首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The epidermal growth factor repeats of the Notch receptor are extensively glycosylated with three different O-glycans. O-Fucosylation and elongation by the glycosyltransferase Fringe have been well studied and shown to be essential for proper Notch signaling. In contrast, biosynthesis of O-glucose and O-N-acetylglucosamine is less well understood. Recently, the isolation of the Drosophila mutant rumi has shown that absence of O-glucose impairs Notch function. O-Glucose is further extended by two contiguous α1,3-linked xylose residues. We have identified two enzymes of the human glycosyltransferase 8 family, now named GXYLT1 and GXYLT2 (glucoside xylosyltransferase), as UDP-d-xylose:β-d-glucoside α1,3-d-xylosyltransferases adding the first xylose. The enzymes are specific for β-glucose-terminating acceptors and UDP-xylose as donor substrate. Generation of the α1,3-linkage was confirmed by nuclear magnetic resonance. Activity on a natural acceptor could be shown by in vitro xylosylation of a Notch fragment expressed in a UDP-xylose-deficient cell line and in vivo by co-expression of the enzymes and the Notch fragment in insect cells followed by mass spectrometric analysis of peptide fragments.  相似文献   

2.
Notch is a large cell-surface receptor known to be an essential player in a wide variety of developmental cascades. Here we show that Notch1 endogenously expressed in Chinese hamster ovary cells is modified with O-linked fucose and O-linked glucose saccharides, two unusual forms of O-linked glycosylation found on epidermal growth factor-like (EGF) modules. Interestingly, both modifications occur as monosaccharide and oligosaccharide species. Through exoglycosidase digestions we determined that the O-linked fucose oligosaccharide is a tetrasaccharide with a structure identical to that found on human clotting factor IX: Sia-alpha2,3-Gal-beta1, 4-GlcNAc-beta1,3-Fuc-alpha1-O-Ser/Thr. The elongated form of O-linked glucose appears to be a trisaccharide. Notch1 is the first membrane-associated protein identified with either O-linked fucose or O-linked glucose modifications. It also represents the second protein discovered with an elongated form of O-linked fucose. The sites of glycosylation, which fall within the multiple EGF modules of Notch, are highly conserved across species and within Notch homologs. Since Notch is known to interact with its ligands through subsets of EGF modules, these results suggest that the O-linked carbohydrate modifications of these modules may influence receptor-ligand interactions.  相似文献   

3.
Epidermal growth factor-like (EGF) repeats and thrombospondin type 1 repeats (TSRs) are both small cysteine-knot motifs known to be O-fucosylated. The enzyme responsible for the addition of O-fucose to EGF repeats, protein O-fucosyltransferase 1 (POFUT1), has been identified and shown to be essential in Notch signaling. Fringe, an O-fucose beta1,3-N-acetylglucosaminyltransferase, elongates O-fucose on specific EGF repeats from Notch to form a disaccharide that can be further elongated to a tetrasaccharide. TSRs are found in many extracellular matrix proteins and are involved in protein-protein interactions. The O-fucose moiety on TSRs can be further elongated with glucose to form a disaccharide. The discovery of O-fucose on TSRs raised the question of whether POFUT1, or a different enzyme, adds O-fucose to TSRs. Here we demonstrate the existence of a TSR-specific O-fucosyltransferase distinct from POFUT1. Similar to POFUT1, the novel TSR-specific O-fucosyltransferase is a soluble enzyme that requires a properly folded TSR as an acceptor substrate. In addition, we found that a previously identified fucose-specific beta1,3-glucosyltransferase adds glucose to O-fucose on TSRs, but it does not modify O-fucose on an EGF repeat. Similarly, Lunatic fringe, Manic fringe, and Radical fringe are all capable of modifying O-fucose on an EGF repeat, but not on a TSR. Taken together, these results suggest that two distinct O-fucosylation pathways exist in cells, one specific for EGF repeat and the other for TSRs.  相似文献   

