共查询到20条相似文献,搜索用时 31 毫秒
1.
Multivesicular body (MVB) formation is the result of invagination and budding of the endosomal limiting membrane into its intralumenal space. These intralumenal vesicles (ILVs) contain a subset of endosomal transmembrane cargoes destined for degradation within the lysosome, the result of active selection during MVB sorting. Membrane bending and scission during ILV formation is topologically similar to cytokinesis in that both events require the abscission of a membrane neck that is oriented away from the cytoplasm. The endosomal sorting complexes required for transport (ESCRTs) represent cellular machinery whose function makes essential contributions to both of these processes. In particular, the AAA-ATPase Vps4 and its substrate ESCRT-III are key components that seem to execute the membrane abscission reaction. This review summarizes current knowledge about the Vps4-ESCRT-III system and discusses a model for how the recruitment of Vps4 to the different sites of function might be regulated. 相似文献
2.
Kirisits A Pils D Krainer M 《The international journal of biochemistry & cell biology》2007,39(12):2173-2182
Positive regulation of epidermal growth factor receptor signalling is related to many human malignancies. Besides overexpression and gain of function mutations, the escape from negative regulation through an increase in epidermal growth factor receptor stability has evolved as yet another key factor contributing to enhanced receptor activity. Intensive research over the past years has provided considerable evidence concerning the molecular mechanisms which provide epidermal growth factor receptor degradation. c-Cbl mediated ubiquitination, endocytosis via clathrin-coated pits, endosomal sorting and lysosomal degradation have become well-investigated cornerstones. Recent findings on the interdependency of the endosomal sorting complexes required for transport in multivesicular body sorting, stress the topicality of receptor tyrosine kinase downregulation. Here, we review the degradation pathway of the epidermal growth factor receptor, following the receptor from ligand binding to the lysosome and illustrating different modes of oncogenic deregulation. 相似文献
3.
真核细胞中,功能高度保守的内体蛋白分选转运装置ESCRT在胞吞途径和蛋白分泌途径中均扮演重要角色。植物细胞中,该装置包含ESCRT-Ⅰ、ESCRT-Ⅱ、ESCRT-Ⅲ和VPS4/SKD1复合体4个亚基,但缺乏ESCRT-0亚基。ESCRT的每个亚基均由多个蛋白构成。目前,针对ESCRT的研究已经证实,其在泛素化的膜蛋白进入多囊泡体/液泡前体(MVB/PVC)内腔过程中发挥重要调控作用;同时在自噬途径以及应对环境胁迫等方面也具有重要的调节功能。该文首先介绍了植物中ESCRT复合体的组成及生物学功能,然后总结了植物中特有ESCRT复合体组分蛋白的最新研究进展,最后探讨了有关ESCRT复合体研究中尚未解决的重要科学问题。 相似文献
4.
Toxin pores endocytosed during plasma membrane repair traffic into the lumen of MVBs for degradation
Cells permeabilized by the bacterial pore-forming toxin streptolysin O (SLO) reseal their plasma membrane in a Ca(2+) -dependent manner. Resealing involves Ca(2+) -dependent exocytosis of lysosomes, release of acid sphingomyelinase and rapid formation of endosomes that carry the transmembrane pores into the cell. The intracellular fate of the toxin-carrying endocytic vesicles, however, is still unknown. Here, we show that SLO pores removed from the plasma membrane by endocytosis are sorted into the lumen of lysosomes, where they are degraded. SLO-permeabilized cells contain elevated numbers of total endosomes, which increase gradually in size while transitioning from endosomes with flat clathrin coats to large multivesicular bodies (MVBs). Under conditions that allow endocytosis and plasma membrane repair, SLO is rapidly ubiquitinated and gradually degraded, in a process sensitive to inhibitors of lysosomal hydrolysis but not of proteasomes. The endosomes induced by SLO permeabilization become increasingly acidified and promote SLO degradation under normal conditions, but not in cells silenced for expression of Vps24, an ESCRT-III complex component required for the release of intraluminal vesicles into MVBs. Thus, cells dispose of SLO transmembrane pores by ubiquitination/ESCRT-dependent sorting into the lumen of late endosomes/lysosomes. 相似文献
5.
The inositol 1,4,5-trisphosphate receptor (IP3R) is one of two Ca2+ channels that gates Ca2+ release from ER-stores. The ligand IP3, generated upon specific G-protein coupled receptor activation, binds to IP3R to release Ca2+ into the cytosol. IP3R also mediates ER-store Ca2+ release into the mitochondria, under basal as well as stimulatory conditions; an activity that influences cellular bioenergetics and thus, cellular growth and proliferation. In Drosophila neuroendocrine cells expressing a hypomorphic mutant of IP3R, we observed reduced protein translation levels. Here, we discuss the possible molecular mechanism for this observation. We hypothesize that the cellular energy sensor, AMPK connects IP3R mediated Ca2+ release into the mitochondria, to protein translation, via the TOR pathway. 相似文献
6.
