首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mice infected with reovirus develop abnormalities in glucose homeostasis. Reovirus strain type 3 Abney (T3A) was capable of systemic infection of nonobese diabetic (NOD) mice, an experimental model of autoimmune diabetes. Reovirus antigen was detected in pancreatic islets of T3A-infected mice, and primary cultures of pancreatic islets from NOD mice supported T3A growth. Significantly fewer T3A-infected animals compared to uninfected controls developed diabetes. However, despite the alteration in diabetes penetrance, insulitis was evident in T3A-infected mice. These results suggest that viral infection of NOD mice alters autoimmune responses to beta-cell antigens and thereby delays development of diabetes.  相似文献   

2.
IL-10 exterts profound immunostimulatory and immunoinhibitory effects. To explore the role of IL-10 in autoimmune diabetes of nonobese diabetic (NOD) mice, we generated IL-10-deficient NOD mice. In contrast to our previous results with neutralizing antibodies to IL-10, IL-10-deficient NOD mice developed insulitis and their splenocytes readily responded to islet antigen glutamic acid decarboxylase 65. IL-10-deficient NOD mice did not develop accelerated spontaneous diabetes. On the other hand, IL-10-deficient NOD mice developed accelerated disease following cyclophosphamide (CYP) injection. These findings demonstrate that IL-10 is dispensable for autoimmune diabetes. IL-10's absence fails to accelerate endogenous diabetes but potentiates CYP-induced diabetes.  相似文献   

3.
The autoimmune nonobese diabetic mouse, a model of human juvenile type I diabetes mellitus, exhibits features of both B and T cell autoreactivity against insulin-producing cells. Using the neonatal cell transfer model of the disease, which we have described previously, we have shown that B cell suppression of newborn recipients by anti-mu treatment did not affect the transfer of diabetes by means of T cells. B cell-depleted, purified T cells from diabetic adults were injected into newborns treated with either IR-52, a control rat myeloma protein, or LOMM.9, a rat anti-mouse mu-chain mAb. Both groups developed diabetes over a similar time scale. Although the pancreases in both groups showed massive infiltration by T lymphocytes, B lymphocytes, presumably recruited in the host, were present in the IR-52-treated group, whereas they were absent in the LOMM.9-treated group. Anti-mu-treated diabetic animals showed substantial B cell suppression in vivo and in vitro when compared with IR-52-treated controls. These results suggest that B cell autoreactivity is a secondary phenomenon that is unimportant during the effector phase of diabetes in nonobese diabetic mice.  相似文献   

4.
We have previously proposed that sequence variation of the CD101 gene between NOD and C57BL/6 mice accounts for the protection from type 1 diabetes (T1D) provided by the insulin-dependent diabetes susceptibility region 10 (Idd10), a <1 Mb region on mouse chromosome 3. In this study, we provide further support for the hypothesis that Cd101 is Idd10 using haplotype and expression analyses of novel Idd10 congenic strains coupled to the development of a CD101 knockout mouse. Susceptibility to T1D was correlated with genotype-dependent CD101 expression on multiple cell subsets, including Foxp3(+) regulatory CD4(+) T cells, CD11c(+) dendritic cells, and Gr1(+) myeloid cells. The correlation of CD101 expression on immune cells from four independent Idd10 haplotypes with the development of T1D supports the identity of Cd101 as Idd10. Because CD101 has been associated with regulatory T and Ag presentation cell functions, our results provide a further link between immune regulation and susceptibility to T1D.  相似文献   

5.
The insulin B (InsB) chain bears major type 1 diabetes-associated epitopes of significance for disease in humans and nonobese diabetic (NOD) mice. Somatic expression of InsB chain initiated early in life by plasmid inoculation resulted in substantial protection of female NOD mice against disease. This was associated with a T2 shift in spleen, expansion of IL-4-producing and, to a lesser extent, of IFN-gamma-secreting T cells in pancreatic lymph nodes, as well as intermolecular Th2 epitope spreading to glutamic acid decarboxylase determinants. A critical role of IL-4 for the Ag-specific protective effect triggered by plasmid administration was revealed in female IL-4(-/-) NOD mice that developed diabetes and higher Th1 responses. Coadministration of IL-4-expressing plasmid or extension of the vaccination schedule corrected the unfavorable response of male NOD mice to DNA vaccination with InsB chain. Thus, plasmid-mediated expression of the InsB chain early in diabetes-prone mice has the potential to prevent transition to full-blown disease depending on the presence of IL-4.  相似文献   

