首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Interferon (IFN)-β inhibits cell proliferation and affects cell cycle in keratinocytes transformed by both mucosal high risk Human Papilloma Virus (HPV) and cutaneous HPV E6 and E7 proteins. In particular, upon longer IFN-β treatments, cutaneous HPV38 expressing cells undergo senescence. IFN-β appears to induce senescence by upregulating the expression of the tumor suppressor PML, a well known IFN-induced gene. Indeed, experiments in gene silencing via specific siRNAs have shown that PML is essential in the execution of the senescence programme and that both p53 and p21 pathways are involved. IFN-β treatment leads to a modulation of p53 phosphorylation and acetylation status and a reduction in the expression of the p53 dominant negative ΔNp73. These effects allow the recovery of p53 transactivating activity of target genes involved in the control of cell proliferation. Taken together, these studies suggest that signaling through the IFN pathway might play an important role in cellular senescence. This additional understanding of IFN antitumor action and mechanisms influencing tumor responsiveness or resistance appears useful in aiding further promising development of biomolecular strategies in the IFN therapy of cancer.  相似文献   

4.
5.
The yeast Sir2 protein mediates chromatin silencing through an intrinsic NAD-dependent histone deacetylase activity. Sir2 is a conserved protein and was recently shown to regulate lifespan extension both in budding yeast and worms. Here, we show that SIRT1, the human Sir2 homolog, is recruited to the promyelocytic leukemia protein (PML) nuclear bodies of mammalian cells upon overexpression of either PML or oncogenic Ras (Ha-rasV12). SIRT1 binds and deacetylates p53, a component of PML nuclear bodies, and it can repress p53-mediated transactivation. Moreover, we show that SIRT1 and p53 co-localize in nuclear bodies upon PML upregulation. When overexpressed in primary mouse embryo fibroblasts (MEFs), SIRT1 antagonizes PML-induced acetylation of p53 and rescues PML-mediated premature cellular senescence. Taken together, our data establish the SIRT1 deacetylase as a novel negative regulator of p53 function capable of modulating cellular senescence.  相似文献   

6.
Approximately 10% of gastric carcinomas (GC) are comprised of cells latently infected with Epstein-Barr virus (EBV); however, the mechanism by which EBV contributes to the development of this malignancy is unclear. We have investigated the cellular effects of the only EBV nuclear protein expressed in GC, EBNA1, focusing on promyelocytic leukemia (PML) nuclear bodies (NBs), which play important roles in apoptosis, p53 activation, and tumor suppression. AGS GC cells infected with EBV were found to contain fewer PML NBs and less PML protein than the parental EBV-negative AGS cells, and these levels were restored by silencing EBNA1. Conversely, EBNA1 expression was sufficient to induce the loss of PML NBs and proteins in AGS cells. Consistent with PML functions, EBNA1 expression decreased p53 activation and apoptosis in response to DNA damage and resulted in increased cell survival. In addition, EBNA1 mutants unable to bind CK2 kinase or ubiquitin-specific protease 7 had decreased ability to induce PML loss and to interfere with p53 activation. PML levels in EBV-positive and EBV-negative GC biopsy specimens were then compared by immunohistochemistry. Consistent with the results in the AGS cells, EBV-positive tumors had significantly lower PML levels than EBV-negative tumors. The results indicate that EBV infection of GC cells leads to loss of PML NBs through the action of EBNA1, resulting in impaired responses to DNA damage and promotion of cell survival. Therefore, PML disruption by EBNA1 is one mechanism by which EBV may contribute to the development of gastric cancer.  相似文献   

7.
The PML tumor suppressor has been functionally implicated in DNA damage response and cellular senescence. Direct evidence for such a role based on PML knockdown or knockout approaches is still lacking. We have therefore analyzed the irradiation-induced DNA damage response and cellular senescence in human and mouse fibroblasts lacking PML. Our data show that PML nuclear bodies (NBs) nonrandomly associate with persistent DNA damage foci in unperturbed human skin and in high-dose-irradiated cell culture systems. PML bodies do not associate with transient γH2AX foci after low-dose gamma irradiation. Superresolution microscopy reveals that all PML bodies within a nucleus are engaged at Rad51- and RPA-containing repair foci during ongoing DNA repair. The lack of PML (i) does not majorly affect the DNA damage response, (ii) does not alter the efficiency of senescence induction after DNA damage, and (iii) does not affect the proliferative potential of primary mouse embryonic fibroblasts during serial passaging. Thus, while PML NBs specifically accumulate at Rad51/RPA-containing lesions and senescence-derived persistent DNA damage foci, they are not essential for DNA damage-induced and replicative senescence of human and murine fibroblasts.  相似文献   