In Saccharomyces cerevisiae, amino acid permeases are divided into two classes. One class, represented by the general amino acid permease GAP1, contains permeases regulated in response to the nitrogen source. The other class, including the high affinity tryptophan permease, TAT2, consists of the so-called constitutive permeases. We show that TAT2 is regulated at the level of protein stability. In exponentially growing cells, TAT2 is in the plasma membrane and also accumulates in internal compartments of the secretory pathway. Upon nutrient deprivation or rapamycin treatment, TAT2 is transported to and degraded in the vacuole. The ubiquitination machinery and lysine residues within the NH(2)-terminal 31 amino acids of TAT2 mediate ubiquitination and degradation of the permease. Starvation-induced degradation of internal TAT2 is blocked in sec18, sec23, pep12, and vps27 mutants, but not in sec4, end4, and apg1 mutants, suggesting that, upon nutrient limitation, internal TAT2 is diverted from the late secretory pathway to the vacuolar pathway. Furthermore, our results suggest that TAT2 stability and sorting are controlled by the TOR signaling pathway, and regulated inversely to that of GAP1. 相似文献
7.
8.
Exosomes are membrane vesicles that are secreted by cells upon fusion of multivesicular bodies with the plasma membrane. Exosomal proteomics has emerged as a powerful approach to understand the molecular composition of exosomes and has potential to accelerate biomarker discovery. Different proteomic analysis methods have been previously employed to establish several exosome protein databases. In this study, TFE solution-phase digestion was compared with in-gel digestion and found to yield similar results. Proteomic analysis of urinary exosomes was performed by multidimensional protein identification technology (MudPIT) after TFE digestion. Nearly, 3280 proteins were identified from nine human urine samples with 31% overlap among nine samples. Gene ontology (GO) analysis, coupled with detection of all of the members of ESCRT machinery complex, supports the multivesicular origin of these particles. These results significantly expand the existing database of urinary exosome proteins. Our results also indicate that more than 1000 proteins can be detected from exosomes prepared from as little as 25 mL of urine. This study provides the largest set of proteins present in human urinary exosome proteomes, provides a valuable reference for future studies, and provides methods that can be applied to exosomal proteomic analysis from other tissue sources. 相似文献
9.
Mattei S Ryves WJ Blot B Sadoul R Harwood AJ Satre M Klein G Aubry L 《Developmental biology》2005,279(1):99-113
We have characterized the Dictyostelium homolog of the mammalian protein Alix. Dd-Alix is encoded by a single gene and is expressed during vegetative growth and multicellular development. We showed that the alx null strain fails to complete its developmental program. Past the tight aggregate stage, morphogenesis is impaired, leading to markedly aberrant structures containing vacuolated and undifferentiated cells but no mature spores. The developmental defect is cell-autonomous as most cells remain of the PstB type even when mixed with wild-type cells. Complementation analysis with different Alix constructs allowed the identification of a 101-residue stretch containing a coiled-coil domain essential for Alix function. In addition, we showed that the protein associates in part with vesicular structures and that its distribution on a Percoll gradient overlaps that of the endocytic marker Vamp7. Dd-Alix also co-localizes with Dd-Vps32. In view of our data, and given the role of Vps32 proteins in membrane protein sorting and multivesicular body formation in yeast and mammals, we hypothesize that the developmental defects of the alx null strain result from abnormal trafficking of cell-surface receptors. 相似文献
10.
During cell division, cells undergo membrane remodeling to achieve changes in their size and shape. In addition, cell division entails local delivery and retrieval of membranes and specific proteins as well as remodeling of cytoskeletons, in particular, upon cytokinetic abscission. Accumulating lines of evidence highlight that endocytic membrane removal from and subsequent membrane delivery to the plasma membrane are crucial for the changes in cell size and shape, and that trafficking of vesicles carrying specific proteins to the abscission site participate in local remodeling of membranes and cytoskeletons. Furthermore, the endosomal sorting complex required for transport (ESCRT) machinery has been shown to play crucial roles in cytokinetic abscission. Here, the author briefly overviews membrane-trafficking events early in cell division, and subsequently focus on regulation and functional significance of membrane trafficking involving Rab11 and Arf6 small GTPases in late cytokinesis phases and assembly of the ESCRT machinery in cytokinetic abscission. 相似文献
11.
