首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effector T cell subset, Th17, plays a significant role in the pathogenesis of multiple sclerosis and of other autoimmune diseases. The signature cytokine, IL-17, engages the IL-17R and recruits the E3-ligase NF-κB activator 1 (Act1) upon stimulation. In this study, we examined the role of TNFR-associated factor (TRAF)4 in IL-17 signaling and Th17-mediated autoimmune encephalomyelitis. Primary cells from TRAF4-deficient mice displayed markedly enhanced IL-17-activated signaling pathways and induction of chemokine mRNA. Adoptive transfer of MOG35-55 specific wild-type Th17 cells into TRAF4-deficient recipient mice induced an earlier onset of disease. Mechanistically, we found that TRAF4 and TRAF6 used the same TRAF binding sites on Act1, allowing the competition of TRAF4 with TRAF6 for the interaction with Act1. Taken together, the results of this study reveal the necessity of a unique role of TRAF4 in restricting the effects of IL-17 signaling and Th17-mediated disease.  相似文献   

2.
IL-18 is now identified as a pleiotropic cytokine that acts as a cofactor for both Th1 and Th2 cell development. Type 1 diabetes is considered a Th1-type autoimmune disease, and to date, the suppressive effect of exogenous IL-18 on the development of diabetes has been reported in 10-wk-old nonobese diabetic (NOD) mice. In the present study we administered exogenous IL-18 systemically in 4-wk-old NOD mice using i.m. injection of the IL-18 expression plasmid DNA (pCAGGS-IL-18) with electroporation. Contrary to previous reports, the incidence of diabetes development was significantly increased in NOD mice injected with pCAGGS-IL-18 compared with that in control mice. Systemic and pancreatic cytokine profiles deviated to a Th1-dominant state, and the the frequency of glutamic acid decarboxylase-reactive IFN-gamma-producing CD4(+) cells was also high in the IL-18 group. Moreover, it was suggested that the promoting effect of IL-18 might be associated with increased peripheral IL-12, CD86, and pancreatic IFN-inducible protein-10 mRNA expression levels. In conclusion, we demonstrate here that IL-18 plays a promoting role as an enhancer of Th1-type immune responses in diabetes development early in the spontaneous disease process, which may contribute to elucidating the pathogenesis of type 1 diabetes.  相似文献   

3.
Linomide prevents the development of autoimmune insulitis and insulin-deficient diabetes mellitus in female NOD mice. Linomide prevents development of autoimmune manifestations in other experimentally induced and spontaneous autoimmune diseases as well, but the mechanism of action is unknown. The present report summarizes our investigations on the effect of Linomide on different functional T cell subsets in NOD mice analyzed according to their cytokine profile. Supernatants from cultured splenocytes and peritoneal cells taken from Linomide-treated mice contained lower levels of TNFalpha, IL-1 beta, IFN gamma and IL-12 versus higher levels of IL-4, IL-6 and IL-10 in comparison with supernatants from cultures of untreated mice. Our results suggest that regulation of autoimmunity following oral Linomide administration in NOD mice induces a shift from Th(1) to Th(2) phenotype response, thereby preventing the development of diabetes by active cytokine-induced immunoregulation of T cell subsets, including downregulation of Th(1) and upregulation of Th(2).  相似文献   

4.
CXCL10, a chemokine for Th1 cells, is involved in the pathogenesis of various Th1-dominant autoimmune diseases. Type 1 diabetes is considered to be a Th1-dominant autoimmune disease, and a suppressive effect of CXCL10 neutralization on diabetes development has been reported in a cyclophosphamide-induced accelerated diabetes model through induction of beta cell proliferation. However, intervention in a diabetes model might bring about opposite effects, depending on the timing, amount, or method of treatment. In the present study, we examined the effect of CXCL10 neutralization in a "spontaneous diabetes" model of NOD mice, using CXCL10 DNA vaccination (pCAGGS-CXCL10). pCAGGS-CXCL10 treatment in young NOD mice induced the production of anti-CXCL10 Ab in vivo and suppressed the incidence of spontaneous diabetes, although this treatment did not inhibit insulitis or alter the immunological response. pCAGGS-CXCL10 treatment enhanced the proliferation of pancreatic beta cells, resulting in an increase of beta cell mass in this spontaneous diabetes model as well. Therefore, CXCL10 neutralization is suggested to be useful for maintaining beta cell mass at any stage of autoimmune diabetes.  相似文献   