4.
The Notch signaling pathway controls a large number of processes during animal development and adult homeostasis. One of the conserved post-translational modifications of the Notch receptors is the addition of an O-linked glucose to epidermal growth factor-like (EGF) repeats with a C-X-S-X-(P/A)-C motif by Protein O-glucosyltransferase 1 (POGLUT1; Rumi in Drosophila). Genetic experiments in flies and mice, and in vivo structure-function analysis in flies indicate that O-glucose residues promote Notch signaling. The O-glucose residues on mammalian Notch1 and Notch2 proteins are efficiently extended by the addition of one or two xylose residues through the function of specific mammalian xylosyltransferases. However, the contribution of xylosylation to Notch signaling is not known. Here, we identify the Drosophila enzyme Shams responsible for the addition of xylose to O-glucose on EGF repeats. Surprisingly, loss- and gain-of-function experiments strongly suggest that xylose negatively regulates Notch signaling, opposite to the role played by glucose residues. Mass spectrometric analysis of Drosophila Notch indicates that addition of xylose to O-glucosylated Notch EGF repeats is limited to EGF14–20. A Notch transgene with mutations in the O-glucosylation sites of Notch EGF16–20 recapitulates the shams loss-of-function phenotypes, and suppresses the phenotypes caused by the overexpression of human xylosyltransferases. Antibody staining in animals with decreased Notch xylosylation indicates that xylose residues on EGF16–20 negatively regulate the surface expression of the Notch receptor. Our studies uncover a specific role for xylose in the regulation of the Drosophila Notch signaling, and suggest a previously unrecognized regulatory role for EGF16–20 of Notch.  相似文献   

5.
Fringe plays a key role in the specification of boundaries during development by modulating the ability of Notch ligands to activate Notch receptors. Fringe is a fucose-specific beta1,3-N-acetylglucosaminyltransferase that modifies O-fucose moieties on the epidermal growth factor-like (EGF) repeats of Notch. To investigate how the change in sugar structure caused by Fringe modulates Notch activity, we have analyzed the sites of O-fucose and Fringe modification on mouse Notch1. The extracellular domain of Notch1 has 36 tandem EGF repeats, many of which are predicted to be modified with O-fucose. We recently proposed a broadened consensus sequence for O-fucose, C(2)X(3-5)(S/T)C(3) (where C(2) and C(3) represent the second and third conserved cysteines), significantly expanding the potential number of modification sites on Notch. Here we demonstrate that sites predicted using this broader consensus sequence are modified with O-fucose on mouse Notch1, and we present evidence suggesting that the consensus can be further refined to C(2)X(4-5)(S/T)C(3). In particular, we demonstrate that EGF 12, a portion of the ligand-binding site, is modified with O-fucose and that this site is evolutionarily conserved. We also show that endogenous Fringe proteins in Chinese hamster ovary cells (Lunatic fringe and Radical fringe) as well as exogenous Manic fringe modify O-fucose on many but not all EGF repeats of mouse Notch1. These findings suggest that the Fringes show a preference for O-fucose on some EGF repeats relative to others. This specificity appears to be encoded within the amino acid sequence of the individual EGF repeats. Interestingly, our results reveal that Manic fringe modifies O-fucose both at the ligand-binding site (EGF 12) and in the Abruptex region. These findings provide insight into potential mechanisms by which Fringe action on Notch receptors may influence both the affinity of Notch-ligand binding and cell-autonomous inhibition of Notch signaling by ligand.  相似文献   

