首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Red blood cells (RBCs) are reservoirs for cis- and trans-epoxyeicosatrienoic acids (EETs) that can be released. The sources of EET release from RBCs include direct synthesis from arachidonic acid, peroxidation of phospholipids and EETs esterified into cellular phospholipids. The release of EETs from RBCs can be through cytosolic phospholipase A2 (PLA2), secretory PLA2 and other responses associated with ATP release from RBCs. The erythrocyte ATP, purinergic receptors, ATP-binding cassette transporters, PLA2 and cytoskeleton rearrangement may all participate in EET release in the microcirculatory deformation of RBCs. EETs are vasodilatory and are candidate endothelium-derived hyperpolarizing factors. Due to the anti-hypertensive, fibrinolytic, and anti-thrombotic properties of EETs, their release from RBCs is replete with implications for the control of circulation and rheological characteristics of the circulating blood.  相似文献   

2.
3.
Four isomers of epoxyeicosatrienoic acid (EET) can be formed by cytochrome P-450 oxidation of arachidonic acid: 5,6-, 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acid. The collision-induced dissociation of the [M-H]- anion at m/z 319 from each of these isomers, using negative-ion fast atom bombardment ionization and a triple quadrupole mass spectrometer, resulted in a series of common ions as well as ions characteristic of each isomer. The common ions were m/z 301 [M-H2O]- and 257 [M-(H2O + CO2)]-. Unique ions resulted from cleavages alpha to the epoxide moiety to form either conjugated carbanions or aldehydes. Mechanisms involving charge site transfer are suggested for the origin of these ions. A distonic ion series that may involve a charge-remote fragmentation mechanism was also observed. The epoxyeicosatrienoic acids were also incorporated into cellular phospholipids following incubation of the free acid with murine mast cells in culture. Negative fast atom bombardment mass spectrometry of purified glycerophosphoethanolamine-EET species and glycerophosphocholine-EET species yielded abundant [M-H]- and [M-CH3]- ions, respectively. The collision-induced dissociation of these specific high-mass ions revealed fragment ions characteristic of the epoxyeicosatrienoic acids incorporated (m/z 319, 301, and 257) and the same unique ions as those seen with each isomeric epoxyeicosatrienoic acid. With this direct method of analysis, phospholipids containing the four positional isomers of EET, including the highly labile (5,6-EET), could be identified as unique molecular species in mast cells incubated with EET.  相似文献   

4.
5.
Action of epoxyeicosatrienoic acids on cellular function   总被引:7,自引:0,他引:7  
Epoxyeicosatrienoic acids (EETs), which function primarily as autocrine and paracrine mediators in the cardiovascular and renal systems, are synthesized from arachidonic acid by cytochrome P-450 epoxygenases. They activate smooth muscle large-conductance Ca2+-activated K+ channels, producing hyperpolarization and vasorelaxation. EETs also have anti-inflammatory effects in the vasculature and kidney, stimulate angiogenesis, and have mitogenic effects in the kidney. Many of the functional effects of EETs occur through activation of signal transduction pathways and modulation of gene expression, events probably initiated by binding to a putative cell surface EET receptor. However, EETs are rapidly taken up by cells and are incorporated into and released from phospholipids, suggesting that some functional effects may occur through a direct interaction between the EET and an intracellular effector system. In this regard, EETs and several of their metabolites activate peroxisome proliferator-activated receptor (PPAR) and PPAR, suggesting that some functional effects may result from PPAR activation. EETs are metabolized primarily by conversion to dihydroxyeicosatrienoic acids (DHETs), a reaction catalyzed by soluble epoxide hydrolase (sEH). Many potentially beneficial actions of EETs are attenuated upon conversion to DHETs, which do not appear to be essential under routine conditions. Therefore, sEH is considered a potential therapeutic target for enhancing the beneficial functions of EETs. soluble epoxide hydrolase; eicosanoids; dihydroxyeicosatrienoic acids; cytochrome P-450; peroxisome proliferator-activated receptor  相似文献   