6.
IL-18 is now identified as a pleiotropic cytokine that acts as a cofactor for both Th1 and Th2 cell development. Type 1 diabetes is considered a Th1-type autoimmune disease, and to date, the suppressive effect of exogenous IL-18 on the development of diabetes has been reported in 10-wk-old nonobese diabetic (NOD) mice. In the present study we administered exogenous IL-18 systemically in 4-wk-old NOD mice using i.m. injection of the IL-18 expression plasmid DNA (pCAGGS-IL-18) with electroporation. Contrary to previous reports, the incidence of diabetes development was significantly increased in NOD mice injected with pCAGGS-IL-18 compared with that in control mice. Systemic and pancreatic cytokine profiles deviated to a Th1-dominant state, and the the frequency of glutamic acid decarboxylase-reactive IFN-gamma-producing CD4(+) cells was also high in the IL-18 group. Moreover, it was suggested that the promoting effect of IL-18 might be associated with increased peripheral IL-12, CD86, and pancreatic IFN-inducible protein-10 mRNA expression levels. In conclusion, we demonstrate here that IL-18 plays a promoting role as an enhancer of Th1-type immune responses in diabetes development early in the spontaneous disease process, which may contribute to elucidating the pathogenesis of type 1 diabetes.  相似文献   

7.
NOD mice deficient for the costimulatory molecule B7-2 (NOD-B7-2KO mice) are protected from autoimmune diabetes but develop a spontaneous autoimmune peripheral neuropathy that resembles human diseases Guillain-Barre syndrome and chronic inflammatory demyelinating polyradiculoneuropathy. Similar observations have now been made in conventional NOD mice. We have shown previously that this disease was mediated by autoreactive T cells inducing demyelination in the peripheral nervous system. In this study, we analyzed the molecular pathways involved in the disease. Our data showed that neuropathy developed in the absence of perforin or fas, suggesting that classic cytotoxicity pathways were dispensable for nerve damage in NOD-B7-2KO mice. In contrast, IFN-gamma played an obligatory role in the development of neuropathy as demonstrated by the complete protection from disease and infiltration in the nerves in NOD-B7-2KO mice deficient for IFN-gamma. This result was consistent with the inflammatory phenotype of T cells infiltrating the peripheral nerves. Importantly, the relative role of perforin, fas, and IFN-gamma appears completely different in autoimmune diabetes vs neuropathy. Thus, there are sharp contrasts in the pathogenesis of autoimmune diseases targeting different tissues in the same NOD background.  相似文献   

8.
IL-12 administration to nonobese diabetic (NOD) mice induces IFN-gamma-secreting type 1 T cells and high circulating IFN-gamma levels and accelerates insulin-dependent diabetes mellitus (IDDM). Here we show that IL-12-induced IFN-gamma production is dispensable for diabetes acceleration, because exogenous IL-12 could enhance IDDM development in IFN-gamma-deficient as well as in IFN-gamma-sufficient NOD mice. Both in IFN-gamma(+/-) and IFN-gamma(-/-) NOD mice, IL-12 administration generates a massive and destructive insulitis characterized by T cells, macrophages, and CD11c(+) dendritic cells, and increases the number of pancreatic CD4(+) cells secreting IL-2 and TNF-alpha. Surprisingly, IL-12-induced IFN-gamma hinders pancreatic B cell infiltration and inhibits the capacity of APCs to activate T cells. Although pancreatic CD4(+) T cells from IL-12-treated IFN-gamma(-/-) mice fail to up-regulate the P-selectin ligand, suggesting that their entry into the pancreas may be impaired, T cell expansion is favored in these mice compared with IL-12-treated IFN-gamma(+/-) mice because IL-12 administration in the absence of IFN-gamma leads to enhanced cell proliferation and reduced T cell apoptosis. NO, an effector molecule in beta cell destruction, is produced ex vivo in high quantity by pancreas-infiltrating cells through a mechanism involving IL-12-induced IFN-gamma. Conversely, in IL-12-treated IFN-gamma-deficient mice, other pathways of beta cell death appear to be increased, as indicated by the up-regulated expression of Fas ligand on Th1 cells in the absence of IFN-gamma. These data demonstrate that IFN-gamma has a dual role, pathogenic and protective, in IDDM development, and its deletion allows IL-12 to establish alternative pathways leading to diabetes acceleration.  相似文献   