5.
IL-12 and IL-12 antagonist administration to nonobese diabetic (NOD) mice accelerates and prevents insulin-dependent diabetes mellitus (IDDM), respectively. To further define the role of endogenous IL-12 in the development of diabetogenic Th1 cells, IL-12-deficient NOD mice were generated and analyzed. Th1 responses to exogenous Ags were reduced by approximately 80% in draining lymph nodes of these mice, and addition of IL-12, but not IL-18, restored Th1 development in vitro, indicating a nonredundant role of IL-12. Moreover, spontaneous Th1 responses to a self Ag, the tyrosine phosphatase-like IA-2, were undetectable in lymphoid organs from IL-12-deficient, in contrast to wild-type, NOD mice. Nevertheless, wild-type and IL-12-deficient NOD mice developed similar insulitis and IDDM. Both in wild-type and IL-12-deficient NOD mice, approximately 20% of pancreas-infiltrating CD4+ T cells produced IFN-gamma, whereas very few produced IL-10 or IL-4, indicating that IDDM was associated with a type 1 T cell infiltrate in the target organ. T cell recruitment in the pancreas seemed favored in IL-12-deficient NOD mice, as revealed by increased P-selectin ligand expression on pancreas-infiltrating T cells, and this could, at least in part, compensate for the defective Th1 cell pool recruitable from peripheral lymphoid organs. Residual Th1 cells could also accumulate in the pancreas of IL-12-deficient NOD mice because Th2 cells were not induced, in contrast to wild-type NOD mice treated with an IL-12 antagonist. Thus, a regulatory pathway seems necessary to counteract the pathogenic Th1 cells that develop in the absence of IL-12 in a spontaneous chronic progressive autoimmune disease under polygenic control, such as IDDM.  相似文献   

6.
7.
Lubberts E 《Cytokine》2008,41(2):84-91
Interleukin-17A (IL-17A) contributes to the pathogenesis of arthritis. Data from experimental arthritis indicate IL-17 receptor signaling as a critical pathway in turning an acute synovitis into a chronic destructive arthritis. The identification of six IL-17 family members (IL-17A-F) may extend the role of this novel cytokine family in the pathogenesis of chronic destructive joint inflammation. Whether the successful anti-IL-17A cytokine therapy in murine arthritis can be effectively translated to human arthritis need to be tested in clinical trials in humans. Interestingly, IL-17A and IL-17F are secreted by the novel T helper subset named Th17. This novel pathogenic T cell population induces autoimmune inflammation in mice and is far more efficient at inducing Th1-mediated autoimmune inflammation in mice than classical Th1 cells (IFN-gamma). In addition to IL-17A and IL-17F, Th17 cells are characterized by expression of IL-6, TNF, GM-CSF, IL-21, IL-22 and IL-26. Th17 cells have been established as a separate lineage of T helper cells in mice distinct from conventional Th1 and Th2 cells. Whether this also applies to human Th17 and whether RA is a Th1 or a Th17 mediated disease is still not clear. This review summarizes the findings about the role of IL-17 in arthritis and discusses the impact of the discovery of the novel Th17 cells for arthritis. Further studies are needed to unravel the role of Th17 cells and the interplay of IL-17 and other Th17 cytokines in the pathogenesis of arthritis and whether regulating Th17 cell activity will have additional value compared to neutralizing IL-17A activity alone. This might help to reach the ultimate goal not only to treat RA patients but to prevent the development of this crippling disease.  相似文献   

