共查询到20条相似文献,搜索用时 15 毫秒
1.
采用分子动力学方法和全原子模型研究尿素和水分子对模型蛋白S-肽链结构转化的影响。模拟结果显示S-肽链的变性速率常数k值随着尿素浓度的增加而先降低后升高,在尿素浓度为2.9 mol/L时达到最低值。模拟了不同尿素浓度下尿素-肽链、水-肽链以及肽链分子氢键的形成状况。结果表明:尿素浓度较低时,尿素分子与S-肽链的极性氨基酸侧链形成氢键,但不破坏其分子内的骨架氢键,尿素在S-肽链水化层外形成限制性空间,增强了S-肽链的稳定性。随着尿素的升高,尿素分子进入S-肽链内部并与其内部氨基酸残基形成氢键,导致S-肽链的骨架氢键丧失,S-肽链发生去折叠。上述模拟结果与文献报道的实验结果一致,从分子水平上揭示了尿素对蛋白质分子结构变化的影响机制,对于研究和发展蛋白质折叠及稳定化技术具有指导意义。 相似文献
2.
In this study, various molecular dynamics simulations were conducted to investigate the effects of ethanol and temperature on the conformational changes of human lysozyme, which may lead insights into amyloidosis. The analyses of some important structural characteristics, such as backbone root-mean-square deviation, secondary structural stability, radius of gyration, accessible surface area, and hydrophobic contact of the hydrophobic core all show that ethanol tends to destabilize human lysozyme at high temperatures. It can be attributed to that higher temperatures result in the destruction of the native structure of this protein, leading to the exposure of the interior hydrophobic core. At this stage, ethanol plays a role to destroy this region by forming hydrophobic interactions between protein and solvent due to its lower polarity comparing to water. Such newly formed intermolecular interactions accelerate the unfolding of this protein, starting from the core between the alpha- and beta-domains. Our results are in good agreement with the previous hypothesis suggesting that the distortion of the hydrophobic core at the alpha- and beta-interface putatively results in the formation of the initial "seed" for amyloid fibril. Although the present results cannot directly be linked to fibril formation, they still provide valuable insights into amyloidosis of human lysozyme. 相似文献
3.
Human thymidylate synthase (hTS) is an established anticancer target. It catalyses the production of 2'-deoxythymidine-5'-monophosphate, an essential building block for DNA synthesis. Because of the development of cellular drug resistance against current hTS inhibitors, alternative inhibition strategies are needed. hTS exists in two forms, active and inactive, defined by the conformation of the active-site (AS) loop, which carries the catalytic cysteine, C195. To investigate the mechanism of activation and inactivation, targeted molecular dynamics (TMD) simulations of the transitions between active and inactive states of hTS were performed. Analysis of changes in the dihedral angles in the AS loop during different TMD simulations revealed complex conformational transitions. Despite hTS being a homodimeric enzyme and the conformational transition significantly involving the dimer interface, the transition occurs in an asymmetric, sequential manner via an ensemble of pathways. In addition to C195, which reoriented during the simulations, other key residues in the rotation of the AS loop included W182 and R185. The interactions of the cognate bulky W182 residues at the dimer interface hindered the simultaneous twist of the AS loops in the hTS dimer. Interactions of R185, which is unique for hTS, with ligands at different allosteric sites affected the activation transition. In addition to providing insights into the activation/inactivation mechanism of hTS and how conformational transitions can occur in homodimeric proteins, our observations suggest that blocking of AS loop rotation by ligands binding in the large cavity between the loops could be one way to stabilize inactive hTS and inhibit the enzyme. 相似文献
4.
Three-dimensional structures of the natural substrate unit for the enzyme N-acetylglucosamine-transferase II, GlcNAc-Man3-GlcNAc2, were investigated by molecular modelling methods. Molecular dynamics (MD) and molecular mechanics calculations on two hexasaccharides, namely GlcNAc-Man3-GlcNAc2-Asn and GlcNAc-Man3-GlcNAc2-OMe were performed by the Biosym/MSI software using the CVFF and CFF95 force fields in vacuum. The MD simulations were calculated for 3 ns at different simulation temperatures and for two values of dielectric constant, = 1 and = 4. From each 3 ns trajectory, 3050 structures have been optimized. The local minima obtained have been clustered into families exhibiting similar values of glycosidic torsional angles phi, psi, and omega. The influence of the simulation conditions and force fields used on the conformational behaviour and structure of the title oligosaccharides is discussed. 相似文献
5.
