首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Cell reports》2023,42(9):113032
  1. Download : Download high-res image (153KB)
  2. Download : Download full-size image
  相似文献   

2.
Lipocalin-2 (LCN2) belongs to the superfamily of lipocalins and plays critical roles in the control of cellular homeostasis during inflammation and in responses to cellular stress or injury. In the liver, LCN2 triggers protective effects following acute or chronic injury, and its expression is a reliable indicator of liver damage. However, little is known about LCN2's functions in the homeostasis and metabolism of hepatic lipids or in the development of steatosis. In this study, we fed wild type (WT) and LCN2-deficient (Lcn2−/−) mice a methionine- and choline-deficient (MCD) diet as a nutritional model of non-alcoholic steatohepatitis, and compared intrahepatic lipid accumulation, lipid droplet formation, mitochondrial content, and expression of the Perilipin proteins that regulate cellular lipid metabolism. We found that Lcn2−/− mice fed an MCD diet accumulated more lipids in the liver than WT controls, and that the basal expression of the lipid droplet coat protein Perilipin 5 (PLIN5, also known as OXPAT) was significantly reduced in these animals. Similarly, the overexpression of LCN2 and PLIN5 were also found in animals that were fed with a high fat diet. Furthermore, the loss of LCN2 and/or PLIN5 in hepatocytes prevented normal intracellular lipid droplet formation both in vitro and in vivo. Restoration of LCN2 in Lcn2−/− primary hepatocytes by either transfection or adenoviral vector infection induced PLIN5 expression and restored proper lipid droplet formation. Our data indicate that LCN2 is a key modulator of hepatic lipid homeostasis that controls the formation of intracellular lipid droplets by regulating PLIN5 expression. LCN2 may therefore represent a novel therapeutic drug target for the treatment of liver diseases associated with elevated fat accumulation and steatosis.  相似文献   

3.
The tumor suppressor breast cancer susceptibility gene 2 (BRCA2) plays an important role in the repair of DNA damage, and loss of BRCA2 predisposes carriers to breast and ovarian cancers. Doxorubicin (DOX) remains the cornerstone of chemotherapy in such individuals. However, it is often associated with cardiac failure, which once manifests carries a poor prognosis. Because BRCA2 regulates genome-wide stability and facilitates DNA damage repair, we hypothesized that loss of BRCA2 may increase susceptibility to DOX-induced cardiac failure. To this aim, we generated cardiomyocyte-specific BRCA2 knock-out (CM-BRCA2(-/-)) mice using the Cre-loxP technology and evaluated their basal and post-DOX treatment phenotypes. Although CM-BRCA2(-/-) mice exhibited no basal cardiac phenotype, DOX treatment resulted in markedly greater cardiac dysfunction and mortality in CM-BRCA2(-/-) mice compared with control mice. Apoptosis in left ventricular (LV) sections from CM-BRCA2(-/-) mice compared with that in corresponding sections from wild-type (WT) littermate controls was also significantly enhanced after DOX treatment. Microscopic examination of LV sections from DOX-treated CM-BRCA2(-/-) mice revealed a greater number of DNA double-stranded breaks and the absence of RAD51 focus formation, an essential marker of double-stranded break repair. The levels of p53 and the p53-related proapoptotic proteins p53-up-regulated modulator of apoptosis (PUMA) and Bax were significantly increased in samples from CM-BRCA2(-/-) mice. This corresponded with increased Bax to Bcl-2 ratios and elevated cytochrome c release in the LV sections of DOX-treated CM-BRCA2(-/-) mice. Taken together, these data suggest a critical and previously unrecognized role of BRCA2 as a gatekeeper of DOX-induced cardiomyocyte apoptosis and susceptibility to overt cardiac failure. Pharmacogenomic studies evaluating cardiac function in BRCA2 mutation carriers treated with doxorubicin are encouraged.  相似文献   