8.
We previously found that ingestion of an extract of Ninjin-to (NJT; Ren-Shen-Tang) suppressed the development of autoimmune diabetes in C57BL/KsJ mice induced by multiple low doses of streptozotocin. To verify this effects on spontaneous autoimmune diabetes, the effects of NJT on NOD mice were investigated in the present study. NJT, provided in drinking water (0.25%, 450 mg/kg/day) from 6 weeks of age, significantly prevented the incidence of spontaneous diabetes in female NOD mice at 30 weeks of age (2/10) compared with that of the controls (7/10), with no effects on body growth or food intake. Even in non-diabetic mice, the blood glucose levels of the NOD controls gradually increased with age, while such increase in NJT-treated mice was significantly suppressed by preventing any deficiency of glucose tolerance. NJT also significantly suppressed the progression of insulitis, which causes insulin deficiency and diabetes. It is well known that NOD mice develop insulitis and diabetes because of their Th1-dominant autoimmune response. IFN-gamma production from splenic T lymphocytes stimulated with anti-CD3 monoclonal antibodies was increased, whereas IL-4 production was decreased in NOD controls compared to age- and sex-matched normal ICR mice. NJT-treatment reduced these deviations of cytokine production in NOD mice. These data all suggest that NJT can prevent spontaneous insulitis and diabetes by the modification of deviated cytokine production in NOD mice.  相似文献   

9.
Leading hypotheses to explain helminth-mediated protection against autoimmunity postulate that type 2 or regulatory immune responses induced by helminth infections in the host limit pathogenic Th1-driven autoimmune responses. We tested these hypotheses by investigating whether infection with the filarial nematode Litomosoides sigmodontis prevents diabetes onset in IL-4-deficient NOD mice and whether depletion or absence of regulatory T cells, IL-10, or TGF-β alters helminth-mediated protection. In contrast to IL-4-competent NOD mice, IL-4-deficient NOD mice failed to develop a type 2 shift in either cytokine or Ab production during L. sigmodontis infection. Despite the absence of a type 2 immune shift, infection of IL-4-deficient NOD mice with L. sigmodontis prevented diabetes onset in all mice studied. Infections in immunocompetent and IL-4-deficient NOD mice were accompanied by increases in CD4(+)CD25(+)Foxp3(+) regulatory T cell frequencies and numbers, respectively, and helminth infection increased the proliferation of CD4(+)Foxp3(+) cells. However, depletion of CD25(+) cells in NOD mice or Foxp3(+) T cells from splenocytes transferred into NOD.scid mice did not decrease helminth-mediated protection against diabetes onset. Continuous depletion of the anti-inflammatory cytokine TGF-β, but not blockade of IL-10 signaling, prevented the beneficial effect of helminth infection on diabetes. Changes in Th17 responses did not seem to play an important role in helminth-mediated protection against autoimmunity, because helminth infection was not associated with a decreased Th17 immune response. This study demonstrates that L. sigmodontis-mediated protection against diabetes in NOD mice is not dependent on the induction of a type 2 immune shift but does require TGF-β.  相似文献   

10.
Nonobese diabetic (NOD) mice and some human type 1 diabetes (T1D) patients manifest low to high levels of other autoimmune pathologies. Skewing their cytokine production from a Th1 (primarily IFN-gamma) to a Th2 (primarily IL-4 and IL-10) pattern is a widely proposed approach to dampen the pathogenicity of autoreactive diabetogenic T cells. However, it is important that altered cytokine balances not enhance any other autoimmune proclivities to dangerous levels. Murine CD4 T cells are characterized by a reciprocal relationship between the production of IFN-gamma and expression of the beta-chain component of its receptor (IFN-gamma RB). Thus, NOD mice constitutively expressing a CD2 promoter-driven IFN-gamma RB transgene in all T cells are Th1-deficient. Unexpectedly, NOD.IFN-gamma RB Tg mice were found to develop a lethal early paralytic syndrome induced by a CD8 T cell-dependent autoimmune-mediated myositis. Furthermore, pancreatic insulitis levels were not diminished in 9-wk-old NOD.IFN-gamma RB Tg females, and overt T1D developed in the few that survived to an older age. Autoimmune-mediated myositis is only occasionally detected in standard NOD mice. Hence, some manipulations diminishing Th1 responses can bring to the forefront what are normally secondary autoimmune pathologies in NOD mice, while also failing to dependably abrogate pancreatic beta cell destruction. This should raise a cautionary note when considering the use of protocols that induce alterations in cytokine balances as a means of blocking progression to overt T1D in at-risk humans.  相似文献   