6.
O-Glucosylation of epidermal growth factor-like (EGF) repeats in the extracellular domain of Notch is essential for Notch function. O-Glucose can be elongated by xylose to the trisaccharide, Xylα1–3Xylα1–3Glcβ1-O-Ser, whose synthesis is catalyzed by the consecutive action of three glycosyltransferases. A UDP-glucose:protein O-glucosyltransferase (Poglut/Rumi) transfers O-glucose to serine within the O-glucose consensus. Subsequently, either of two UDP-xylose:glucoside xylosyltransferases (Gxylt1 or Gxylt2) transfers xylose to O-glucose. Finally, a UDP-xylose:xyloside xylosyltransferase (Xxylt1) transfers xylose to Xylα1–3Glcβ1-O-EGF. Our prior site-mapping studies demonstrated that O-glucose consensus sites are modified at high but variable stoichiometries in mouse Notch1 and identified a novel glycosylation site with alanine in place of proline, suggesting a revised, broader consensus sequence (CXSX(P/A)C). Here we examined the molecular basis for this site specificity. A panel of EGF repeats from human coagulation factor 9 (FA9), mouse Notch1, and Notch2 were bacterially expressed and purified by reverse phase HPLC for use in in vitro enzyme assays. We demonstrate that proper folding of EGF repeats is essential for glycosylation by Poglut/Rumi, that alanine can substitute for proline in the context of coagulation factor 9 EGF repeat for O-glucose transfer, confirming the new consensus sequence, and that positively charged residues within the O-glucose consensus sequence reduce efficiency of glycosylation by Poglut/Rumi. Moreover, proper folding of EGF repeats is also important for the activities of Gxylt1, Gxylt2, and Xxylt1. These results indicate that protein folding and amino acid sequences of individual EGF repeats fundamentally affect both attachment and elongation of O-glucose glycans.  相似文献   

7.
Thrombospondin type 1 repeats (TSRs) are biologically important domains of extracellular proteins. They are modified with a unique Glcbeta1,3Fucalpha1-O-linked disaccharide on either serine or threonine residues. Here we identify the putative glycosyltransferase, B3GTL, as the beta1,3-glucosyltransferase involved in the biosynthesis of this disaccharide. This enzyme is conserved from Caenorhabditis elegans to man and shares 28% sequence identity with Fringe, the beta1,3-N-acetylglucosaminyltransferase that modifies O-linked fucosyl residues in proteins containing epidermal growth factor-like domains, such as Notch. beta1,3-Glucosyltransferase glucosylates properly folded TSR-fucose but not fucosylated epidermal growth factor-like domain or the non-fucosylated modules. Specifically, the glucose is added in a beta1,3-linkage to the fucose in TSR. The activity profiles of beta1,3-glucosyltransferase and protein O-fucosyltransferase 2, the enzyme that carries out the first step in TSR O-fucosylation, superimpose in endoplasmic reticulum subfractions obtained by density gradient centrifugation. Both enzymes are soluble proteins that efficiently modify properly folded TSR modules. The identification of the beta1,3-glucosyltransferase gene allows us to manipulate the formation of the rare Glcbeta1,3Fucalpha1 structure to investigate its biological function.  相似文献   

8.
Notch signaling is a component of a wide variety of developmental processes in many organisms. Notch activity can be modulated by O-fucosylation (mediated by protein O-fucosyltransferase-1) and Fringe, a beta1,3-N-acetylglucosaminyltransferase that modifies O-fucose in the context of epidermal growth factor-like (EGF) repeats. Fringe was initially described in Drosophila, and three mammalian homologues have been identified, Manic fringe, Lunatic fringe, and Radical fringe. Here for the first time we have demonstrated that, similar to Manic and Lunatic, Radical fringe is also a fucose-specific beta1,3-N-acetylglucosaminyltransferase. The fact that three Fringe homologues exist in mammals raises the question of whether and how these enzymes differ. Although Notch contains numerous EGF repeats that are predicted to be modified by O-fucose, previous studies in our laboratory have demonstrated that not all O-fucosylated EGF repeats of Notch are further modified by Fringe, suggesting that the Fringe enzymes can differentiate between them. In this work, we have sought to identify specificity determinants for the recognition of an individual O-fucosylated EGF repeat by the Fringe enzymes. We have also sought to determine differences in the biochemical behavior of the Fringes with regard to their in vitro enzymatic activities. Using both in vivo and in vitro experiments, we have found two amino acids that appear to be important for the recognition of an O-fucosylated EGF repeat by all three mammalian Fringes. These amino acids provide an initial step toward defining sequences that will allow us to predict which O-fucosylated EGF repeats are modified by the Fringes.  相似文献   