Active site modeling in molecular dynamics simulations is investigated for the reduced state of copper azurin. Five simulation runs (5 ns each) were performed at room temperature to study the consequences of a mixed electrostatic/constrained modeling for the coordination between the metal and the polypeptide chain, using for the ligand residues a set of charges that is modified with respect to the apo form of the protein by the presence of the copper ion.The results show that the different charge values do not lead to relevant effects on the geometry of the active site of the protein, as long as bond distance constraints are used for all the five ligand atoms. The distance constraint on the O atom of Gly45 can be removed without altering the active site geometry. The coordination between Cu and the other axial ligand Met121 is outlined as being flexible. Differences are found between the bonds of the copper ion with the two apparently equivalent N1 atoms of His46 and His117.The overall findings are discussed in connection with the issue of determining a model for the active site of azurin suitable to be used in molecular dynamics simulations under unfolding conditions.
Figure Model of azurin active site. Copper ligand residues are cut off at C position except Gly45, for which the portion of backbone connecting it to His46 is shown. Only polar H atoms are shown. All atoms are in standard colors (Cu in violet), and the five ligands are labeled 相似文献
6.
7.
8.
Dongmei Wang Hanyong Jin Junling Wang Shanshan Guan Zuoming Zhang 《Journal of biomolecular structure & dynamics》2016,34(4):749-761
Acylpeptide hydrolases (APH) catalyze the removal of an N-acylated amino acid from blocked peptides. APH is significantly more sensitive than acetylcholinesterase, a target of Alzheimer’s disease, to inhibition by organophosphorus (OP) compounds. Thus, OP compounds can be used as a tool to probe the physiological functions of APH. Here, we report the results of a computational study of molecular dynamics simulations of APH bound to the OP compounds and an exploration of the chlorpyrifos escape pathway using steered molecular dynamics (SMD) simulations. In addition, we apply SMD simulations to identify potential escape routes of chlorpyrifos from hydrolase hydrophobic cavities in the APH-inhibitor complex. Two previously proposed APH pathways were reliably identified by CAVER 3.0, with the estimated relative importance of P1 > P2 for its size. We identify the major pathway, P2, using SMD simulations, and Arg526, Glu88, Gly86, and Asn65 are identified as important residues for the ligand leaving via P2. These results may help in the design of APH-targeting drugs with improved efficacy, as well as in understanding APH selectivity of the inhibitor binding in the prolyl oligopeptidase family. 相似文献
9.
Domenico Alberga Orazio Nicolotti Gianluca Lattanzi Grazia Paola Nicchia Antonio Frigeri Francesco Pisani Valentina Benfenati Giuseppe Felice Mangiatordi 《生物化学与生物物理学报:生物膜》2014
Aquaporin-4 (AQP4) is the predominant water channel in different organs and tissues. An alteration of its physiological functioning is responsible for several disorders of water regulation and, thus, is considered an attractive target with a promising therapeutic and diagnostic potential. Molecular dynamics (MD) simulations performed on the AQP4 tetramer embedded in a bilayer of lipid molecules allowed us to analyze the role of spontaneous fluctuations occurring inside the pore. Following the approach by Hashido et al. [Hashido M, Kidera A, Ikeguchi M (2007) Biophys J 93: 373–385], our analysis on 200 ns trajectory discloses three domains inside the pore as key elements for water permeation. Herein, we describe the gating mechanism associated with the well-known selectivity filter on the extracellular side of the pore and the crucial regulation ensured by the NPA motifs (asparagine, proline, alanine). Notably, on the cytoplasmic side, we find a putative gate formed by two residues, namely, a cysteine belonging to the loop D (C178) and a histidine from loop B (H95). We observed that the spontaneous reorientation of the imidazole ring of H95 acts as a molecular switch enabling H-bond interaction with C178. The occurrence of such local interaction seems to be responsible for the narrowing of the pore and thus of a remarkable decrease in water flux rate. Our results are in agreement with recent experimental observations and may represent a promising starting point to pave the way for the discovery of chemical modulators of AQP4 water permeability. 相似文献
10.