11.
The protective effect of pregnancy on putative Th1-mediated autoimmune diseases, such as multiple sclerosis and rheumatoid arthritis, is associated with a Th1 to Th2 immune shift during pregnancy. The hormone estriol increases during pregnancy and has been shown to ameliorate experimental autoimmune encephalomyelitis and collagen-induced arthritis. In addition, estrogens induce cytokine changes consistent with a Th1 to Th2 shift when administered in vitro to human immune cells and in vivo to mice. In a pilot trial, oral estriol treatment of relapsing remitting multiple sclerosis patients caused significant decreases in enhancing lesions on brain magnetic resonance imaging. Here, the immunomodulatory effects of oral estriol therapy were assessed. PBMCs collected longitudinally during the trial were stimulated with mitogens, recall Ags, and glatiramer acetate. Cytokine profiles of stimulated PBMCs were determined by intracellular cytokine staining (IL-5, IL-10, IL-12 p40, TNF-alpha, and IFN-gamma) and cytometric bead array (IL-2, IL-4, IL-5, IL-10, TNF-alpha, and IFN-gamma). Significantly increased levels of IL-5 and IL-10 and decreased TNF-alpha were observed in stimulated PBMC isolated during estriol treatment. These changes in cytokines correlated with reductions of enhancing lesions on magnetic resonance imaging in relapsing remitting multiple sclerosis. The increase in IL-5 was primarily due to an increase in CD4(+) and CD8(+) T cells, the increase in IL-10 was primarily due to an increase in CD64(+) monocytes/macrophages with some effect in T cells, while the decrease in TNF-alpha was primarily due to a decrease in CD8(+) T cells. Further study of oral estriol therapy is warranted in Th1-mediated autoimmune diseases with known improvement during pregnancy.  相似文献   

12.
Numerous immunostimulatory protocols inhibit the development of T cell-mediated autoimmune insulin-dependent diabetes mellitus (IDDM) in the nonobese diabetic (NOD) mouse model. Many of these protocols, including treatment with the nonspecific immunostimulatory agents CFA or bacillus Calmette-Guérin (BCG) vaccine, have been reported to mediate protection by skewing the pattern of cytokines produced by pancreatic beta-cell autoreactive T cells from a Th1 (IFN-gamma) to a Th2 (IL-4 and IL-10) profile. However, most of these studies have documented associations between such cytokine shifts and disease protection rather than a cause/effect relationship. To partially address this issue we produced NOD mice genetically deficient in IFN-gamma, IL-4, or IL-10. Elimination of any of these cytokines did not significantly alter the rate of spontaneous IDDM development. Additional experiments using these mice confirmed that CFA- or BCG-elicited diabetes protection is associated with a decreased IFN-gamma to IL-4 mRNA ratio within T cell-infiltrated pancreatic islets, but this is a secondary consequence rather than the cause of disease resistance. Unexpectedly, we also found that the ability of BCG and, to a lesser extent, CFA to inhibit IDDM development in standard NOD mice is actually dependent upon the presence of the Th1 cytokine, IFN-gamma. Collectively, our studies demonstrate that while Th1 and Th2 cytokine shifts may occur among beta-cell autoreactive T cells of NOD mice protected from overt IDDM by various immunomodulatory therapies, it cannot automatically be assumed that this is the cause of their disease resistance.  相似文献   