9.
The extracellular domain of mouse Notch1 contains 36 tandem epidermal growth factor-like (EGF) repeats, many of which are modified with O-fucose. Previous work from several laboratories has indicated that O-fucosylation plays an important role in ligand mediated Notch activation. Nonetheless, it is not clear whether all, or a subset, of the EGF repeats need to be O-fucosylated. Three O-fucose sites are invariantly conserved in all Notch homologues with 36 EGF repeats (within EGF repeats 12, 26, and 27). To investigate which O-fucose sites on Notch1 are important for ligand-mediated signaling, we mutated the three invariant O-fucose sites in mouse Notch1, along with several less highly conserved sites, and evaluated their ability to transduce Jagged1- and Delta1-mediated signaling in a cell-based assay. Our analysis revealed that mutation of any of the three invariant O-fucose sites resulted in significant changes in both Delta1 and Jagged1 mediated signaling, but mutations in less highly conserved sites had no detectable effect. Interestingly, mutation of each invariant site gave a distinct effect on Notch function. Mutation of the O-fucose site in EGF repeat 12 resulted in loss of Delta1 and Jagged1 signaling, while mutation of the O-fucose site in EGF repeat 26 resulted in hyperactivation of both Delta1 and Jagged1 signaling. Mutation of the O-fucose site in EGF repeat 27 resulted in faulty trafficking of the Notch receptor to the cell surface and a decreased S1 processing of the receptor. These results indicate that the most highly conserved O-fucose sites in Notch1 are important for both processing and ligand-mediated signaling in the context of a cell-based signaling assay.  相似文献   

10.
O-Fucose has been identified on epidermal growth factor-like (EGF) repeats of Notch, and elongation of O-fucose has been implicated in the modulation of Notch signaling by Fringe. O-Fucose modifications are also predicted to occur on Notch ligands based on the presence of the C(2)XXGG(S/T)C(3) consensus site (where S/T is the modified amino acid) in a number of the EGF repeats of these proteins. Here we establish that both mammalian and Drosophila Notch ligands are modified with O-fucose glycans, demonstrating that the consensus site was useful for making predictions. The presence of O-fucose on Notch ligands raised the question of whether Fringe, an O-fucose specific beta 1,3-N-acetylglucosaminyltransferase, was capable of modifying O-fucose on the ligands. Indeed, O-fucose on mammalian Delta 1 and Jagged1 can be elongated with Manic Fringe in vivo, and Drosophila Delta and Serrate are substrates for Drosophila Fringe in vitro. These results raise the interesting possibility that alteration of O-fucose glycans on Notch ligands could play a role in the mechanism of Fringe action on Notch signaling. As an initial step to begin addressing the role of the O-fucose glycans on Notch ligands in Notch signaling, a number of mutations in predicted O-fucose glycosylation sites on Drosophila Serrate have been generated. Interestingly, analysis of these mutants has revealed that O-fucose modifications occur on some EGF repeats not predicted by the C(2)XXGGS/TC(3) consensus site. A revised, broad consensus site, C(2)X(3-5)S/TC(3) (where X(3-5) are any 3-5 amino acid residues), is proposed.  相似文献   

