to directly bind to denatured proteins. A model of leukocyte adhesion and invasion whereby activated leukocytes denature extracellular proteins during diapedesis, making them suitable for recognition by beta 2 integrins, is proposed.  相似文献   

11.
The myristoylated alanine-rich C kinase substrate (MARCKS) has been proposed to regulate the plasticity of the actin cytoskeleton at its site of attachment to membranes. In macrophages, MARCKS is implicated in various cellular events including motility, adhesion and phagocytosis. In this report we show that macrophage extracts contain a protease which specifically cleaves human MARCKS, expressed in a cell-free system or in E. coli, between Lys-6 and Thr-7. Cleavage of MARCKS decreases its affinity for macrophage membranes by ca. one order of magnitude, highlighting the contribution of the myristoyl moiety of MARCKS to membrane binding. Importantly, cleavage requires myristoylation of MARCKS. Furthermore, MARCKS-related protein (MRP), the second member of the MARCKS family, is not digested. Since Thr-7 is lacking in MRP this suggests that Thr-7 at the P1 position is important for the recognition of lipid-modified substrates. A different product is observed when MARCKS is incubated with a calf brain cytosolic extract. This product can be remyristoylated in the presence of myristoyl-CoA and N-myristoyl transferase, demonstrating that cycles of myristoylation/demyristoylation of MARCKS can be achieved in vitro. Although the physiological relevance of these enzymes still needs to be demonstrated, our results reveal the presence of a new class of cleaving enzymes recognizing lipid-modified protein substrates.  相似文献   

12.
Myristoylated alanine-rich protein kinase C substrate (MARCKS) is a cellular substrate for protein kinase C (PKC). Recently, we have shown that PKC isoforms-alpha and -delta, as well as the Rho/Rho kinase (ROK) pathway, play a role in phorbol 12-myristate 13-acetate (PMA)-mediated secretion of the gut peptide neurotensin (NT) in the BON human endocrine cell line. Here, we demonstrate that activation of MARCKS protein is important for PMA- and bombesin (BBS)-mediated NT secretion in BON cells. Small interfering RNA (siRNA) to MARCKS significantly inhibited, whereas overexpression of wild-type MARCKS significantly increased PMA-mediated NT secretion. Endogenous MARCKS and green fluorescent protein-tagged wild-type MARCKS were translocated from membrane to cytosol upon PMA treatment, further confirming MARCKS activation. MARCKS phosphorylation was inhibited by PKC-delta siRNA, ROKalpha siRNA, and C3 toxin (a Rho protein inhibitor), suggesting that the PKC-delta and the Rho/ROK pathways are necessary for MARCKS activation. The phosphorylation of PKC-delta was inhibited by C3 toxin, demonstrating that the role of MARCKS in NT secretion was regulated by PKC-delta downstream of the Rho/ROK pathway. BON cell clones stably transfected with the receptor for gastrin releasing peptide, a physiologic stimulant of NT, and treated with BBS, the amphibian equivalent of gastrin releasing peptide, demonstrated a similar MARCKS phosphorylation as noted with PMA. BBS-mediated NT secretion was attenuated by MARCKS siRNA. Collectively, these findings provide evidence for novel signaling pathways, including the sequential regulation of MARCKS activity by Rho/ROK and PKC-delta proteins, in stimulated gut peptide secretion.  相似文献   

13.
Akt1 belongs to the three-gene Akt family and functions as a serine-threonine kinase regulating phosphorylation of an array of substrates and mediating cellular processes such as cell migration, proliferation, survival, and cell cycle. Our previous studies have established the importance of Akt1 in angiogenesis and absence of Akt1 resulted in impaired integrin activation, adhesion, migration, and extracellular matrix assembly by endothelial cells and fibroblasts. In this study, we identify the downstream signaling pathways activated by Akt1 in the regulation of these cellular events. We demonstrate here that Akt1 is necessary for the growth factor stimulated activation of 14-3-3beta-Rac1-p21 activated kinase (Pak) pathway in endothelial cells and fibroblasts. While activation of Akt1 resulted in translocation of Rac1 to membrane ruffles, enhanced Rac1 activity, Pak1 phosphorylation, and lamellipodia formation, resulting in enhanced adhesion and assembly of fibronectin, inhibition of Akt1 resulted in inhibition of these processes due to impaired Rac1-Pak signaling. Formation of lamellipodia, adhesion, and fibronectin assembly by myristoylated Akt1 expression in NIH 3T3 fibroblasts was inhibited by co-expression with either dominant negative Rac1 or dominant negative Pak1. In contrast, impaired lamellipodia formation, adhesion, and fibronectin assembly by dominant negative-Akt1 expression was rescued by co-expression with either constitutively active-Rac1 or -Pak1. Moreover, previously reported defects in adhesion and extracellular matrix assembly by Akt1(-/-) fibroblasts could be rescued by expression with either active-Rac1 or -Pak1, implying the importance of Rac1-Pak signaling in growth factor stimulated cytoskeletal assembly, lamellipodia formation and cell migration in endothelial cells and fibroblasts downstream of Akt1 activation.  相似文献   