13.
CD4(+) T cells are critical for host defense but are also major drivers of immune-mediated diseases. The classical view of Th1 and Th2 subtypes of CD4(+) T cells was recently revised by the identification of the Th17 lineage of CD4(+) T cells that produce IL-17, which have been found to be critical in the pathogenesis of autoimmune and other diseases. Mechanisms controlling the differentiation of Th17 cells have been well described, but few feasible targets for therapeutically reducing Th17 cells are known. The generation of Th17 cells requires IL-6 and activation of STAT3. During polarization of CD4(+) T cells to Th17 cells, we found that inhibition of glycogen synthase kinase-3 (GSK3) blocked IL-6 production, STAT3 activation, and polarization to Th17 cells. Polarization of CD4(+) T cells to Th17 cells increased by 10-fold the expression of GSK3β protein levels in Th17 cells, whereas GSK3β was unaltered in regulatory T cells. Diminishing GSK3 activity either pharmacologically or molecularly blocked Th17 cell production, and increasing GSK3 activity promoted polarization to Th17 cells. In vivo inhibition of GSK3 in mice depleted constitutive Th17 cells in intestinal mucosa, blocked Th17 cell generation in the lung after Francisella tularensis infection, and inhibited the increase in spinal cord Th17 cells and disease symptoms in the experimental autoimmune encephalomyelitis mouse model of multiple sclerosis. These findings identify GSK3 as a critical mediator of Th17 cell production and indicate that GSK3 inhibitors provide a potential therapeutic intervention to control Th17-mediated diseases.  相似文献   

14.
Interleukin (IL)-10 is a potent anti-inflammatory cytokine and ablation of IL-10 exacerbates Th1-type autoimmune diseases. Even though type 1 diabetes (T1D) in NOD mice is believed to be Th1-mediated, the incidence and severity of T1D is unaltered in IL-10-deficient NOD mice raised under pathogen-free conditions. We describe for the first time, the outcome of IL-10 deficiency on islet and other organ-specific autoimmunity in NOD mice raised in a conventional facility. IL-10-deficient NOD mice under such conditions were protected from spontaneous as well as cyclophosphamide-induced diabetes, but were susceptible to diabetes induced by adoptive transfer of splenocytes from spontaneously diabetic NOD mice. Whereas the incidence of rectal prolapse was very high in this NOD.IL-10(-/-) mouse colony, IL-10-deficient C57Bl/6 mice raised under similar conditions seldom developed rectal prolapse. While injection of complete Freund's adjuvant (CFA) significantly reduced insulitis, it did not ameliorate colitis in IL-10-deficient NOD mice indicating differential regulation of organ-specific autoimmunity by CFA. Phenotypic characterization of IL-10(-/-) mice revealed a significant increase in splenic macrophage numbers in NOD but not on the B6 background. This was accompanied by a heightened systemic inflammatory cytokine response and mortality following in vivo challenge with a toll-like receptor 9 agonist, CpG-containing DNA.  相似文献   

15.
16.
17.
Newly discovered IL-9-producing helper T cells (Th9) reportedly exert both aggravating and suppressive roles on experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis. However, it is still unclear whether Th9 is a distinct Th cell subset and how IL-9 functions in the CNS. In this study, we show that IL-9 is produced by naive CD4(+) T cells that were stimulated with anti-CD3 and anti-CD28 Abs under the conditions of Th2-, inducible regulatory T cell-, Th17-, and Th9-polarizing conditions and that IL-9 production is significantly suppressed in the absence of IL-4, suggesting that IL-4 is critical for the induction of IL-9 by each producing cell. The IL-9 receptor complex, IL-9R and IL-2Rγ, is constitutively expressed on astrocytes. IL-9 induces astrocytes to produce CCL-20 but not other chemokines, including CCL-2, CCL-3, and CXCL-2 by astrocytes. The conditioned medium of IL-9-stimulated astrocytes induces Th17 cell migration in vitro, which is cancelled by adding anti-CCL-20 neutralizing Abs. Treating with anti-IL-9 neutralizing Abs attenuates experimental autoimmune encephalomyelitis, decreases the number of infiltrating Th17 cells, and reduces CCL-20 expression in astrocytes. These results suggest that IL-9 is produced by several Th cell subsets in the presence of IL-4 and induces CCL-20 production by astrocytes to induce the migration of Th17 cells into the CNS.  相似文献   