9.
IL-12 and IL-12 antagonist administration to nonobese diabetic (NOD) mice accelerates and prevents insulin-dependent diabetes mellitus (IDDM), respectively. To further define the role of endogenous IL-12 in the development of diabetogenic Th1 cells, IL-12-deficient NOD mice were generated and analyzed. Th1 responses to exogenous Ags were reduced by approximately 80% in draining lymph nodes of these mice, and addition of IL-12, but not IL-18, restored Th1 development in vitro, indicating a nonredundant role of IL-12. Moreover, spontaneous Th1 responses to a self Ag, the tyrosine phosphatase-like IA-2, were undetectable in lymphoid organs from IL-12-deficient, in contrast to wild-type, NOD mice. Nevertheless, wild-type and IL-12-deficient NOD mice developed similar insulitis and IDDM. Both in wild-type and IL-12-deficient NOD mice, approximately 20% of pancreas-infiltrating CD4+ T cells produced IFN-gamma, whereas very few produced IL-10 or IL-4, indicating that IDDM was associated with a type 1 T cell infiltrate in the target organ. T cell recruitment in the pancreas seemed favored in IL-12-deficient NOD mice, as revealed by increased P-selectin ligand expression on pancreas-infiltrating T cells, and this could, at least in part, compensate for the defective Th1 cell pool recruitable from peripheral lymphoid organs. Residual Th1 cells could also accumulate in the pancreas of IL-12-deficient NOD mice because Th2 cells were not induced, in contrast to wild-type NOD mice treated with an IL-12 antagonist. Thus, a regulatory pathway seems necessary to counteract the pathogenic Th1 cells that develop in the absence of IL-12 in a spontaneous chronic progressive autoimmune disease under polygenic control, such as IDDM.  相似文献   

10.
Nonobese diabetic (NOD) mice spontaneously develop diabetes with a strong female prevalence; however, the mechanisms for this gender difference in susceptibility to T cell-mediated autoimmune diabetes are poorly understood. This investigation was initiated to find mechanisms by which sex hormones might affect the development of autoimmune diabetes in NOD mice. We examined the expression of IFN-gamma, a characteristic Th1 cytokine, and IL-4, a characteristic Th2 cytokine, in islet infiltrates of female and male NOD mice at various ages. We found that the most significant difference in cytokine production between sexes was during the early stages of insulitis at 4 wk of age. IFN-gamma was significantly higher in young females, whereas IL-4 was higher in young males. CD4(+) T cells isolated from lymph nodes of female mice and activated with anti-CD3 and anti-CD28 Abs produced more IFN-gamma, but less IL-4, as compared with males. Treatment of CD4(+) T cells with estrogen significantly increased, whereas testosterone treatment decreased the IL-12-induced production of IFN-gamma. We then examined whether the change in IL-12-induced IFN-gamma production by treatment with sex hormones was due to the regulation of STAT4 activation. We found that estrogen treatment increased the phosphorylation of STAT4 in IL-12-stimulated T cells. We conclude that the increased susceptibility of female NOD mice to the development of autoimmune diabetes could be due to the enhancement of the Th1 immune response through the increase of IL-12-induced STAT4 activation by estrogen.  相似文献   