Checking the pH-induced conformational transition of prion protein by molecular dynamics simulations: effect of protonation of histidine residues 下载免费PDF全文
The role of acidic pH in the conversion of human prion protein to the pathogenic isoform is investigated by means of molecular dynamics simulations, focusing the attention on the effect of protonation of histidine residues on the conformational behavior of human PrPC globular domain. Our simulations reveal a significant loss of alpha-helix content under mildly acidic conditions, due to destructuration of the C-terminal part of HB (thus suggesting a possible involvement of HB into the conformational transition leading to the pathogenic isoform) and a transient lengthening of the native beta-sheet. Protonation of His-187 and His-155 seems to be crucial for the onset of the conformational rearrangement. This finding can be related to the existence of a pathogenic mutation, H187R, which is associated with GSS syndrome. Finally, the relevance of our results for the location of a Cu2+-binding pocket in the C-terminal part of the prion is discussed. 相似文献
11.
Ding F Guo W Dokholyan NV Shakhnovich EI Shea JE 《Journal of molecular biology》2005,350(5):1035-1050
We use an integrated computational approach to reconstruct accurately the transition state ensemble (TSE) for folding of the src-SH3 protein domain. We first identify putative TSE conformations from free energy surfaces generated by importance sampling molecular dynamics for a fully atomic, solvated model of the src-SH3 protein domain. These putative TSE conformations are then subjected to a folding analysis using a coarse-grained representation of the protein and rapid discrete molecular dynamics simulations. Those conformations that fold to the native conformation with a probability (P(fold)) of approximately 0.5, constitute the true transition state. Approximately 20% of the putative TSE structures were found to have a P(fold) near 0.5, indicating that, although correct TSE conformations are populated at the free energy barrier, there is a critical need to refine this ensemble. Our simulations indicate that the true TSE conformations are compact, with a well-defined central beta sheet, in good agreement with previous experimental and theoretical studies. A structured central beta sheet was found to be present in a number of pre-TSE conformations, however, indicating that this element, although required in the transition state, does not define it uniquely. An additional tight cluster of contacts between highly conserved residues belonging to the diverging turn and second beta-sheet of the protein emerged as being critical elements of the folding nucleus. A number of commonly used order parameters to identify the transition state for folding were investigated, with the number of native Cbeta contacts displaying the most satisfactory correlation with P(fold) values. 相似文献
12.
Satoshi Yamasaki Tohru Terada Kentaro Shimizu Hidetoshi Kono Akinori Sarai 《Nucleic acids research》2009,37(20):e135
Proteins recognize DNA sequences by two different mechanisms. The first is direct readout, in which recognition is mediated by direct interactions between the protein and the DNA bases. The second is indirect readout, which is caused by the dependence of conformation and the deformability of the DNA structure on the sequence. Various energy functions have been proposed to evaluate the contribution of indirect readout to the free-energy changes in complex formations. We developed a new generalized energy function to estimate the dependence of the deformability of DNA on the sequence. This function was derived from molecular dynamics simulations previously conducted on B-DNA dodecamers, each of which had one possible tetramer sequence embedded at its center. By taking the logarithm of the probability distribution function (PDF) for the base-step parameters of the central base-pair step of the tetramer, its ability to distinguish the native sequence from random ones was superior to that with the previous method that approximated the energy function in harmonic form. From a comparison of the energy profiles calculated with these two methods, we found that the harmonic approximation caused significant errors in the conformational energies of the tetramers that adopted multiple stable conformations. 相似文献
13.
14.