8.
The PML tumor suppressor is the founding component of the multiprotein nuclear structures known as PML nuclear bodies (PML-NBs), which control several cellular functions including apoptosis and antiviral effects. The ubiquitin specific protease USP7 (also called HAUSP) is known to associate with PML-NBs and to be a tight binding partner of two herpesvirus proteins that disrupt PML NBs. Here we investigated whether USP7 itself regulates PML-NBs. Silencing of USP7 was found to increase the number of PML-NBs, to increase the levels of PML protein and to inhibit PML polyubiquitylation in nasopharyngeal carcinoma cells. This effect of USP7 was independent of p53 as PML loss was observed in p53-null cells. PML-NBs disruption was induced by USP7 overexpression independently of its catalytic activity and was induced by either of the protein interaction domains of USP7, each of which localized to PML-NBs. USP7 also disrupted NBs formed from some single PML isoforms, most notably isoforms I and IV. CK2α and RNF4, which are known regulators of PML, were dispensable for USP7-associated PML-NB disruption. The results are consistent with a novel model of PML regulation where a deubiquitylase disrupts PML-NBs through recruitment of another cellular protein(s) to PML NBs, independently of its catalytic activity.  相似文献   

9.
Promyelocytic leukemia nuclear bodies (PML‐NBs) are multiprotein complexes that include PML protein and localize in nuclear foci. PML‐NBs are implicated in multiple stress responses, including apoptosis, DNA repair, and p53‐dependent growth inhibition. ALT‐associated PML bodies (APBs) are specialized PML‐NBs that include telomere‐repeat binding‐factor TRF1 and are exclusively in telomerase‐negative tumors where telomere length is maintained through alternative (ALT) recombination mechanisms. We compared cell‐cycle and p53 responses in ALT‐positive cancer cells (U2OS) exposed to ionizing radiation (IR) or the p53 stabilizer Nutlin‐3a. Both IR and Nutlin‐3a caused growth arrest and comparable induction of p53. However, p21, whose gene p53 activates, displayed biphasic induction following IR and monophasic induction following Nutlin‐3a. p53 was recruited to PML‐NBs 3–4 days after IR, approximately coincident with the secondary p21 increase. These p53/PML‐NBs marked sites of apparently unrepaired DNA double‐strand breaks (DSBs), identified by colocalization with phosphorylated histone H2AX. Both Nutlin‐3a and IR caused a large increase in APBs that was dependent on p53 and p21 expression. Moreover, p21, and to a lesser extent p53, was recruited to APBs in a fraction of Nutlin‐3a‐treated cells. These data indicate (1) p53 is recruited to PML‐NBs after IR that likely mark unrepaired DSBs, suggesting p53 may either be further activated at these sites and/or function in their repair; (2) p53–p21 pathway activation increases the percentage of APB‐positive cells, (3) p21 and p53 are recruited to ALT‐associated PML‐NBs after Nutlin‐3a treatment, suggesting that they may play a previously unrecognized role in telomere maintenance. J. Cell. Biochem. 111: 1280–1290, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

10.
The promyelocytic leukemia (PML) protein is the main structural component of subnuclear domains termed PML nuclear bodies (PML NBs), which are implicated in tumor suppression by regulating apoptosis, cell senescence, and DNA repair. Previously, we demonstrated that ATM kinase can regulate changes in PML NB number in response to DNA double-strand breaks (DSBs). PML NBs make extensive contacts with chromatin and ATM mediates DNA damage-dependent changes in chromatin structure in part by the phosphorylation of the KRAB-associated protein 1 (KAP1) at S824. We now demonstrate that in the absence of DNA damage, reduced KAP1 expression results in a constitutive increase in PML NB number in both human U2-OS cells and normal human diploid fibroblasts. This increase in PML NB number correlated with decreased nuclear lamina-associated heterochromatin and a 30% reduction in chromatin density as observed by electron microscopy, which is reminiscent of DNA damaged chromatin. These changes in chromatin ultrastructure also correlated with increased histone H4 acetylation, and treatment with the HDAC inhibitor TSA failed to further increase PML NB number. Although PML NB number could be restored by complementation with wild-type KAP1, both the loss of KAP1 or complementation with phospho-mutants of KAP1 inhibited the early increase in PML NB number and reduced the fold induction of PML NBs by 25-30% in response to etoposide-induced DNA DSBs. Together these data implicate KAP1-dependent changes in chromatin structure as one possible mechanism by which ATM may regulate PML NB number in response to DNA damage.  相似文献   