6.
During periods of ischemia and vascular injury, factors are released which recruit monocytes and polymorphonuclear leukocytes (PMNs) to the site of injury by promoting adherence to the endothelium and transmigration across the endothelial cell (EC) layer. During coronary artery stenosis, we have shown that the endothelium-derived, cytochrome P450 metabolites of arachidonic acid, the epoxyeicosatrienoic acids (EETs), are elevated. Therefore, we examined if the EETs could stimulate PMN adherence to cultured ECs. Pretreatment of ECs with EETs for either 30 min or 4 hr did not alter the adherence of 51Cr-labelled PMNs to ECs while phorbol myristate acetate (PMA) produced a 4-fold increase in PMN adherence. The combination of EETs and PMA did not significantly augment or diminish PMA-induced PMN adherence to ECs. When ECs and 51Cr-labelled PMNs were coincubated, treatment with EETs alone did not alter PMN adherence. However, when EETs and PMA were added together during the coincubation of ECs and 51Cr-labelled PMNs, the EETs produced a concentration-related decrease in PMN adherence. Microscopic analysis of the culture media bathing the cells revealed aggregates of the labeled PMNs. We examined the effects of the EETs on PMN aggregation. 8,9-EET (10, 50, and 100 microM) increased PMN aggregation (7 +/- 3, 35 +/- 10, and 65 +/- 11%) and intracellular calcium by 1.7 +/- 0.5, 4.7 +/- 1.4, and 6.8 +/- 2.3-fold above basal. 5,6-, 11,2- and 14,15-EETs also stimulated aggregation. FMLP stimulated the production of superoxide; however, 8,9-EET did not. These observations indicate that the decrease in PMN adherence observed in the coincubation experiment is the result of EET-induced PMN aggregation. Given the increase in EET production during coronary artery stenosis, these data may provide insight into their potential biological significance during myocardial ischemia and vascular injury.  相似文献   

7.
Epoxyeicosatrienoic acids were isolated and purified from female rabbit kidneys. They were identified as a group, prior to resolution, by packed column gas-liquid chromatography-mass spectroscopic techniques as their methyl esters as well as their trimethylsilyl bromohydrin methyl esters. Initial capillary gas-liquid chromatography-mass spectral analysis of the corresponding hydrogenated pentafluorobenzyl esters revealed the presence of the 8,9- and 14,15-epoxyeicosatrienoate regioisomers. These results, in conjunction with the documented in vitro biological activities of the arachidonate epoxygenase metabolites, suggest a role for them in renal function.  相似文献   

8.
Recent studies continue to confirm previous observations that trans fatty acids elevate low density lipoprotein cholesterol levels, and at relatively high intakes decrease high density lipoprotein cholesterol levels. Considerable interest is focused on the potential benefits of trans-free margarines. Both adipose and plasma trans fatty acid levels reflect dietary intake. Current estimates of trans fatty acid intake in developed countries range from 0.5 to 2.6% of energy, contributed to primarily by differences in food availability and preference, and partly by the methodological differences used to calculate the data.  相似文献   

9.
Epoxyeicosatrienoic acids, metabolites of the cytochrome P-450-mediated epoxygenase reaction, were detected in human urine by gas chromatographic-mass spectroscopic techniques after conversion to their hydrogenated and non-hydrogenated methyl and pentafluorobenzyl esters. Initial analysis of the regioisomeric composition utilizing the corresponding hydrogenated pentafluorobenzyl esters revealed the presence of the 8,9- and 14,15-isomers.  相似文献   

10.
11.
The different regioisomers of epoxyeicosatrienoic acids derived from cytochrome P-450 monooxygenase are readily esterified into phospholipids of mastocytoma cells. Incorporation of 14,15-epoxyeicosatrienoic acid was concentration-dependent, with Km = 1.1 microM and Vmax = 36 pmol/min/10(7) cells. Half-maximal incorporation occurred in 30 min, reaching a steady-state concentration of 470 pmol/10(6) cells. This was slightly lower than the values for arachidonic acid (665 pmol/10(6) cells) or 5-hydroxyeicosatetraenoic acid (554 pmol/10(6) cells). The distribution of 14,15-epoxyeicosatrienoic acid was preferential in the order phosphatidylethanolamine greater than phosphatidylcholine greater than phosphatidylinositol greater than phosphatidyl serine much greater than neutral lipids plus fatty acids. This contrasted with 5(S)-hydroxyeicosatetraenoic acid, which was distributed primarily into phosphatidylcholine. Fast atom bombardment/tandem mass spectrometry facilitated identification of molecular species containing epoxyeicosatrienoic acids without relying on radioisotopes. Phosphatidylethanolamine plasmalogens with 16:1 or 18:2 at the sn-1 position, or an 18:0 acyl group, and phosphatidylcholine with 16:0 alkyl ether or an acyl group at the sn-1 position incorporated all possible epoxyeicosatrienoic acid regioisomers. Under basal conditions, cells eliminated 14,15-cis-epoxyeicosatrienoic acid slowly with a half-life of 34.9 +/- 7 h. Cells stimulated with calcium ionophore A23187 eliminated 14,15-epoxyeicosatrienoic acid rapidly. It was notable that its rate of release from phosphatidylcholine and phosphatidylinositol exceeded that for arachidonic acid. A coenzyme A-independent transacylase also catalyzed the transfer of epoxyeicosatrienoic acids from mastocytoma cell membranes into 1-palmitoyl-2-lysophosphatidylcholine. The cellular incorporation, release, and distribution of epoxyeicosatrienoic acids is distinctive and contrasts with most other eicosanoids, suggesting that these compounds may have both autocoid and nonautocoid functions.  相似文献   