11.
In the last two decades, our knowledge of the role of glycans in development and signal transduction has expanded enormously. While most work has focused on the importance of N-linked or mucin-type O-linked glycosylation, recent work has highlighted the importance of several more unusual forms of glycosylation that are the focus of this review. In particular, the ability of O-fucose glycans on the epidermal growth factor-like (EGF) repeats of Notch to modulate signaling places glycosylation alongside phosphorylation as a means to modulate protein-protein interactions and their resultant downstream signals. The recent discovery that O-glucose modification of Notch EGF repeats is also required for Notch function has further expanded the range of glycosylation events capable of modulating Notch signaling. The prominent role of Notch during development and in later cell-fate decisions underscores the importance of these modifications in human biology. The role of glycans in intercellular signaling events is only beginning to be understood and appears ready to expand into new areas with the discovery that thrombospondin type 1 repeats are also modified with O-fucose glycans. Finally, a rare form of glycosylation called C-mannosylation modifies tryptophans in some signaling competent molecules and may be a further layer of complexity in the field. We will review each of these areas focusing on the glycan structures produced, the consequence of their presence, and the enzymes responsible.  相似文献   

12.
The Notch signaling pathway is involved in a wide variety of highly conserved developmental processes in mammals. Importantly, mutations of the Notch protein and components of its signaling pathway have been implicated in an array of human diseases (T-cell leukemia and other cancers, Multiple Sclerosis, CADASIL, Alagille Syndrome, Spondylocostal Dysostosis). In mammals, Notch becomes activated upon binding of its extracellular domain to ligands (Delta and Jagged/Serrate) that are present on the surface of apposed cells. The extracellular domain of Notch contains up to 36 tandem Epidermal Growth Factor-like (EGF) repeats. Many of these EGF repeats are modified at evolutionarily-conserved consensus sites by an unusual form of O-glycosylation called O-fucose. Work from several groups indicates that O-fucosylation plays an important role in ligand mediated Notch signaling. Recent evidence also suggests that the enzyme responsible for addition of O-fucose to Notch, protein O-fucosyltransferase-1 (POFUT1), may serve a quality control function in the endoplasmic reticulum. Additionally, some of the O-fucose moieties are further elongated by the action of members of the Fringe family of beta-1,3-N-acetylglucosaminyltransferases. The alteration in O-fucose saccharide structure caused by Fringe modulates the response of Notch to its ligands. Thus, glycosylation serves an important role in regulating Notch activity. This review focuses on the role of glycosylation in the normal functioning of the Notch pathway. As well, potential roles for glycosylation in Notch-related human diseases, and possible roles for therapeutic targeting of POFUT1 and Fringe in Notch-related human diseases, are discussed.  相似文献   

13.
Notch activity is regulated by both O-fucosylation and O-glucosylation, and Notch receptors contain multiple predicted sites for both. Here we examine the occupancy of the predicted O-glucose sites on mouse Notch1 (mN1) using the consensus sequence C(1)XSXPC(2). We show that all of the predicted sites are modified, although the efficiency of modifying O-glucose sites is site- and cell type-dependent. For instance, although most sites are modified at high stoichiometries, the site at EGF 27 is only partially glucosylated, and the occupancy of the site at EGF 4 varies with cell type. O-Glucose is also found at a novel, non-traditional consensus site at EGF 9. Based on this finding, we propose a revision of the consensus sequence for O-glucosylation to allow alanine N-terminal to cysteine 2: C(1)XSX(A/P)C(2). We also show through biochemical and mass spectral analyses that serine is the only hydroxyamino acid that is modified with O-glucose on EGF repeats. The O-glucose at all sites is efficiently elongated to the trisaccharide Xyl-Xyl-Glc. To establish the functional importance of individual O-glucose sites in mN1, we used a cell-based signaling assay. Elimination of most individual sites shows little or no effect on mN1 activation, suggesting that the major effects of O-glucose are mediated by modification of multiple sites. Interestingly, elimination of the site in EGF 28, found in the Abruptex region of Notch, does significantly reduce activity. These results demonstrate that, like O-fucose, the O-glucose modifications of EGF repeats occur extensively on mN1, and they play important roles in Notch function.  相似文献   