Conformational model of the Holliday junction transition deduced from molecular dynamics simulations 总被引:1,自引:0,他引:1 下载免费PDF全文
Homologous recombination plays a key role in the restart of stalled replication forks and in the generation of genetic diversity. During this process, two homologous DNA molecules undergo strand exchange to form a four-way DNA (Holliday) junction. In the presence of metal ions, the Holliday junction folds into the stacked-X structure that has two alternative conformers. Experiments have revealed the spontaneous transitions between these conformers, but their detailed pathways are not known. Here, we report a series of molecular dynamics simulations of the Holliday junction at physiological and elevated (400 K) temperatures. The simulations reveal new tetrahedral intermediates and suggest a schematic framework for conformer transitions. The tetrahedral intermediates bear resemblance to the junction conformation in complex with a junction-resolving enzyme, T7 endonuclease I, and indeed, one intermediate forms a stable complex with the enzyme as demonstrated in one simulation. We also describe free energy minima for various states of the Holliday junction system, which arise during conformer transitions. The results show that magnesium ions stabilize the stacked-X form and destabilize the open and tetrahedral intermediates. Overall, our study provides a detailed dynamic model of the Holliday junction undergoing a conformer transition. 相似文献
15.
Woo HJ 《Biophysical chemistry》2007,125(1):127-137
Muscle contractions are driven by cyclic conformational changes of myosin, whose molecular mechanisms of operation are being elucidated by recent advances in crystallographic studies and single molecule experiments. To complement such structural studies and consider the energetics of the conformational changes of myosin head, umbrella sampling molecular dynamics (MD) simulations were performed with the all-atom model of the scallop myosin sub-fragment 1 (S1) with a bound ATP in solution in explicit water using the crystallographic near-rigor and transition state conformations as two references. The constraints on RMSD reaction coordinates used for the umbrella sampling were found to steer the conformational changes efficiently, and relatively close correlations have been observed between the set of characteristic structural changes including the lever arm rotation and the closing of the nucleotide binding pocket. The lever arm angle and key residue interaction distances in the nucleotide binding pocket and the relay helix show gradual changes along the recovery stroke reaction coordinate, consistent with previous crystallographic and computational minimum energy studies. Thermal fluctuations, however, appear to make the switch-2 coordination of ATP more flexible than suggested by crystal structures. The local solvation environment of the fluorescence probe, Trp 507 (scallop numbering), also appears highly mobile in the presence of thermal fluctuations. 相似文献
16.
Proteins are held together in the native state by hydrophobic interactions, hydrogen bonds and interactions with the surrounding water, whose strength as well as spatial and temporal distribution affects protein flexibility and hence function. We study these effects using 10 ns molecular dynamics simulations of pure water and of two proteins, the glutamate receptor ligand binding domain and barnase. We find that most of the noncovalent interactions flicker on and off over typically nanoseconds, and so we can obtain good statistics from the molecular dynamics simulations. Based on this information, a topological network of rigid bonds corresponding to a protein structure with covalent and noncovalent bonds is constructed, with account being taken of the influence of the flickering hydrogen bonds. We define the duty cycle for the noncovalent interactions as the percentage of time a given interaction is present, which we use as an input to investigate flexibility/rigidity patterns, in the algorithm FIRST which constructs and analyses topological networks. 相似文献
17.
Bermúdez-Lugo JA Perez-Gonzalez O Rosales-Hernández MC Ilizaliturri-Flores I Trujillo-Ferrara J Correa-Basurto J 《Journal of molecular modeling》2012,18(6):2301-2310
Epigenetic therapy is an important focus of research for drug development in the treatment of cancer. Valproic acid (VPA) is an HDAC inhibitor that has been evaluated in clinical studies. Despite its success in treating cancer, the mechanism of inhibition of VPA in HDAC is unknown. To this end, we have used docking and molecular dynamic simulations to investigate VPA binding to HDAC, employing both native and rebuilt 3-D structures. The results showed that VPA, via its carboxyl group, coordinates the Zn atom and other local residues (H141-142 and Y360) located at the catalytic site (CS) of HDAC. This causes electrostatic and hydrogen bonding interactions while having little interaction with the hydrophobic side chains, resulting in a low affinity. However, after several docking studies on different native HDAC 3-D structures and after using several snapshots from MD simulations, it became apparent that VPA bound with highest affinity at a site located at the acetyl-releasing channel, termed the hydrophobic active site channel (HASC). The affinity of VPA for HASC was due to its highly hydrophobic properties that allow VPA to take part in van der Waals interactions with Y18, I19, Y20, V25, R37, A38, V41, H42, I135 and W137, while VPA's carboxylate group has several hydrogen bonding interactions with the backbones of S138, I19, N136 and W137. MD simulations showed that the HASC door continuously opened and closed, which affected the affinity of VPA to the HASC, but the affinity toward the HASC was consistently higher than that obtained for the CS, suggesting that the HASC could be involved in the mechanism of inhibition. 相似文献
18.