12.
This study examined the effects of renal arterial infusion of a selective cytochrome P-450 epoxygenase inhibitor, N-methylsulfonyl-6-(2-propargyloxyphenyl)hexanamide (MS-PPOH; 2 mg/kg plus 1.5 mg.kg(-1).h(-1)), on renal hemodynamic responses to infusions of [Phe(2),Ile(3),Orn(8)]vasopressin and ANG II into the renal artery of anesthetized rabbits. MS-PPOH did not affect basal renal blood flow (RBF) or cortical or medullary blood flow measured by laser-Doppler flowmetry (CLDF/MLDF). In vehicle-treated rabbits, [Phe(2),Ile(3),Orn(8)]vasopressin (30 ng.kg(-1).min(-1)) reduced MLDF by 62 +/- 7% but CLDF and RBF were unaltered. In MS-PPOH-treated rabbits, RBF and CLDF fell by 51 +/- 8 and 59 +/- 13%, respectively, when [Phe(2),Ile(3),Orn(8)]vasopressin was infused. MS-PPOH had no significant effects on the MLDF response to [Phe(2),Ile(3),Orn(8)]vasopressin (43 +/- 9% reduction). ANG II (20 ng.kg(-1).min(-1)) reduced RBF by 45 +/- 10% and CLDF by 41 +/- 14%, but MLDF was not significantly altered. MS-PPOH did not affect blood flow responses to ANG II. Formation of epoxyeicosatrienoic acids (EETs) and dihydroxyeicosatrienoic acids (DiHETEs) was 49% lower in homogenates prepared from the renal cortex of MS-PPOH-treated rabbits than from vehicle-treated rabbits. MS-PPOH had no effect on the renal formation of 20-hydroxyeicosatetraenoic acid (20-HETE). Incubation of renal cortical homogenates from untreated rabbits with [Phe(2),Ile(3),Orn(8)]vasopressin (0.2-20 ng/ml) did not affect formation of EETs, DiHETEs, or 20-HETE. These results do not support a role for de novo EET synthesis in modulating renal hemodynamic responses to ANG II. However, EETs appear to selectively oppose V(1)-receptor-mediated vasoconstriction in the renal cortex but not in the medullary circulation and contribute to the relative insensitivity of cortical blood flow to V(1)-receptor activation [corrected].  相似文献   

13.
Epoxyeicosatrienoic acid (EET) and thromboxane A(2) are arachidonic acid derivatives. The former has initially been defined as an epithelium-derived hyperpolarizing factor displaying broncho-relaxing and anti-inflammatory properties, as recently demonstrated, whereas thromboxane A(2) induces vaso- and bronchoconstriction upon binding to thromboxane-prostanoid (TP)-receptor. EETs, however, are quickly degraded by the soluble epoxide hydrolase (sEH) into inactive diol compounds. The aim of this study was to investigate the effects of 14,15-EET on TP-receptor activation in human bronchi. Tension measurements performed on native bronchi from various species, acutely treated with increasing 14,15-EET concentrations, revealed specific and concentration-dependent relationships as well as a decrease in the tension induced by 30 nM U-46619, used as a synthetic TP-receptor agonist. Interestingly, acute treatments with 3 μM N-(methylsulfonyl)-2-(2-propynyloxy)-benzenehexanamide, an epoxygenase inhibitor, which minimizes endogenous production of EET, resulted in an increased reactivity to U-46619. Furthermore, we demonstrated that chronic treatments with trans-4-[4-(3-adamantan-1-yl-ureido)-cyclohexyloxy]-benzoic acid (t-AUCB), a sEH inhibitor, reduced human bronchi reactivity to U-46619. During our tension measurements, we also observed that human bronchi generated small-amplitude contractions; these spontaneous activities were reduced upon acute 14,15-EET treatments in the presence of t-AUCB. Altogether, these data demonstrate that endogenous and exogenous 14,15-EET could interfere with the activation of TP-receptors as well as with spontaneous oscillations in human airway smooth muscle tissues.  相似文献   

