首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Protein folding is scientifically and computationally challenging problem. The early phases of protein folding are interesting due to various events like nascent secondary structure formation, hydrophobic collapse leading to formation of non-native or meta-stable conformations. These events occur within a very short time span of 100ns as compared to total folding time of few microseconds. It is highly difficult to observe these events experimentally due to very short lifetime. Molecular dynamics simulation technique can efficiently probe the detailed atomic level understanding about these events. In the present paper, all atom molecular dynamics simulation trajectory of nearly 200ns was carried out for fully solvated villin headpiece with PME treatment using AMBER 7 package. Initial hydrophobic collapse along with secondary structure formation resulted into formation of partially stable non-native conformations. The formation of secondary structural elements and hydrophobic collapse takes place simultaneously in the folding process.  相似文献   

2.
Molecular dynamics simulations of folding in an off-lattice protein model reveal a nucleation scenario, in which a few well-defined contacts are formed with high probability in the transition state ensemble of conformations. Their appearance determines folding cooperativity and drives the model protein into its folded conformation. Amino acid residues participating in those contacts may serve as "accelerator pedals" used by molecular evolution to control protein folding rate.  相似文献   

3.
The dynamic aspects of protein folding are described by a series of diffusion-collision steps involving structural units (microdomains) of various sizes that combine to form the protein in its native state. A method is introduced for obtaining the rate constants for the basic diffusion-collision step by use of Brownian dynamics. The method is applied to an investigation of the folding dynamics of two α-helices connected by a flexible (random-coil) polypeptide chain. The results of this full three-dimensional treatment are compared with simplified model calculations for the diffusion-collision step. Of particular interest are the nature of the collision dynamics and the role of the intervening peptide chain.  相似文献   

4.
Terada T  Satoh D  Mikawa T  Ito Y  Shimizu K 《Proteins》2008,73(3):621-631
Chignolin is a 10-residue peptide (GYDPETGTWG) that forms a stable beta-hairpin structure in water. However, its design template, GPM12 (GYDDATKTFG), does not have a specific structure. To clarify which amino acids give it the ability to form the beta-hairpin structure, we calculated the folding free-energy landscapes of chignolin, GPM12, and their chimeric peptides using multicanonical molecular dynamics (MD) simulation. Cluster analysis of the conformational ensembles revealed that the native structure of chignolin was the lowest in terms of free energy while shallow local minima were widely distributed in the free energy landscape of GPM12, in agreement with experimental observations. Among the chimeric peptides, GPM12(D4P/K7G) stably formed the same beta-hairpin structure as that of chignolin in the MD simulation. This was confirmed by nuclear magnetic resonance (NMR) spectroscopy. A comparison of the free-energy landscapes showed that the conformational distribution of the Asp3-Pro4 sequence was inherently biased in a way that is advantageous both to forming hydrogen bonds with another beta-strand and to initiating loop structure. In addition, Gly7 helps stabilize the loop structure by having a left-handed alpha-helical conformation. Such a conformation is necessary to complete the loop structure, although it is not preferred by other amino acids. Our results suggest that the consistency between the short-range interactions that determine the local geometries and the long-range interactions that determine the global structure is important for stable tertiary structure formation.  相似文献   