Proteins recognize specific DNA sequences not only through direct contact between amino acids and bases, but also indirectly based on the sequence-dependent conformation and deformability of the DNA (indirect readout). We used molecular dynamics simulations to analyze the sequence-dependent DNA conformations of all 136 possible tetrameric sequences sandwiched between CGCG sequences. The deformability of dimeric steps obtained by the simulations is consistent with that by the crystal structures. The simulation results further showed that the conformation and deformability of the tetramers can highly depend on the flanking base pairs. The conformations of xATx tetramers show the most rigidity and are not affected by the flanking base pairs and the xYRx show by contrast the greatest flexibility and change their conformations depending on the base pairs at both ends, suggesting tetramers with the same central dimer can show different deformabilities. These results suggest that analysis of dimeric steps alone may overlook some conformational features of DNA and provide insight into the mechanism of indirect readout during protein–DNA recognition. Moreover, the sequence dependence of DNA conformation and deformability may be used to estimate the contribution of indirect readout to the specificity of protein–DNA recognition as well as nucleosome positioning and large-scale behavior of nucleic acids. 相似文献
19.
Spontaneous conformational changes in the E. coli GroEL subunit from all-atom molecular dynamics simulations 下载免费PDF全文
The Escherichia coli chaperonin GroEL is a complex of identical subunit proteins (57 kDa each) arranged in a back-to-back stacking of two heptameric rings. Its hallmarks include nested positive intra-ring and negative inter-ring cooperativity in adenosine trisphosphate (ATP) binding and the ability to mediate the folding of newly transcribed and/or denatured substrate proteins. We performed unbiased molecular dynamics simulations of the GroEL subunit protein in explicit water both with and without the nucleotide KMgATP to understand better the details of the structural transitions that enable these behaviors. Placing KMgATP in the equatorial domain binding pocket of a t state subunit, which corresponds to a low ATP-affinity state, produced a short-lived (6 ns) state that spontaneously transitioned to the high ATP-affinity r state. The important feature of this transition is a large-scale rotation of the intermediate domain's helix M to close the ATP binding pocket. Pivoting of helix M is accompanied by counterclockwise rotation and slight deformation of the apical domain, important for lowering the affinity for substrate protein. Aligning simulation conformations into model heptamer rings demonstrates that the t-->r transition in one subunit is not sterically hindered by t state neighbors, but requires breakage of Arg(197)-Glu(386) intersubunit salt bridges, which are important for inter-ring positive cooperativity. Lowest-frequency quasi-harmonic modes of vibration computed pre- and post-transition clearly show that natural vibrations facilitate the transition. Finally, we propose a novel mechanism for inter-ring cooperativity in ATP binding inspired by the observation of spontaneous insertion of the side chain of Ala(480) into the empty nucleotide pocket. 相似文献
20.
Microfolding: conformational probability map for the alanine dipeptide in water from molecular dynamics simulations 总被引:8,自引:0,他引:8
A direct attack on the protein-folding problem has been initiated with the free energy perturbation methods of molecular dynamics. The complete conformational probability map for the alanine dipeptide is presented. This work uses the SPC model for the explicit hydration of the dipeptide. Free energy differences for the four observed minima (beta, alpha R, alpha L, C7ax) are given, and the free energy barriers between minima are outlined. 相似文献