14.
Rare types of glycosylation often occur in a domain-specific manner and are involved in specific biological processes. Well-known examples of such modification are O-linked fucose (O-fucose) and O-linked glucose (O-glucose) glycans on epidermal growth factor (EGF) domains. In particular, O-fucose glycans are reported to regulate the functions of EGF domain-containing proteins such as urinary-type plasminogen activator and Notch receptors. Two glycosyltransferases catalyze the initiation and elongation of O-fucose glycans. The initiation process is catalyzed by O-fucosyltransferase 1, which is essential for Notch signalling in both Drosophila and mice. O-fucosyltransferase 1 can affect the folding, ligand interaction and endocytosis of Notch receptors, and both the glycosyltransferase and non-catalytic activities of O-fucosyltransferase 1 have been reported. The elongation of O-fucose monosaccharide is catalyzed by Fringe-related genes, which differentially modulate the interaction between Notch and two classes of ligands, namely, Delta and Serrate/Jagged. In this article, we have reviewed the recent reports addressing the distinctive features of the glycosyltransferases and O-glycans present on the EGF domains.  相似文献   

15.
Mutations in Drosophila rumi result in a temperature-sensitive loss of Notch signaling. Rumi is a protein O-glucosyltransferase that adds glucose to EGF repeats with a C-X-S-X-P-C consensus sequence. Eighteen of the 36 EGF repeats in the Drosophila Notch receptor contain the consensus O-glucosylation motif. However, the contribution of individual O-glucose residues on Notch to the regulation of Notch signaling is not known. To address this issue, we carried out a mutational analysis of these glucosylation sites and determined their effects on Notch activity in vivo. Our results indicate that even though no single O-glucose mutation causes a significant decrease in Notch activity, all of the glucose residues on Notch contribute in additive and/or redundant fashions to maintain robust signaling, especially at higher temperatures. O-glucose motifs in and around the ligand-binding EGF repeats play a more important role than those in other EGF repeats of Notch. However, a single O-glucose mutation in EGF12 can be compensated by other O-glucose residues in neighboring EGF repeats. Moreover, timecourse cell aggregation experiments using a rumi null cell line indicate that a complete lack of Rumi does not affect Notch-Delta binding at high temperature. In addition, rumi fully suppresses the gain-of-function phenotype of a ligand-independent mutant form of Notch. Our data suggest that, at physiological levels of Notch, the combined effects of multiple O-glucose residues on this receptor allow productive S2 cleavage at high temperatures and thereby serve as a buffer against temperature-dependent loss of Notch signaling.  相似文献   

16.
17.
Notch receptors are glycoproteins that mediate a wide range of developmental processes. Notch is modified in its epidermal growth factor-like domains by the addition of fucose to serine or threonine residues. O-Fucosylation is mediated by protein O-fucosyltransferase 1, and down-regulation of this enzyme by RNA interference or mutation of the Ofut1 gene in Drosophila or by mutation of the Pofut1 gene in mouse prevents Notch signaling. To investigate the molecular basis for the requirement for O-linked fucose on Notch, we assayed the ability of tagged, soluble forms of the Notch extracellular domain to bind to its ligands, Delta and Serrate. Down-regulation of OFUT1 by RNA interference in Notch-secreting cells inhibits both Delta-Notch and Serrate-Notch binding, demonstrating a requirement for O-linked fucose for efficient binding of Notch to its ligands. Conversely, overexpression of OFUT1 in cultured cells increases Serrate-Notch binding but inhibits Delta-Notch binding. These effects of OFUT1 are consistent with the consequences of OFUT1 overexpression on Notch signaling in vivo. Intriguingly, they are also opposite to, and are suppressed by, expression of the glycosyltransferase Fringe, which specifically modifies O-linked fucose. Thus, Notch-ligand interactions are dependent upon both the presence and the type of O-fucose glycans.  相似文献   