14.
We demonstrate that indolactam V, a non-phorbol protein kinase C activator, promotes U937 cell attachment to fibronectin, type IV collagen and laminin. In the absence of indolactam V, 2-4% of U937 cells attach to all test substrates, however, in the presence of 100 nM indolactam V, 25, 16 and 11% of U937 cells attach to fibronectin, type IV collagen and laminin, respectively. When added concomitantly, 90 microM H-7, a protein kinase C inhibitor, reduces indolactam V-induced U937 cell adhesion to fibronectin by 91%. Monoclonal antibodies directed against both the beta1 and alpha 5 integrin subunits inhibit indolactam V-induced U937 cell adhesion to fibronectin by 62 and 52%, respectively. Indolactam V also promotes homotypic aggregation in U937 cells, which is blocked with either anti-ICAM or anti-LFA-1 antibodies. In addition, indolactam V promotes U937 cell secretion of a 92 kDa gelatinase as demonstrated by zymography. In the presence of low levels of morphine (10 nM-1.0 microM), the U937 cell attachment to matrix proteins was not significantly affected. However, in the presence of 10 microM morphine, the indolactam V treated cells exhibit a 71-74% reduction in cell adhesion to the matrix proteins. Further, 10 microM morphine also blocks indolactam V-induced homotypic aggregation and gelatinase secretion. The inhibitory effect of morphine on cell-matrix adhesion and gelatinase secretion was not inhibited by the opiate receptor antagonist naloxone (1 microM). While 10 microM naloxone did partially counteract the effect of 10 microM morphine on U937 cell attachment, this effect was likely non-specific since 10 microM naloxone alone increased cell adhesion. Supporting this conclusion, PCR analysis revealed that U937 cells do not express the mu high affinity morphine receptor. Also, indolactam V did not induce mu receptor expression, suggesting that morphine acts on U937 cells in a non-specific fashion.  相似文献   

15.
Blebbistatin is a novel 1-phenyl-2-pyrrolidinone derivative capable of inhibiting non-muscle myosin II activity with a high degree of specificity. We examined the effects of blebbistatin on pancreatic adenocarcinoma cellular migration, invasion, adhesion, and spreading. Blebbistatin dose-dependently inhibited cellular migration and invasiveness, quantified by modified Boyden chamber assay. Matrix metalloproteinase 2 and 9 activities were unaffected by blebbistatin and cellular proliferation was inhibited only by concentrations of blebbistatin exceeding those required to inhibit myosin II activity and to interfere with migration and invasion. While blebbistatin treatment did not affect cell adhesion to the extracellular matrix component fibronectin, it markedly impaired cell spreading on this substrate. Cell surface expression of the archetypal fibronectin receptor (alpha(5)beta(1) integrin) was unaffected by blebbistatin. Our observations illustrate the critical role of non-muscle myosin II in pancreatic adenocarcinoma cellular invasiveness and extracellular matrix interaction and suggest that therapeutic strategies targeting myosin II warrant further investigation.  相似文献   

16.
17.
We have evaluated the possibility that a major, abundant cellular substrate for protein kinase C might be a calmodulin-binding protein. We have recently labeled this protein, which migrates on sodium dodecyl sulfate-gel electrophoresis with an apparent Mr of 60,000 from chicken and 80,000-87,000 from bovine cells and tissues, the myristoylated alanine-rich C kinase substrate (MARCKS). The MARCKS proteins from both species could be cross-linked to 125I-calmodulin in a Ca2+-dependent manner. Phosphorylation of either protein by protein kinase C prevented 125I-calmodulin binding and cross-linking, suggesting that the calmodulin-binding domain might be located at or near the sites of protein kinase C phosphorylation. Both bovine and chicken MARCKS proteins contain an identical 25-amino acid domain that contains all 4 of the serine residues phosphorylated by protein kinase C in vitro. In addition, this domain is similar in sequence and structure to previously described calmodulin-binding domains. A synthetic peptide corresponding to this domain inhibited calmodulin binding to the MARCKS protein and also could be cross-linked to 125I-calmodulin in a calcium-dependent manner. In addition, protein kinase C-dependent phosphorylation of the synthetic peptide inhibited its binding and cross-linking to 125I-calmodulin. The peptide bound to fluorescently labeled 5-dimethylaminonaphthalene-1-sulfonyl-calmodulin with a dissociation constant of 2.8 nM, and inhibited the calmodulin-dependent activation of cyclic nucleotide phosphodiesterase with an IC50 of 4.8 nM. Thus, the peptide mimics the calmodulin-binding properties of the MARCKS protein and probably represents its calmodulin-binding domain. Phosphorylation of these abundant, high affinity calmodulin-binding proteins by protein kinase C in intact cells could cause displacement of bound calmodulin, perhaps leading to activation of Ca2+-calmodulin-dependent processes.  相似文献   