11.
B cells can serve dual roles in modulating T cell immunity through their potent capacity to present Ag and induce regulatory tolerance. Although B cells are necessary components for the initiation of spontaneous T cell autoimmunity to beta cell Ags in nonobese diabetic (NOD) mice, the role of activated B cells in the autoimmune process is poorly understood. In this study, we show that LPS-activated B cells, but not control B cells, express Fas ligand and secrete TGF-beta. Coincubation of diabetogenic T cells with activated B cells in vitro leads to the apoptosis of both T and B lymphocytes. Transfusion of activated B cells, but not control B cells, into prediabetic NOD mice inhibited spontaneous Th1 autoimmunity, but did not promote Th2 responses to beta cell autoantigens. Furthermore, this treatment induced mononuclear cell apoptosis predominantly in the spleen and temporarily impaired the activity of APCs. Cotransfer of activated B cells with diabetogenic splenic T cells prevented the adoptive transfer of type I diabetes mellitus (T1DM) to NOD/scid mice. Importantly, whereas 90% of NOD mice treated with control B cells developed T1DM within 27 wk, <20% of the NOD mice treated with activated B cells became hyperglycemic up to 1 year of age. Our data suggest that activated B cells can down-regulate pathogenic Th1 immunity through triggering the apoptosis of Th1 cells and/or inhibition of APC activity by the secretion of TGF-beta. These findings provide new insights into T-B cell interactions and may aid in the design of new therapies for human T1DM.  相似文献   

12.
Mounting evidences have suggested that 17beta-estradiol (E2) could have a neuroprotective action in the CNS. In the present study, we wanted to study whether this estrogen was able to protect cerebellar granule cells (CGCs) from apoptosis or excitotoxicity. Our results suggest that E2 has no anti-apoptotic effect in CGCs cultures. The lack of phosphoinositide 3-kinase/Akt pathway activation in CGCs cultures could be on the basis of the failure of estradiol to protect CGCs from potassium-deprivation and ceramide-mediated apoptosis. Moreover, E2 does not protect CGCs from glutamate-mediated death despite activating the extracellular signal regulated kinase kinase/extracellular signal regulated kinase pathway, which suggests that extracellular signal regulated kinase kinase/extracellular signal regulated kinase pathway activation is not sufficient to sustain an estrogen-mediated neuroprotective effect in CGCs cultures. By contrast, we found that the estrogen had a significant neuroprotective effect against hydrogen peroxide-mediated neuronal death. This effect was due to the antioxidant properties of the chemical structure of estradiol, as the biological inactive isomer 17alpha-estradiol was also able to reduce hydrogen peroxide-mediated neuronal death.  相似文献   

13.
BALB/c mice that express IL-10 as a transgene in their pancreatic beta cells (Ins-IL-10 mice) do not develop diabetes, even after crossing to nonobese diabetic (NOD) mice ((Ins-IL-10 x NOD)F(1) mice). However, backcross of F(1) mice to NOD mice (NOD.Ins-IL-10 mice) results in N2 and N3 generations that develop accelerated diabetes. In this study, we found that NOD.Ins-IL-10 mice that expressed BALB/c-derived MHC molecules (NOD.Ins-IL-10(H-2(g7/d)) mice) were protected from diabetes. This protection associated with peri-islet infiltration and preserved beta cell function. Moreover, expression of I-A(d) and I-E(d) MHC class II molecules of BALB/c origin was not responsible for protection, but NOD.Ins-IL-10 mice that expressed BALB/c MHC class I D(d) molecules (NOD.Ins-IL-10(H-2(g7/d)) mice) did not develop diabetes. To directly test the possibility of a protective role of H-2D(d) in the development of accelerated diabetes, we generated transgenic mice expressing D(d) under the control of the MHC class I promoter. We found that double transgenic NOD.Ins-IL-10-D(d) mice developed accelerated diabetes in a fashion similar to NOD.Ins-IL-10 mice that were D(d) negative. Microsatellite analysis of H-2D(d)-linked loci confirmed association between BALB/c-derived alleles and protection of NOD.Ins-IL-10(H-2(g7/d)) mice. These results suggest a control of H-2D(d)-linked gene(s) on IL-10-mediated acceleration of autoimmune diabetes and dominant protection of the D(d) region in NOD.Ins-IL-10 mice.  相似文献   