4.
The calcium-sensing receptor (CaSR) exists in many tissues, and its expression has been identified in rat cardiac tissue. However, the physiological importance and pathophysiological involvement of CaSR in homeostatic regulation of cardiac function are unclear. To investigate the relation of CaSR and apoptosis in cardiomyocytes, we examined the role of the CaSR activator gadolinium chloride (GdCl(3)) in rat neonatal ventricular cardiomyocytes. Expression of the CaSR protein was observed by Western blot. The apoptotic ratio of rat neonatal ventricular cardiomyocytes was measured with flow cytometry and immunofluorescence techniques. A laser scan confocal microscope was used to detect the intracellular concentration of calcium ([Ca(2+)](i)) in rat neonatal ventricular cardiomyocytes using the acetoxymethyl ester of fluo-3 (fluo-3/(AM)) as a fluorescent dye. The results showed that GdCl(3) increased the phosphorylation of extracellular signal-regulated protein kinase (ERK), c-Jun NH(2)-terminal protein kinases (JNK), and p38. GdCl(3) also activated caspase 9 and increased apoptosis in myocyte by increasing [Ca(2+)](i). In conclusion, these results suggest that CaSR promotes cardiomyocyte apoptosis in rat neonatal ventricular cardiomyocytes through activation of mitogen-activated protein kinases and caspase 9 signaling pathways.  相似文献   

5.
摘要 目的:探讨2型糖尿病(T2DM)视网膜病变(DR)患者血清和肽素(copeptin)、脂质运载蛋白2(LCN2)的表达及其临床意义。方法:选取2021年1月~2023年1月期间江南大学附属医院接收的2型糖尿病(T2DM)患者141例,将所有患者分为不合并糖尿病视网膜病变(DR)组(NDR组,n=49)、非增生期DR组(NPDR组,n=45)和增生期DR组(PDR组,n=47),另选取同期行健康体检的志愿者50例作为对照组。比较各组临床指标、生化指标及血清copeptin、LCN2水平,采用Pearson相关性分析血清copeptin、LCN2水平与临床指标及生化指标的相关性,采用多因素Logistic回归分析DR的危险因素。结果:对照组、NDR组、NPDR组、PDR组的血清copeptin、LCN2水平呈逐渐升高趋势(P<0.05)。NDR组、NPDR组、PDR组的体重指数(BMI)、收缩压(SBP)、舒张压(DBP)、甘油三酯(TG)、总胆固醇(TC)、低密度脂蛋白胆固醇(LDL-C)、空腹血糖(FPG)均高于对照组(P<0.05);对照组、NDR组、NPDR组、PDR组的糖化血红蛋白(HbAlc)、胰岛素抵抗指数(HOMA-IR)呈逐渐升高趋势(P<0.05);NDR组、NPDR组、PDR组糖尿病病程呈逐渐递增趋势(P<0.05)。Pearson相关性分析显示,copeptin、LCN2水平与HbAlc、HOMA-IR、糖尿病病程呈正相关(P<0.05),与血压、血脂、FPG、BMI无明显相关性(P>0.05)。多因素Logistic回归分析结果显示:糖尿病病程、HbAlc、HOMA-IR、copeptin、LCN2均为DR发生发展的独立危险因素(P<0.05)。结论:高水平copeptin、LCN2可能与DR的发生、发展有关,且与患者糖尿病病程、HbAlc、HOMA-IR关系密切,可用于DR患者的早期诊断及判断其病情的严重程度。  相似文献   

6.
Reactive oxygen species (ROS) display cytotoxicity that can be exacerbated by iron. Paradoxically, HeLa cells treated with the ROS-generators menadione and 2,3-dimethoxy-1,4-naphthoquinone display increased free labile iron. HeLa cells exposed to ROS undergo apoptosis but iron chelation limits the extent of cell death suggesting the rise in intracellular iron plays a signaling role in this pathway. This idea is supported by the fact that iron chelation also alters the pattern of ROS-induced phosphorylation of stress-activated protein kinases SAPK/JNK and p38 MAPK. Thus, ROS-induced increases in cellular free iron contribute to signaling events triggered during oxidative stress response.  相似文献   

7.
Cardiomyocyte apoptosis correlates with the pathogenesis of heart disease. Long noncoding RNA (LncRNA) emerges as a class of noncoding RNAs that regulate gene expression and participate in various cellular processes. However, the role of lncRNAs in cardiomyocyte apoptosis remains to be elucidated. In our study, we found that lncRNA FTX is significantly down-regulated upon ischemia/reperfusion injury and hydrogen peroxide treatment. Enhanced expression of FTX inhibits cardiomyocyte apoptosis induced by hydrogen peroxide. miR-29b-1-5p was found to interact with FTX and regulate the expression of Bcl2l2. Inhibition of miR-29b-1-5p attenuated cardiomyocyte apoptosis upon hydrogen peroxide treatment. We then found that FTX functions as endogenous sponge for miR-29b-1-5p and regulates the activity of miR-29b-1-5p. The results demonstrate that FTX regulates cardiomyocyte apoptosis through modulating the expression of Bcl2l2 which is mediated by miR-29b-1-5p. Our findings reveal a novel regulatory model which is composed of FTX, miR-29b-1-5p and Bcl2l2. Manipulating of their levels may become a new approach to tackling cardiomyocyte apoptosis related heart diseases.  相似文献   