18.
Protein O-glucosylation is a conserved post-translational modification that occurs on epidermal growth factor-like (EGF) repeats harboring the C(1)-X-S-X-P-C(2) consensus sequence. The Drosophila protein O-glucosyltransferase (Poglut) Rumi regulates Notch signaling, but the contribution of protein O-glucosylation to mammalian Notch signaling and embryonic development is not known. Here, we show that mouse Rumi encodes a Poglut, and that Rumi(-/-) mouse embryos die before embryonic day 9.5 with posterior axis truncation and severe defects in neural tube development, somitogenesis, cardiogenesis and vascular remodeling. Rumi knockdown in mouse cell lines results in cellular and molecular phenotypes of loss of Notch signaling without affecting Notch ligand binding. Biochemical, cell culture and cross-species transgenic experiments indicate that a decrease in Rumi levels results in reduced O-glucosylation of Notch EGF repeats, and that the enzymatic activity of Rumi is key to its regulatory role in the Notch pathway. Genetic interaction studies show that removing one copy of Rumi in a Jag1(+/-) (jagged 1) background results in severe bile duct morphogenesis defects. Altogether, our data indicate that addition of O-glucose to EGF repeats is essential for mouse embryonic development and Notch signaling, and that Jag1-induced signaling is sensitive to the gene dosage of the protein O-glucosyltransferase Rumi. Given that Rumi(-/-) embryos show more severe phenotypes compared to those displayed by other global regulators of canonical Notch signaling, Rumi is likely to have additional important targets during mammalian development.  相似文献   

19.
The Notch signaling pathway plays an important role in development and physiology. In Drosophila, Notch is activated by its Delta or Serrate ligands, depending in part on the sugar modifications present in its extracellular domain. O-fucosyltransferase-1 (OFUT1) performs the first glycosylation step in this process, O-fucosylating various EGF repeats at the Notch extracellular domain. Besides its O-fucosyltransferase activity, OFUT1 also behaves as a chaperone during Notch synthesis and is able to down regulate Notch by enhancing its endocytosis and degradation. We have reevaluated the roles that O-fucosylation and the synthesis of GDP-fucose play in the regulation of Notch protein stability. Using mutants and the UAS/Gal4 system, we modified in developing tissues the amount of GDP-mannose-deshydratase (GMD), the first enzyme in the synthesis of GDP-fucose. Our results show that GMD activity, and likely the levels of GDP-fucose and O-fucosylation, are essential to stabilize the Notch protein. Notch degradation observed under low GMD expression is absolutely dependent on OFUT1 and this is also observed in Notch Abruptex mutants, which have mutations in some potential O-fucosylated EGF domains. We propose that the GDP-fucose/OFUT1 balance determines the ability of OFUT1 to endocytose and degrade Notch in a manner that is independent of the residues affected by Abruptex mutations in Notch EGF domains.  相似文献   

20.
O-linked-β-N-acetylglucosamine (O-GlcNAc) modification is a unique cytoplasmic and nuclear protein modification that is common in nearly all eukaryotes, including filamentous fungi, plants, and animals. We had recently reported that epidermal growth factor (EGF) repeats of Notch and Dumpy are O-GlcNAcylated by an atypical O-GlcNAc transferase, EOGT, in Drosophila. However, no study has yet shown whether O-GlcNAcylation of extracellular proteins is limited to insects such as Drosophila or whether it occurs in other organisms, including mammals. Here, we report the characterization of A130022J15Rik, a mouse gene homolog of Drosophila Eogt (Eogt 1). Enzymatic analysis revealed that Eogt1 has a substrate specificity similar to that of Drosophila EOGT, wherein the Thr residue located between the fifth and sixth conserved cysteines of the folded EGF-like domains is modified. This observation is supported by the fact that the expression of Eogt1 in Drosophila rescued the cell-adhesion defect caused by Eogt downregulation. In HEK293T cells, Eogt1 expression promoted modification of Notch1 EGF repeats by O-GlcNAc, which was further modified, at least in part, by galactose to generate a novel O-linked-N-acetyllactosamine structure. These results suggest that Eogt1 encodes EGF domain O-GlcNAc transferase and that O-GlcNAcylation reaction in the secretory pathway is a fundamental biochemical process conserved through evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号