18.
Thiazolidinediones acting as PPAR-gamma agonists are a new generation of oral antidiabetics addressing insulin resistance as a main feature of type-2 diabetes. In accordance to our results, pre-clinical studies have demonstrated that the thiazolinedione troglitazone prevents the development of insulin-dependent autoimmune type-1 diabetes. To investigate whether TGZ acts by affecting the ICAM-1/LFA-1 pathway and/or the Th1/Th2 cytokine balance in NOD mice, we analysed the IL-1beta-induced ICAM-1 expression on islet-cells and the LFA-1, CD25, IL-2, IFN-gamma, IL-4, and IL-10 expression on splenocytes. After 200 days of oral TGZ administration, islet cells from TGZ-treated NOD mice showed a reduced ICAM-1 expression in response to the pro-inflammatory cytokine IL-1beta. The expression of the ligand LFA-1 on CD4(+) and CD8(+) T-cells was comparable to that of placebo- and untreated controls. Also, the expression of Th1/Th2 cytokines was comparable in groups receiving TGZ or Placebo. Nevertheless, the investigated NOD mice segregated into IFN-gamma low- and IFN-gamma high producers as revealed by cluster analysis. Interestingly, the majority of TGZ-treated mice belonged to the cluster of IFN-gamma low producers. Thus, the prevention of autoimmune diabetes in NOD mice by TGZ seems to be associated with suppression of IL-1beta-induced ICAM-1 expression leading to a reduced vulnerability of pancreatic beta-cells during the effector stage of beta-cell destruction. In addition, IFN-gamma production was modulated, implicating that alteration of the Th1/Th2 cytokine balance might have contributed to diabetes prevention. The findings of this study suggest that TGZ exerts its effects by influencing both the beta-cells as the target of autoimmune beta-cell destruction and the T-cells as major effectors of the autoimmune process.  相似文献   

19.
A role for regulatory lymphocytes has been demonstrated in the pathogenesis of type 1 diabetes in the NOD mouse but the nature of these cells is debated. CD1d-restricted NKT lymphocytes have been implicated in this process. Previous reports of reduced diabetes incidence in NOD mice in which the numbers of NKT cells are artificially increased have been attributed to the enhanced production of IL-4 by these cells and a role for classical NKT cells, using the Valpha14-Jalpha18 rearrangement. We now show that overexpression in NOD mice of CD1d-restricted TCR Valpha3.2(+)Vbeta9(+) NKT cells producing high levels of IFN-gamma but low amounts of IL-4 leads to prevention of type 1 diabetes, demonstrating a role for nonclassical CD1d-restricted NKT cells in the regulation of autoimmune diabetes.  相似文献   

20.
A major neurotransmitter dopamine transmits signals via five different seven-transmembrane G protein-coupled receptors termed D1-D5. Several studies have shown that dopamine not only mediates interactions into the nervous system, but can contribute to the modulation of immunity via receptors expressed on immune cells. We have previously shown an autocrine/paracrine release of dopamine by dendritic cells (DCs) during Ag presentation to naive CD4(+) T cells and found efficacious results of a D1-like receptor antagonist SCH-23390 in the experimental autoimmune encephalomyelitis mouse model of multiple sclerosis and in the NOD mouse model of type I diabetes, with inhibition of Th17 response. This study aimed to assess the role of dopaminergic signaling in Th17-mediated immune responses and in the pathogenesis of rheumatoid arthritis (RA). In human naive CD4(+) T cells, dopamine increased IL-6-dependent IL-17 production via D1-like receptors, in response to anti-CD3 plus anti-CD28 mAb. Furthermore, dopamine was localized with DCs in the synovial tissue of RA patients and significantly increased in RA synovial fluid. In the RA synovial/SCID mouse chimera model, although a selective D2-like receptor antagonist haloperidol significantly induced accumulation of IL-6(+) and IL-17(+) T cells with exacerbated cartilage destruction, SCH-23390 strongly suppressed these responses. Taken together, these findings indicate that dopamine released by DCs induces IL-6-Th17 axis and causes aggravation of synovial inflammation of RA, which is the first time, to our knowledge, that actual evidence has shown the pathological relevance of dopaminergic signaling with RA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号