8.
A key feature of pulmonary hypertension (PH) is the remodeling of small pulmonary arteries due to abnormal pulmonary artery smooth muscle cell (PASMC) proliferation and resistance to apoptosis. However, the cellular mechanisms underlying how PASMCs in the pathological condition of pulmonary hypertension become resistant to apoptosis remain unknown. It was recently reported that lipocalin 2 (Lcn2) is up-regulated in a wide array of malignant conditions, which facilitates tumorigenesis partly by inhibiting cell apoptosis. In this study, we observed that the expression levels of Lcn2 were significantly elevated in a rat PH model induced with monocrotaline and in patients with congenital heart disease-associated PH (CHD-PH) when compared with respective control. Therefore, we hypothesize that Lcn2 could regulate human PASMC (HPASMC) apoptosis through a mechanism. By the detection of DNA fragmentation using the TUNEL assay, the detection of Annexin V/PI-positive cells using flow cytometry, and the detection of cleaved caspase-3 and caspase-3 activity, we observed that Lcn2 significantly inhibited HPASMC apoptosis induced by serum withdrawal and H2O2 treatment. We also observed that Lcn2 down-regulated the proapoptotic protein Bax, decreased the levels of cellular ROS, and up-regulated the expression of superoxide dismutases (SOD1 and SOD2). In conclusion, Lcn2 significantly inhibits HPASMC apoptosis induced by oxidative stress via decreased intracellular ROS and elevated SODs. Up-regulation of Lcn2 in a rat PH model and CHD-PH patients may be involved in the pathological process of PH.  相似文献   

9.
P53 protein levels are elevated by trastuzumab and the biologically similar rat ERBB2/HER2/NEU antibody; and that this coincides with enhanced apoptosis, increased cleaved caspase-3 levels and diminished cardiac function. We also demonstrate that MDM2 may be a regulatory target of anti-ERBB2 thereby implicating the MDM2/p53 axis as a potential molecular component for the undesirable cardiac outcomes noted with trastuzumab. Finally, we show that these MDM2/p53-mediated events are independent of both the ERK1/2 and Akt systems. In conclusion, our findings suggest that the adverse cardiac events observed with trastuzumab may stem from its negative regulation of MDM2 events which impairs p53 degradation resultantly promoting apoptosis leading to cardiac dysfunction. These observations may have important therapeutic implications since they suggest that anticancer agents that inhibit MDM2 and its downstream actions may curb tumor progression at the expense of increasing cardiac stress.  相似文献   

10.
摘要 目的:探究血清脂质运载蛋白-2(Lipocalin-2)、成骨细胞特异性因子2(periostin)及长链非编码RNA NR_027032(AGAP2-AS1)表达与非小细胞肺癌(NSCLC)患者临床特征及预后的相关性。方法:选取2015年12月-2017年12月到我院确诊的84例NSCLC患者为研究组,选取同时期在我院健康体检的健康人群为健康对照组,采用ELISA法检测血清Lipocalin-2、periostin水平、采用荧光定量PCR定量检测血清外泌体AGAP2-AS1的表达水平,并分析其表达差异性;分析血清Lipocalin-2、Periostin及AGAP2-AS1水平与NSCLC患者各临床病理特征及预后的相关性。结果:NSCLC组患者血清Lipocalin-2、Periostin及AGAP2-AS1表达水平显著高于健康对照组(P<0.05),且与淋巴结转移、TNM分期及分化程度具有相关性(P<0.05),血清Lipocalin-2与Periostin及AGAP2-AS1在NSCLC血液中呈正相关(P<0.01或<0.05),血清Lipocalin-2、Periostin及AGAP2-AS1高表达组NSCLC患者中位OS分别显著低于低表达(P<0.05)。结论:血清Lipocalin-2、Periostin及AGAP2-AS1在NSCLC患者血液中的表达升高,NSCLC患者血清Lipocalin-2、Periostin及AGAP2-AS1表达水平与分化程度、TNM分期、淋巴结转移及预后具有相关性;有望成为评估NSCLC患者预后的生物标志物。  相似文献   