5.
Okumura H 《Proteins》2012,80(10):2397-2416
A multibaric‐multithermal molecular dynamics (MD) simulation of a 10‐residue protein, chignolin, was performed. All‐atom model with the Amber parm99SB force field was used for the protein and the TIP3P model was used for the explicit water molecules. This MD simulation covered wide ranges of temperature between 260 and 560 K and pressure between 0.1 and 600 MPa and sampled many conformations without getting trapped in local‐minimum free‐energy states. Folding events to the native β‐hairpin structure occurred five times and unfolding events were observed four times. As the temperature and/or pressure increases, fraction of folded chignolin decreases. The partial molar enthalpy change ΔH and partial molar volume change ΔV of unfolding were calculated as ΔH = 24.1 ± 4.9 kJ/mol and ΔV = ?5.6 ± 1.5 cm3/mol, respectively. These values agree well with recent experimental results. Illustrating typical local‐minimum free‐energy conformations, folding and unfolding pathways were revealed. When chignolin unfolds from the β‐hairpin structure, only the C terminus or both C and N termini open first. It may undergo an α‐helix or 310‐helix structure and finally unfolds to the extended structure. Difference of the mechanism between temperature denaturation and pressure denaturation is also discussed. Temperature denaturation is caused by making the protein transferred to a higher entropy state and making it move around more with larger space. The reason for pressure denaturation is that water molecules approach the hydrophobic residues, which are not well hydrated at the folded state, and some hydrophobic contacts are broken. Proteins 2012;. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
A review of the works on the computer simulation of the globular protein dynamics is given. Methodological aspects of the simulation procedure are outlined briefly. Main peculiarities of protein dynamics revealed in the course of simulation of pancreatic trypsin inhibitor and cytochrome c are presented. The causes of "anomalous" processes, inherent in the simulated behaviour of model proteins are discussed. These "anomalous" processes are: continuous drift of the structure and its deviation from the experimental one, determined by X-ray analysis. Both processes are supposed to be the consequence of the reduced conformational rigidity of the model protein in comparison to the real one. Among the possible reasons for this reduced rigidity absence of the water molecules, hydrating peptide groups in the real protein, may be mentioned. Analogy between "anomalous" processes in the simulated protein dynamics and some phenomena observed in the real proteins during their functioning is drawn.  相似文献   

7.
We have performed 128 folding and 45 unfolding molecular dynamics runs of chymotrypsin inhibitor 2 (CI2) with an implicit solvation model for a total simulation time of 0.4 microseconds. Folding requires that the three-dimensional structure of the native state is known. It was simulated at 300 K by supplementing the force field with a harmonic restraint which acts on the root-mean-square deviation and allows to decrease the distance to the target conformation. High temperature and/or the harmonic restraint were used to induce unfolding. Of the 62 folding simulations started from random conformations, 31 reached the native structure, while the success rate was 83% for the 66 trajectories which began from conformations unfolded by high-temperature dynamics. A funnel-like energy landscape is observed for unfolding at 475 K, while the unfolding runs at 300 K and 375 K as well as most of the folding trajectories have an almost flat energy landscape for conformations with less than about 50% of native contacts formed. The sequence of events, i.e., secondary and tertiary structure formation, is similar in all folding and unfolding simulations, despite the diversity of the pathways. Previous unfolding simulations of CI2 performed with different force fields showed a similar sequence of events. These results suggest that the topology of the native state plays an important role in the folding process.  相似文献   

8.
The conformational spaces of five oligomers of tetrahydrofuran-based carbopeptoids in chloroform and dimethyl sulfoxide were investigated through nine molecular dynamics simulations. Prompted by nuclear magnetic resonance experiments that indicated various stable folds for some but not all of these carbopeptoids, their folding behaviour was investigated as a function of stereochemistry, chain length and solvent. The conformational distributions of these molecules were analysed in terms of occurrence of hydrogen bonds, backbone torsional-angle distributions, conformational clustering and solute configurational entropy. While a cis-linkage across the tetrahydrofuran ring favours right-handed helical structures, a trans-linkage results in a larger conformational variability. Intra-solute hydrogen bonding is reduced with increasing chain length and with increasing solvent polarity. Solute configurational entropies confirm the picture obtained: they are smaller for cis- than for trans-linked peptides, for chloroform than for dimethyl sulfoxide as solvent and for shorter peptide chains. The simulations provide an atomic picture of molecular conformational variability that is consistent with the available experimental data.  相似文献   

9.
The concept of the protein transition state ensemble (TSE), a collection of the conformations that have 50% probability to convert rapidly to the folded state and 50% chance to rapidly unfold, constitutes the basis of the modern interpretation of protein engineering experiments. It has been conjectured that conformations constituting the TSE in many proteins are the expanded and distorted forms of the native state built around a specific folding nucleus. This view has been supported by a number of on-lattice and off-lattice simulations. Here we report a direct observation and characterization of the TSE by molecular dynamic folding simulations of the C-Src SH3 domain, a small protein that has been extensively studied experimentally. Our analysis reveals a set of key interactions between residues, conserved by evolution, that must be formed to enter the kinetic basin of attraction of the native state.  相似文献   