14.
Novel glutathione conjugates formed from epoxyeicosatrienoic acids (EETs)   总被引:4,自引:0,他引:4  
The catalysis of glutathione (GSH) conjugation to epoxyeicosatrienoic acids (EETs) by various purified isozymes of glutathione S-transferase was studied. A GSH conjugate of 14,15-EET was isolated by HPLC and TLC; this metabolite contained one molecule of EET and one molecule of GSH. Fast atom bombardment mass spectrometry of the isolated metabolite confirmed the structure as a GSH conjugate of 14,15-EET. Studies designed to determine the isozyme specificity of this reaction demonstrated that two isozymes, 3-3, and 5-5, efficiently catalyzed this conjugation reaction. The Km values for 14,15-EET were approximately 10 microM and the Vmax values ranged from 25 to 60 nmol conjugate formed min-1 mg-1 purified transferase 3-3 and 5-5. The 5,6-, 8,9-, and 11,12-EETs were also substrates for the reaction, albeit at lower rates. These results demonstrate that the EETs can serve as substrates for the cytosolic glutathione S-transferases.  相似文献   

15.
Arachidonic acid is oxidized by cytochromes P450 2C (CYP2C) to epoxyeicosatrienoic acids (EETs), possessing vasoactive properties, with 11,12-EET as the endothelium derived hyperpolarization factor. Genetic variants of CYP2C enzymes have altered drug metabolizing capacity. Our primary aim was to determine whether EET biosynthesis differed in human liver microsomes with known CYP2C genotypes. Human liver microsomes (n = 25) of different CYP2C genotypes or yeast-expressed CYP2C enzymes were used. Analysis of metabolites was performed by liquid chromatography/mass spectrometry. Samples genotyped as CYP2C8*3/*3/CYP2C9*2/*2 exhibited a 34% (p < 0.05) decreased EET biosynthesis, compared to other CYP2C8/CYP2C9 haplotypes. Inhibition experiments suggested CYP2C8 and CYP2C9 to be the predominant catalysts of EETs. We found no differences between the three recombinantly expressed CYP2C9 variants, but CYP2C8.1 had lower Km than these isoforms. In conclusion, there are genetic differences in the CYP2C-dependent oxidation of arachidonic acid to vasoactive metabolites, of which the relevance to cardiovascular pathophysiology is still unclear.  相似文献   

16.
Salvianolic acids are the most abundant water-soluble compounds extracted from Radix Salvia miltiorrhiza (Danshen). In China, Danshen has been wildly used to treat cardiovascular diseases for hundreds of years. Salvianolic acids, especially salvianolic acid A (Sal A) and salvianolic acid B (Sal B), have been found to have potent anti-oxidative capabilities due to their polyphenolic structure. Recently, intracellular signaling pathways regulated by salvianolic acids in vascular endothelial cells, aortic smooth muscle cells, as well as cardiomyocytes, have been investigated both in vitro and in vivo upon various cardiovascular insults. It is discovered that the cardiovascular protection of salvianolic acids is not only because salvianolic acids act as reactive oxygen species scavengers, but also due to the reduction of leukocyte-endothelial adherence, inhibition of inflammation and metalloproteinases expression from aortic smooth muscle cells, and indirect regulation of immune function. Competitive binding of salvianolic acids to target proteins to interrupt protein-protein interactions has also been found to be a mechanism of cardiovascular protection by salvianolic acids. In this article, we review a variety of studies focusing on the above mentioned mechanisms. Besides, the target proteins of salvianolic acids are also described. These results of recent advances have shed new light to the development of novel therapeutic strategies for salvianolic acids to treat cardiovascular diseases.  相似文献   

17.
An HPLC method for the chiral analysis of the four regioisomeric epoxyeicosatrienoic acids (EETs) is described. The cytochrome P450 arachidonic acid epoxygenase metabolites are resolved, without the need for derivatization, by chiral-phase HPLC on a Chiralcel OJ column. Application of this methodology to the analysis of the liver endogenous EETs demonstrates stereospecific biosynthesis and corroborates the role of cytochrome P450 as the endogenous arachidonic acid epoxygenase.  相似文献   