11.
Progression of the cell cycle and control of apoptosis are tightly linked processes. It has been reported that manifestation of apoptosis requires cdc2 kinase activity yet the mechanism(s) of which is largely unclear. In an attempt to study the role of human MDM2 (HDM2) in interphase and mitosis, we employed the Xenopus cell-free system to study HDM2 protein stability. Interestingly, HDM2 is specifically cleaved in Xenopus mitotic extracts but not in the interphase extracts. We demonstrate that HDM2 cleavage is dependent on caspase-3 and that activation of cdc2 kinase results in caspase-3 activation in the Xenopus cell-free system. Furthermore, expression of cdc2 kinase in mammalian cells leads to activation of caspase-3 and apoptosis. Taken together, these data indicate that deregulation of cdc2 kinase activity can trigger apoptotic machinery that leads to caspase-3 activation and apoptosis.  相似文献   

12.
Sun Q  Bi L  Su X  Tsurugi K  Mitsui K 《FEBS letters》2007,581(21):3991-3995
We investigated the participation of HDACs in VPA induced apoptosis in Saccharomyces cerevisiae. VPA (20 mM) induced apoptosis in several HDAC mutants, including PRD3 and HDA1-disrupted cells and SIR2 over expressing cells, as well as in wild-type cells but not SIR2-disrupted cells. Intracellular reactive oxygen species and neutral lipid content increased markedly in all kinds of HDAC mutant cells tested except for SIR2-disrupted cells. Thus, these results suggest that 20 mM VPA induces neutral lipid accumulation and apoptosis-like features in S. cerevisiae, and that VPA-induced apoptosis was evaded by deletion of SIR2.  相似文献   

13.
Apoptosis has been recognized as a central component in the pathogenesis of atherosclerosis, in addition to the other human pathologies such as cancer and diabetes. The pathophysiology of atherosclerosis is complex, involving both apoptosis and proliferation at different phases of its progression. Oxidative modification of lipids and inflammation differentially regulate the apoptotic and proliferative responses of vascular cells during progression of the atherosclerotic lesion. Bcl-2 proteins act as the major regulators of extrinsic and intrinsic apoptosis signalling pathways and more recently it has become evident that they mediate the apoptotic response of vascular cells in response to oxidation and inflammation either in a provocative or an inhibitory mode of action. Here we address Bcl-2 proteins as major therapeutic targets for the treatment of atherosclerosis and underscore the need for the novel preventive and therapeutic interventions against atherosclerosis, which should be designed in the light of molecular mechanisms regulating apoptosis of vascular cells in atherosclerotic lesions.  相似文献   

14.
Background Hyperhomocysteinaemia (HHC) is thought to be a risk factor for cardiovascular disease including heart failure. While numerous studies have analyzed the role of homocysteine (Hcy) in the vasculature, only a few studies investigated the role of Hcy in the heart. Therefore we have analyzed the effects of Hcy on isolated cardiomyocytes. Methods H9c2 cells (rat cardiomyoblast cells) and adult rat cardiomyocytes were incubated with Hcy and were analyzed for cell viability. Furthermore, we determined the effects of Hcy on intracellular mediators related to cell viability in cardiomyocytes, namely NOX2, reactive oxygen species (ROS), mitochondrial membrane potential (ΔΨ m) and ATP concentrations. Results We found that incubation of H9c2 cells with 0.1 mM D,L-Hcy (= 60 μM l-Hcy) resulted in an increase of ΔΨ m as well as ATP concentrations. 1.1 mM d,l-Hcy (= 460 μM l-Hcy) induced reversible flip-flop of the plasma membrane phospholipids, but not apoptosis. Incubation with 2.73 mM d,l-Hcy (= 1.18 mM l-Hcy) induced apoptosis and necrosis. This loss of cell viability was accompanied by a thread-to-grain transition of the mitochondrial reticulum, ATP depletion and nuclear NOX2 expression coinciding with ROS production as evident from the presence of nitrotyrosin residues. Notably, only at this concentration we found a significant increase in S-adenosylhomocysteine which is considered the primary culprit in HHC. Conclusion We found concentration-dependent effects of Hcy in cardiomyocytes, varying from induction of reversible flip-flop of the plasma membrane phospholipids, to apoptosis and necrosis.  相似文献   