E3 ubiquitin ligases as regulators of membrane protein trafficking and degradation 总被引:10,自引:0,他引:10
Ubiquitination is a regulated post-translational modification that conjugates ubiquitin (Ub) to lysine residues of target proteins and determines their intracellular fate. The canonical role of ubiquitination is to mediate degradation by the proteasome of short-lived cytoplasmic proteins that carry a single, polymeric chain of Ub on a specific lysine residue. However, protein modification by Ub has much broader and diverse functions involved in a myriad of cellular processes. Monoubiquitination, at one or multiple lysine residues of transmembrane proteins, influences their stability, protein-protein recognition, activity and intracellular localization. In these processes, Ub functions as an internalization signal that sends the modified substrate to the endocytic/sorting compartments, followed by recycling to the plasma membrane or degradation in the lysosome. E3 ligases play a pivotal role in ubiquitination, because they recognize the acceptor protein and hence dictate the high specificity of the reaction. The multitude of E3s present in nature suggests their nonredundant mode of action and the need for their controlled regulation. Here we give a short account of E3 ligases that specifically modify and regulate membrane proteins. We emphasize the intricate network of interacting proteins that contribute to the substrate-E3 recognition and determine the substrate's cellular fate. 相似文献
12.
Misfolding of the prion protein at the plasma membrane induces endocytosis, intracellular retention and degradation 总被引:3,自引:0,他引:3
Suramin induces misfolding of the cellular prion protein (PrP(C)) and interferes with the propagation of infectious scrapie prions. A mechanistic analysis of this effect revealed that suramin-induced misfolding occurs at the plasma membrane and is dependent on the proximal region of the C-terminal domain (aa 90-158) of PrP(C). The conformational transition induces rapid internalization, mediated by the unstructured N-terminal domain, and subsequent intracellular degradation of PrP(C). As a consequence, PrP Delta N adopts a misfolded conformation at the plasma membrane; however, internalization is significantly delayed. We also found that misfolding and intracellular retention of PrP(C) can be induced by copper and that, moreover, copper interferes with the propagation of the pathogenic prion protein (PrP(Sc)) in scrapie-infected N2a cells. Our study revealed a quality control pathway for aberrant PrP conformers present at the plasma membrane and identified distinct PrP domains involved. 相似文献
13.
Sadoul R 《Biology of the cell / under the auspices of the European Cell Biology Organization》2006,98(1):69-77
Alix/AIP1 (ALG-2-interacting protein X/apoptosis-linked-gene-2-interacting protein 1) is an adaptor protein that was first described for its capacity to bind to the calcium-binding protein ALG-2 (apoptosis-linked gene 2), the expression of which seemed necessary for cell death. Over-expression of truncated forms of Alix blocks caspase-dependent and -independent mechanisms of cell death. Numerous observations in yeast and in mammalian cells suggest that Alix controls the making of and trafficking through endosomes called MVBs (multivesicular bodies), which are crucial intermediates within the endolysosomal system. In particular, deletion of Bro1, one of the yeast homologues of Alix, leads to an impairment in the function of MVBs, leading to mis-sorting of proteins normally destined to the vacuole. Mammalian Alix may have a similar function and has been shown to bind to lyso(bis)phosphatidic acid, ESCRT (endosomal sorting complex required for transport) proteins, endophilins and CIN85 (Cbl-interacting protein of 85 kDa), which are all main regulators of the endosomal system. EIAV (equine infectious anaemia virus) and HIV late domains use Alix to recruit the ESCRT machinery in order to bud from the cell surface, underscoring the crucial role of the protein in orchestrating membrane deformation. In this review I develop the hypothesis that the normal function of Alix in the endolysosomal system may be deviated by ALG-2 towards a destructive role during active cell death. 相似文献
14.
Regulation of SR-BI-mediated selective lipid uptake in Chinese hamster ovary-derived cells by protein kinase signaling pathways 总被引:2,自引:0,他引:2
Zhang Y Ahmed AM McFarlane N Capone C Boreham DR Truant R Igdoura SA Trigatti BL 《Journal of lipid research》2007,48(2):405-416
Scavenger receptor, class B, type I (SR-BI) mediates binding and internalization of a variety of lipoprotein and nonlipoprotein ligands, including HDL. Studies in genetically engineered mice revealed that SR-BI plays an important role in HDL reverse cholesterol transport and protection against atherosclerosis. Understanding how SR-BI's function is regulated may reveal new approaches to therapeutic intervention in atherosclerosis and heart disease. We utilized a model cell system to explore pathways involved in SR-BI-mediated lipid uptake from and signaling in response to distinct lipoprotein ligands: the physiological ligand, HDL, and a model ligand, acetyl LDL (AcLDL). In Chinese hamster ovary-derived cells, murine SR-BI (mSR-BI) mediates lipid uptake via distinct pathways that are dependent on the lipoprotein ligand. Furthermore, HDL and AcLDL activate distinct signaling pathways. Finally, mSR-BI-mediated selective lipid uptake versus endocytic uptake are differentially regulated by protein kinase signaling pathways. The protein kinase C (PKC) activator PMA and the phosphatidyl inositol 3-kinase inhibitor wortmannin increase the degree of mSR-BI-mediated selective lipid uptake, whereas a PKC inhibitor has the opposite effect. These data demonstrate that SR-BI's selective lipid uptake activity can be acutely regulated by intracellular signaling cascades, some of which can originate from HDL binding to murine SR-BI itself. 相似文献
15.