14.
Several studies have provided indirect evidence in support of a role for beta cell-specific Th2 cells in regulating insulin-dependent diabetes (IDDM). Whether a homogeneous population of Th2 cells having a defined beta cell Ag specificity can prevent or suppress autoimmune diabetes is still unclear. In fact, recent studies have demonstrated that beta cell-specific Th2 cell clones can induce IDDM. In this study we have established Th cell clones specific for glutamic acid decarboxylase 65 (GAD65), a known beta cell autoantigen, from young unimmunized nonobese diabetic (NOD) mice. Adoptive transfer of a GAD65-specific Th2 cell clone (characterized by the secretion of IL-4, IL-5, and IL-10, but not IFN-gamma or TGF-beta) into 2- or 12-wk-old NOD female recipients prevented the progression of insulitis and subsequent development of overt IDDM. This prevention was marked by the establishment of a Th2-like cytokine profile in response to a panel of beta cell autoantigens in cultures established from the spleen and pancreatic lymph nodes of recipient mice. The immunoregulatory function of a given Th cell clone was dependent on the relative levels of IFN-gamma vs IL-4 and IL-10 secreted. These results provide direct evidence that beta cell-specific Th2 cells can indeed prevent and suppress autoimmune diabetes in NOD mice.  相似文献   

15.
Genetic and environmental factors are decisive in the etiology of type 1 diabetes. Viruses have been proposed as a triggering environmental event and some evidences have been reported: type I IFNs exist in the pancreata of diabetic patients and transgenic mice expressing these cytokines in beta cells develop diabetes. To determine the role of IFNbeta in diabetes, we studied transgenic mice expressing human IFNbeta in the beta cells. Autoimmune features were found: MHC class I islet hyperexpression, T and B cells infiltrating the islets and transfer of the disease by lymphocytes. Moreover, the expression of beta(2)-microglobulin, preproinsulin, and glucagon in the thymus was not altered by IFNbeta, thus suggesting that the disease is caused by a local effect of IFNbeta, strong enough to break the peripheral tolerance to beta cells. This is the first report of the generation of NOD (a model of spontaneous autoimmune diabetes) and nonobese-resistant (its homologous resistant) transgenic mice expressing a type I IFN in the islets: transgenic NOD and nonobese-resistant mice developed accelerated autoimmune diabetes with a high incidence of the disease. These results indicate that the antiviral cytokine IFNbeta breaks peripheral tolerance to beta cells, influences the insulitis progression and contributes to autoimmunity in diabetes and nondiabetes- prone mice.  相似文献   

16.
The development of type 1 diabetes in animal models is T cell and macrophage dependent. Islet inflammation begins as peripheral benign Th2 type insulitis and progresses to destructive Th1 type insulitis, which is driven by the innate immune system via secretion of IL-12 and IL-18. We now report that daily application of IL-18 to diabetes-prone female nonobese diabetic mice, starting at 10 wk of age, suppresses diabetes development (p < 0.001, 65% in sham-treated animals vs 33% in IL-18-treated animals by 140 days of age). In IL-18-treated animals, we detected significantly lower intraislet infiltration (p < 0.05) and concomitantly an impaired progression from Th2 insulitis to Th1-dependent insulitis, as evidenced from IFN-gamma and IL-10 mRNA levels in tissue. The deficient progression was probably due to lesser mRNA expression of the Th1 driving cytokines IL-12 and IL-18 by the innate immune system (p < 0.05). Furthermore, the mRNA expression of inducible NO synthase, a marker of destructive insulitis, was also not up-regulated in the IL-18-treated group. IL-18 did not exert its effect at the levels of islet cells. Cultivation of islets with IL-18 affected NO production or mitochondrial activity and did not protect from the toxicity mediated by IL-1beta, TNF-alpha, and IFN-gamma. In conclusion, we show for the first time that administration of IL-18, a mediator of the innate immune system, suppresses autoimmune diabetes in nonobese diabetic mice by targeting the Th1/Th2 balance of inflammatory immune reactivity in the pancreas.  相似文献   