18.
Endothelial nitric oxide synthase (eNOS) is a key enzyme in NO-mediated cardiovascular homeostasis and its activity is modulated by a variety of hormonal and mechanical stimuli via phosphorylation modification. Our previous study has demonstrated that epoxyeicosatrienoic acids (EETs), the cytochrome P450 (CYP)-dependent metabolites of arachidonic acid, could robustly up-regulate eNOS expression. However, the molecular mechanism underlying the effects of EETs on eNOS remains elusive. Particularly, whether and how EETs affect eNOS phosphorylation is unknown. In the present study, we investigated the effects of EETs on eNOS phosphorylation with cultured bovine aortic endothelial cells (BAECs). BAECs were either treated with exogenous EETs or infected with recombinant adeno-associated virus (rAAV) carrying CYP2C11-CYPOR, CYP102 F87V mutant and CYP2J2, respectively, to increase endogenous EETs. Both addition of EETs and CYP epoxygenase transfection markedly increased eNOS phosphorylation at its Ser1179 and Thr497 residues. Inhibition of phosphatidylinositol 3-kinase (PI3K) with LY294002 prevented EETs-induced increases of eNOS-Ser(P)1179 but had no effect on the phosphorylation status of Thr497. However, inhibitors of protein kinase B (Akt), mitogen-activated protein kinase (MAPK) and MAPK kinase could block phosphorylation of eNOS at both sites. Inhibition of these kinases also attenuated the up-regulation of eNOS expression by EETs. Finally, administration of viral CYP epoxygenases expression vectors into rats enhanced eNOS phosphorylation and function in vivo. Thus, in addition to up-regulating eNOS expression, EETs also augment eNOS function by enhancing eNOS phosphorylation. EETs-induced up-regulation of eNOS phosphorylation and expression appears to involve in both PI3K/Akt and MAPK pathways.  相似文献   

19.
Cardiomyocyte injury following ischemia-reperfusion can lead to cell death and result in cardiac dysfunction. A wide range of cardioprotective factors have been studied to date, but only recently has the cardioprotective role of fatty acids, specifically arachidonic acid (AA), been investigated. This fatty acid can be found in the membranes of cells in an inactive state and can be released by phospholipases in response to several stimuli, such as ischemia. The metabolism of AA involves the cycloxygenase (COX) and lipoxygenase (LOX) pathways, as well as the less well characterized cytochrome P450 (CYP) monooxygenase pathway. Current research suggests important differences with respect to the cardiovascular actions of specific CYP mediated arachidonic acid metabolites. For example, CYP mediated hydroxylation of AA produces 20-hydroxyeicosatetraenoic acid (20-HETE) which has detrimental effects in the heart during ischemia, pro-inflammatory effects during reperfusion and potent vasoconstrictor effects in the coronary circulation. Conversely, epoxidation of AA by CYP enzymes generates 5,6-, 8,9-, 11,12- and 14,15-epoxyeicosatrienoic acids (EETs) that have been shown to reduce ischemia-reperfusion injury, have potent anti-inflammatory effects within the vasculature, and are potent vasodilators in the coronary circulation. This review aims to provide an overview of current data on the role of these CYP pathways in the heart with an emphasis on their involvement as mediators of ischemia-reperfusion injury. A better understanding of these relationships will facilitate identification of novel targets for the prevention and/or treatment of ischemic heart disease, a major worldwide public health problem.  相似文献   

20.
Adipogenesis plays a critical role in the initiation and progression of obesity. Although cytochrome P450 (CYP)-derived epoxyeicosatrienoic acids (EETs) have emerged as a potential therapeutic target for cardiometabolic disease, the functional contribution of EETs to adipogenesis and the pathogenesis of obesity remain poorly understood. Our studies demonstrated that induction of adipogenesis in differentiated 3T3-L1 cells (in vitro) and obesity-associated adipose expansion in high-fat diet (HFD)-fed mice (in vivo) significantly dysregulate the CYP epoxygenase pathway and evoke a marked suppression of adipose-derived EET levels. Subsequent in vitro experiments demonstrated that exogenous EET analog administration elicits potent anti-adipogenic effects via inhibition of the early phase of adipogenesis. Furthermore, EET analog administration to mice significantly mitigated HFD-induced weight gain, adipose tissue expansion, pro-adipogenic gene expression, and glucose intolerance. Collectively, these findings suggest that suppression of EET bioavailability in adipose tissue is a key pathological consequence of obesity, and strategies that promote the protective effects of EETs in adipose tissue offer enormous therapeutic potential for obesity and its downstream pathological consequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号