16.
17.
Activity-dependent endocytic sorting of kainate receptors to recycling or degradation pathways 下载免费PDF全文
Kainate receptors (KARs) play important roles in the modulation of neurotransmission and plasticity, but the mechanisms that regulate their surface expression and endocytic sorting remain largely unknown. Here, we show that in cultured hippocampal neurons the surface expression of GluR6-containing KARs is dynamically regulated. Furthermore, internalized KARs are sorted into recycling or degradative pathways depending on the endocytotic stimulus. Kainate activation causes a Ca2+- and PKA-independent but PKC-dependent internalization of KARs that are targeted to lysosomes for degradation. In contrast, NMDAR activation evokes a Ca2+-, PKA- and PKC-dependent endocytosis of KARs to early endosomes with subsequent reinsertion back into the plasma membrane. These results demonstrate that GluR6-containing KARs are subject to activity-dependent endocytic sorting, a process that provides a mechanism for both rapid and chronic changes in the number of functional receptors. 相似文献
18.
Nabanita Saha Somnath Dutta Shankari P. Datta Srimonti Sarkar 《European journal of cell biology》2018,97(1):44-62
The ESCRT pathway functions at different subcellular membranes to induce their negative curvature, and it has been largely characterized in model eukaryotes belonging to Opisthokonta. But searches of the genomes of many nonopisthokonts belonging to various supergroups indicate that some of them may harbour fewer ESCRT components. Of the genomes explored thus far, one of the most minimal set of ESCRT components was identified in the human pathogen Giardia lamblia, which belongs to Excavata. Here we report that an ESCRT-mediated pathway most likely operates at the peripheral vesicles, which are located at the cell periphery and the bare zone of this protist. Functional comparison of all the identified putative giardial ESCRT components, with the corresponding well-characterized orthologues from Saccharomyces cerevisiae, indicated that only some of the ESCRT components could functionally substitute for the corresponding yeast proteins. While GlVps25, GlVps2, and all three paralogues of GlVps4, tested positive in functional complementation assays, GlVps22, GlVps20, and GlVps24 did not. Binary interactions of either GlVps22 or GlVps25, with other ESCRT-II components from Giardia or yeast indicate that the giardial Vps36 orthologue is either completely missing or highly diverged. Interactions within the giardial ESCRT-III components also differ from those in yeast; while GlVps46a interacts preferentially with Vps24 compared to Vps2, GlVps46b, like the yeast orthologue, interacts with both. 相似文献
19.
20.
Liang Weng Atsushi Enomoto Hiroshi Miyoshi Kiyofumi Takahashi Naoya Asai Nobuhiro Morone Ping Jiang Jian An Takuya Kato Keisuke Kuroda Takashi Watanabe Masato Asai Maki Ishida‐Takagishi Yoshiki Murakumo Hideki Nakashima Kozo Kaibuchi Masahide Takahashi 《The EMBO journal》2014,33(18):2098-2112
In clathrin‐mediated endocytosis (CME), specificity and selectivity for cargoes are thought to be tightly regulated by cargo‐specific adaptors for distinct cellular functions. Here, we show that the actin‐binding protein girdin is a regulator of cargo‐selective CME. Girdin interacts with dynamin 2, a GTPase that excises endocytic vesicles from the plasma membrane, and functions as its GTPase‐activating protein. Interestingly, girdin depletion leads to the defect in clathrin‐coated pit formation in the center of cells. Also, we find that girdin differentially interacts with some cargoes, which competitively prevents girdin from interacting with dynamin 2 and confers the cargo selectivity for CME. Therefore, girdin regulates transferrin and E‐cadherin endocytosis in the center of cells and their subsequent polarized intracellular localization, but has no effect on integrin and epidermal growth factor receptor endocytosis that occurs at the cell periphery. Our results reveal that girdin regulates selective CME via a mechanism involving dynamin 2, but not by operating as a cargo‐specific adaptor. 相似文献