17.
NK cells from NOD mice induced with poly(I:C) in vivo exhibit low cytotoxicity against a range of target cells, but the genetic mechanisms controlling this defect are yet to be elucidated. Defects in the expression of NKG2D and its ligands, the RAE-1 molecules, have been hypothesized to contribute to the reduced NK function present in NOD mice. In this study, we show that segregation of the NK-mediated killing phenotype did not correlate with the NOD Raet1 haplotype and that the large alterations in NKG2D expression previously reported on NK cells expanded in vitro were not observed in primary, poly(I:C)-elicited NK cells in vivo. Additional studies indicate a complex genetic control of defective NOD NK cells including genes linked to the MHC and possibly those that are associated with an altered cytokine response to the TLR3-agonist poly(I:C).  相似文献   

18.
The influence of maternally transmitted immunoglobulins on the development of autoimmune diabetes mellitus in genetically susceptible human progeny remains unknown. Given the presence of islet beta cell-reactive autoantibodies in prediabetic nonobese diabetic (NOD) mice, we abrogated the maternal transmission of such antibodies in order to assess their influence on the susceptibility of progeny to diabetes. First, we used B cell-deficient NOD mothers to eliminate the transmission of maternal immunoglobulins. In a complementary approach, we used immunoglobulin transgenic NOD mothers to exclude autoreactive specificities from the maternal B-cell repertoire. Finally, we implanted NOD embryos in pseudopregnant mothers of a non-autoimmune strain. The NOD progeny in all three groups were protected from spontaneous diabetes. These findings demonstrate that the maternal transmission of antibodies is a critical environmental parameter influencing the ontogeny of T cell-mediated destruction of islet beta cells in NOD mice. It will be important to definitively determine whether the transmission of maternal autoantibodies in humans affects diabetes progression in susceptible offspring.  相似文献   

19.
High-light-induced decrease in photosystem II (PSII) electron transfer activity was studied in high- and low-light-grown pumpkin (Cucurbita pepo L.) plants in vivo and in vitro. The PSII light-harvesting antenna of the low-light leaves was estimated to be twice as big as that of the high-light leaves. The low-light leaves were more susceptible to photoinhibition in vivo. However, thylakoids isolated from these two plant materials were equally sensitive to photoinhibition when illuminated in the absence of external electron acceptors. Only the intensity of the photoinhibitory light and the chlorophyll concentration of the sample, not the size of the light-harvesting antenna, determined the rate of PSII photoinhibition in vitro. Because excitation of the reaction center and not only the antenna chlorophylls is a prerequisite for photoinhibition of PSII activity, independence of photoinhibition on antenna size provides support for the hypothesis (Schatz EH, Brock H, Holzwarth AR [1988] Biophys J 54: 397-405) that the excitations of the antenna chlorophylls are in equilibrium with the excitations of the reaction centers. Better tolerance of the high-light leaves in vivo was due to a more active repair process and more powerful protective mechanisms, including photosynthesis. Apparently, some protective mechanism of the high-light-grown plants is at least partially active at low temperature. The protective mechanisms do not appear to function in vitro.  相似文献   

20.
The interplay of CD4(+) and CD8(+) T cells targeting autoantigens is responsible for the progression of a number of autoimmune diseases, including type 1 diabetes mellitus (T1D). Understanding the molecular mechanisms that regulate T cell activation is crucial for designing effective therapies for autoimmune diseases. We probed a panel of Abs with T cell-modulating activity and identified a mAb specific for the H chain of CD98 (CD98hc) that was able to suppress T cell proliferation. The anti-CD98hc mAb also inhibited Ag-specific proliferation and the acquisition of effector function by CD4(+) and CD8(+) T cells in vitro and in vivo. Injection of the anti-CD98hc mAb completely prevented the onset of cyclophosphamide-induced diabetes in NOD mice. Treatment of diabetic NOD mice with anti-CD98hc reversed the diabetic state to normal levels, coincident with decreased proliferation of CD4(+) T cells. Furthermore, treatment of diabetic NOD mice with CD98hc small interfering RNA resolved T1D. These data indicate that strategies targeting CD98hc might have clinical application for treating T1D and other T cell-mediated autoimmune diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号