11.
12.
PML nuclear bodies (NBs) are dynamic intranuclear structures harboring numerous transiently or permanently localized proteins. PML, the NBs' organizer, is directly induced by interferon, and its expression is critical for antiviral host defense. We describe herein the molecular events following poliovirus infection that lead to PML-dependent p53 activation and protection against virus infection. Poliovirus infection induces PML phosphorylation through the extracellular signal-regulated kinase pathway, increases PML SUMOylation, and induces its transfer from the nucleoplasm to the nuclear matrix. These events result in the recruitment of p53 to PML NBs, p53 phosphorylation on Ser15, and activation of p53 target genes leading to the induction of apoptosis. Moreover, the knock-down of p53 by small interfering RNA results in higher poliovirus replication, suggesting that p53 participates in antiviral defense. This effect, which requires the presence of PML, is transient since poliovirus targets p53 by inducing its degradation in a proteasome- and MDM2-dependent manner. Our results provide evidence of how poliovirus counteracts p53 antiviral activity by regulating PML and NBs, thus leading to p53 degradation.  相似文献   

13.
Cellular senescence is a potent anti-cancer mechanism controlled by tumor suppressor genes, particularly p53 and pRb, which is characterized by the irreversible loss of proliferation. Senescence induced by DNA damage, oncogenic stimulation, or excessive mitogenic input, serves as a barrier that counteracts cancer progression. Emerging evidence in cellular and in in vivo models revealed the involvement of additional signaling players in senescence, including PML, CK2, Bcl-2, PI3K effectors such as Rheb, Rho small GTPases, and cytokines. Recent studies have also implicated protein kinase C (PKC) isozymes as modulators of senescence phenotypes and showed that phorbol esters, widely used PKC activators, can induce senescence in a number of cancer cells. These novel findings suggest a complex array of cross-talks between senescence pathways and may have significant implications in cancer therapy.  相似文献   

14.
Werner syndrome (WS) results from dysfunction of the WRN protein, and is associated with premature aging and early death. Here we report that loss of WRN function elicits accumulation of the Yes-associated protein (YAP protein), a major effector of the Hippo tumor suppressor pathway, both experimentally and in WS-derived fibroblasts. YAP upregulation correlates with slower cell proliferation and accelerated senescence, which are partially mediated by the formation of a complex between YAP and the PML protein, whose activity promotes p53 activation. The ATM kinase is necessary for YAP and PML accumulation in WRN-depleted cells. Notably, the depletion of either YAP or PML partially impairs the induction of senescence following WRN loss. Altogether, our findings reveal that loss of WRN activity triggers the activation of an ATM-YAP-PML-p53 axis, thereby accelerating cellular senescence. The latter has features of SASP (senescence-associated secretory phenotype), whose protumorigenic properties are potentiated by YAP, PML and p53 depletion.  相似文献   

15.
Progerin accumulation disrupts nuclear lamina integrity and causes nuclear structure abnormalities, leading to premature aging, that is, Hutchinson–Gilford progeria syndrome (HGPS). The roles of nuclear subcompartments, such as PML nuclear bodies (PML NBs), in HGPS pathogenesis, are unclear. Here, we show that classical dot‐like PML NBs are reorganized into thread‐like structures in HGPS patient fibroblasts and their presence is associated with late stage of senescence. By co‐immunoprecipitation analysis, we show that farnesylated Progerin interacts with human PML2, which accounts for the formation of thread‐like PML NBs. Specifically, human PML2 but not PML1 overexpression in HGPS cells promotes PML thread development and accelerates senescence. Further immunofluorescence microscopy, immuno‐TRAP, and deep sequencing data suggest that these irregular PML NBs might promote senescence by perturbing NB‐associated DNA repair and gene expression in HGPS cells. These data identify irregular structures of PML NBs in senescent HGPS cells and support that the thread‐like PML NBs might be a novel, morphological, and functional biomarker of late senescence.  相似文献   

16.
Werner syndrome is an autosomal recessive disorder associated with premature aging and cancer predisposition caused by mutations of the WRN gene. WRN is a member of the RecQ DNA helicase family with functions in maintaining genome stability. Sir2, an NAD-dependent histone deacetylase, has been proven to extend life span in yeast and Caenorhabditis elegans. Mammalian Sir2 (SIRT1) has also been found to regulate premature cellular senescence induced by the tumor suppressors PML and p53. SIRT1 plays an important role in cell survival promoted by calorie restriction. Here we show that SIRT1 interacts with WRN both in vitro and in vivo; this interaction is enhanced after DNA damage. WRN can be acetylated by acetyltransferase CBP/p300, and SIRT1 can deacetylate WRN both in vitro and in vivo. WRN acetylation decreases its helicase and exonuclease activities, and SIRT1 can reverse this effect. WRN acetylation alters its nuclear distribution. Down-regulation of SIRT1 reduces WRN translocation from nucleoplasm to nucleoli after DNA damage. These results suggest that SIRT1 regulates WRN-mediated cellular responses to DNA damage through deacetylation of WRN.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号