15.
16.
17.
Cardiac excitation-contraction coupling (EC coupling) links the electrical excitation of the cell membrane to the mechanical contractile machinery of the heart. Calcium channels are major players of EC coupling and are regulated by voltage and Ca(2+)/calmodulin (CaM). CaM binds to the IQ motif located in the C terminus of the Ca(v)1.2 channel and induces Ca(2+)-dependent inactivation (CDI) and facilitation (CDF). Mutation of Ile to Glu (Ile1624Glu) in the IQ motif abolished regulation of the channel by CDI and CDF. Here, we addressed the physiological consequences of such a mutation in the heart. Murine hearts expressing the Ca(v)1.2(I1624E) mutation were generated in adult heterozygous mice through inactivation of the floxed WT Ca(v)1.2(L2) allele by tamoxifen-induced cardiac-specific activation of the MerCreMer Cre recombinase. Within 10 days after the first tamoxifen injection these mice developed dilated cardiomyopathy (DCM) accompanied by apoptosis of cardiac myocytes (CM) and fibrosis. In Ca(v)1.2(I1624E) hearts, the activity of phospho-CaM kinase II and phospho-MAPK was increased. CMs expressed reduced levels of Ca(v)1.2(I1624E) channel protein and I(Ca). The Ca(v)1.2(I1624E) channel showed "CDI" kinetics. Despite a lower sarcoplasmic reticulum Ca(2+) content, cellular contractility and global Ca(2+) transients remained unchanged because the EC coupling gain was up-regulated by an increased neuroendocrine activity. Treatment of mice with metoprolol and captopril reduced DCM in Ca(v)1.2(I1624E) hearts at day 10. We conclude that mutation of the IQ motif to IE leads to dilated cardiomyopathy and death.  相似文献   

18.
Alcoholic liver disease (ALD) and its complication continued to be a major health problem throughout the world. Increasing evidence suggests that microRNA (miRNA) that regulate apoptosis, inflammation and lipid metabolism are affected by alcohol in ALD. MiR-200a has emerged as a major regulator in several liver diseases, but its role in ALD has not been elucidated. The aim of this study is to figure out the biological function of miR-200a in ALD and to explore its underlying mechanism. The expression pattern of miR-200a were analyzed in vitro and in vivo, we showed that miR-200a was up-regulated in ALD in AML-12 and primary hepatocyte. We then examined it's effect on cell apoptosis and identified zinc finger E-box binding homeobox 2 (ZEB2; also known as SIP1) as a direct target gene of miR-200a. Furthermore, reintroduction of ZEB2 could reverse the pro-apoptosis of miR-200a on AML-12. Taken together, our study demonstrated that miR-200a regulates the apoptosis of hepatocyte in ALD by directly target ZEB2, both of which could serve as new therapeutic targets for ALD.  相似文献   

19.
Methylglyoxal (MGO) is a cytotoxic metabolite and modifies tissue proteins through the Maillard reaction, resulting in advanced glycation end products (AGEs), which can alter protein structure and functions. Several MGO-derived AGEs have been described, including argpyrimidine, a fluorescent product of the MGO reaction with arginine residues. Herein, we evaluated the cytotoxic role of MGO in human lens epithelial cell line (HLE-B3). HLE-B3 cells were exposed to 400 μM MGO in the present or absence of pyridoxamine for 24 h. We then examined the formation of argpyrimidine, apoptosis and oxidative stress in HLE-B3 cells. In MGO-treated HLE-B3 cells, the accumulation of argpyrimidine was markedly increased, and caspase-3 and 8-hydroxydeoxyguanosine (8-OHdG) were highly expressed, which paralleled apoptotic cell death. However, pyridoxamine (AGEs inhibitor) prevented the argpyrimidine formation and apoptosis of MGO-treated HLE-B3 cells. These results suggested that the accumulation of argpyrimidine and oxidative DNA damage caused by MGO are involved in apoptosis of HLE-B3 cells.  相似文献   

20.
Iron metabolism is a balancing act, and biological systems have evolved exquisite regulatory mechanisms to maintain iron homeostasis. Iron metabolism disorders are widespread health problems on a global scale and range from iron deficiency to iron-overload. Both types of iron disorders are linked to heart failure. Iron play a fundamental role in mitochondrial function and various enzyme functions and iron deficiency has a particular negative impact on mitochondria function. Given the high-energy demand of the heart, iron deficiency has a particularly negative impact on heart function and exacerbates heart failure. Iron-overload can result from excessive gut absorption of iron or frequent use of blood transfusions and is typically seen in patients with congenital anemias, sickle cell anemia and beta-thalassemia major, or in patients with primary hemochromatosis. This review provides an overview of normal iron metabolism, mechanisms underlying development of iron disorders in relation to heart failure, including iron-overload cardiomyopathy, and clinical perspective on the treatment options for iron metabolism disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号