18.
Campylobacter jejuni is one of the major causes of human diarrhea throughout the world. Attachment to host cells and extracellular matrix proteins is considered to be an essential primary event in the pathogenesis of enteritis. Outer membrane proteins of three C. jejuni strains, one of which was aflagellate, were investigated for their contribution to the process of adhesion to INT 407 cell membranes and the extracellular matrix protein fibronectin. Using a ligand-binding immunoblotting assay the flagellin, the major outer membrane protein and a 59-kDa protein were detected to be involved in adhesion to both substrates. The MOMP was able to inhibit the attachment of the bacteria to INT 407 cell membranes partly, when the protein was isolated under native conditions. However, it was totally lost when the protein was isolated in the presence of SDS. The 59-kDa protein of one strain was identified by N-terminal sequencing, and regarding the first 14 amino acids it was found to be identical to the 37-kDa CadF protein just recently described as fibronectin-binding protein of C. jejuni. Especially for the aflagellate strain this protein may be of special importance for adhesion of the bacteria to different substrates.  相似文献   

19.
The interaction of cells with extracellular matrix components such as fibronectin, vitronectin, and type I collagen has been shown to be mediated through a family of cell-surface receptors that specifically recognize an arginine-glycine-aspartic acid (RGD) amino acid sequence within each protein. Synthetic peptides containing the RGD sequence can inhibit these receptor-ligand interactions. Here, we use novel RGD-containing synthetic peptides with different inhibition properties to investigate the role of the various RGD receptors in tumor cell invasion. The RGD-containing peptides used include peptides that inhibit the attachment of cells to fibronectin and vitronectin, a peptide that inhibits attachment to fibronectin but not to vitronectin, a cyclic peptide with the opposite specificity, and a peptide, GRGDTP, that inhibits attachment to type I collagen in addition to inhibiting attachment to fibronectin and vitronectin. The penetration of two human melanoma cell lines and a glioblastoma cell line through the human amniotic basement membrane and its underlying stroma was inhibited by all of the RGD-containing peptides except for the one that inhibits only the vitronectin attachment. Various control peptides lacking RGD showed essentially no inhibition. This inhibitory effect on cell invasion was dose-dependent and nontoxic. A hexapeptide, GRGDTP, that inhibits the attachment of cells to type I collagen in addition to inhibiting fibronectin- and vitronectin-mediated attachment was more inhibitory than those RGD peptides that inhibit only fibronectin and vitronectin attachment. Analysis of the location of these cells that were prevented from invading indicated that they attached to the amniotic basement membrane but did not proceed further into the tissue. These results suggest that interactions between RGD-containing extracellular matrix adhesion proteins and cells are necessary for cell invasion through tissues and that fibronectin and type I collagen are important for this process.  相似文献   

20.
Using monoclonal antibody technology and affinity chromatography we have identified four distinct classes of cell surface receptors for native collagen on a cultured human fibrosarcoma cell line, HT-1080. Two classes of monoclonal antibodies prepared against HT-1080 cells inhibited adhesion to extracellular matrix components. Class I antibodies inhibited cell adhesion to collagen, fibronectin, and laminin. These antibodies immunoprecipitated two noncovalently linked proteins (subunits) with molecular masses of 147 and 125 kD, termed alpha and beta, respectively. Class II antibodies inhibited cell adhesion to native collagen only and not fibronectin or laminin. Class II antibodies immunoprecipitated a single cell surface protein containing two noncovalently linked subunits with molecular masses of 145 and 125 kD, termed alpha and beta, respectively. The two classes of antibodies did not cross-react with the same cell surface protein and recognized epitopes present on the alpha subunits. Pulse-chase labeling studies with [35S]methionine indicated that neither class I nor II antigen was a metabolic precursor of the other. Comparison of the alpha and beta subunits of the class I and II antigens by peptide mapping indicated that the beta subunits were identical while the alpha subunits were distinct. In affinity chromatography experiments HT-1080 cells were extracted with Triton X-100 or octylglucoside detergents and chromatographed on insoluble fibronectin or native type I or VI collagens. A single membrane protein with the biochemical characteristics of the class I antigen was isolated on fibronectin-Sepharose and could be immunoprecipitated with the class I monoclonal antibody. The class I antigen also specifically bound to type I and VI collagens, consistent with the observation that the class I antibodies inhibit cell adhesion to types VI and I collagen and fibronectin. The class II antigen, however, did not bind to collagen (or fibronectin) even though class II monoclonal antibodies completely inhibited adhesion of HT-1080 cells to types I and III-VI collagen. The class I beta and II beta subunits were structurally related to the beta subunit of the fibronectin receptor described by others. However, none of these receptors shared the same alpha subunits. Additional membrane glycoprotein(s) with molecular mass ranges of 80-90 and 35-45 kD, termed the class III and IV receptors, respectively, bound to types I and VI collagen but not to fibronectin. Monoclonal antibodies prepared against the class III receptor had no consistent effect on cell attachment or spreading, suggesting that it is not directly involved in adhesion to collagen-coated substrates.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号