10.
McCully ME  Beck DA  Daggett V 《Biochemistry》2008,47(27):7079-7089
The principle of microscopic reversibility states that at equilibrium the number of molecules entering a state by a given path must equal those exiting the state via the same path under identical conditions or, in structural terms, that the conformations along the two pathways are the same. There has been some indirect evidence indicating that protein folding is such a process, but there have been few conclusive findings. In this study, we performed molecular dynamics simulations of an ultrafast unfolding and folding protein at its melting temperature to observe, on an atom-by-atom basis, the pathways the protein followed as it unfolded and folded within a continuous trajectory. In a total of 0.67 micros of simulation in water, we found six transient denaturing events near the melting temperature (323 and 330 K) and an additional refolding event following a previously identified unfolding event at a high temperature (373 K). In each case, unfolding and refolding transition state ensembles were identified, and they agreed well with experiment on the basis of a comparison of S and Phi values. On the basis of several structural properties, these 13 transition state ensembles agreed very well with each other and with four previously identified transition states from high-temperature denaturing simulations. Thus, not only were the unfolding and refolding transition states part of the same ensemble, but in five of the seven cases, the pathway the protein took as it unfolded was nearly identical to the subsequent refolding pathway. These events provide compelling evidence that protein folding is a microscopically reversible process. In the other two cases, the folding and unfolding transition states were remarkably similar to each other but the paths deviated.  相似文献   

11.
Zhou Y  Linhananta A 《Proteins》2002,47(2):154-162
Predicting the folding mechanism of the second beta-hairpin fragment of the Ig-binding domain B of streptococcal protein G is unexpectedly challenging for simplified reduced models because the models developed so far indicated a different folding mechanism from what was suggested from high-temperature unfolding and equilibrium free-energy surface analysis based on established all-atom empirical force fields in explicit or implicit solvent. This happened despite the use of empirical residue-based interactions, multibody hydrophobic interactions, and inclusions of hydrogen bonding effects in the simplified models. This article employs a recently developed all-atom (except nonpolar hydrogens) model interacting with simple square-well potentials to fold the peptide fragment by molecular dynamics simulation methods. In this study, 193 out of 200 trajectories are folded at two reduced temperatures (3.5 and 3.7) close to the transition temperature T* approximately 4.0. Each simulation takes <7 h of CPU time on a Pentium 800-MHz PC. Folding of the new all-atom model is found to be initiated by collapse before the formation of main-chain hydrogen bonds. This verifies the mechanism proposed from previous all-atom unfolding and equilibrium simulations. The new model further predicts that the collapse is initiated by two nucleation contacts (a hydrophilic contact between D46 and T49 and a hydrophobic contact between Y45 and F52), in agreement with recent NMR measurements. The results suggest that atomic packing and native contact interactions play a dominant role in folding mechanism.  相似文献   

12.
A new method for simulating the folding process of a protein is reported. The method is based on the essential dynamics sampling technique. In essential dynamics sampling, a usual molecular dynamics simulation is performed, but only those steps, not increasing the distance from a target structure, are accepted. The distance is calculated in a configurational subspace defined by a set of generalized coordinates obtained by an essential dynamics analysis of an equilibrated trajectory. The method was applied to the folding process of horse heart cytochrome c, a protein with approximately 3000 degrees of freedom. Starting from structures, with a root-mean-square deviation of approximately 20 A from the crystal structure, the correct folding was obtained, by utilizing only 106 generalized degrees of freedom, chosen among those accounting for the backbone carbon atoms motions, hence not containing any information on the side chains. The folding pathways found are in agreement with experimental data on the same molecule.  相似文献   

13.
Arkun Y  Gur M 《PloS one》2012,7(1):e29628
A new method to develop low-energy folding routes for proteins is presented. The novel aspect of the proposed approach is the synergistic use of optimal control theory with Molecular Dynamics (MD). In the first step of the method, optimal control theory is employed to compute the force field and the optimal folding trajectory for the Cα atoms of a Coarse-Grained (CG) protein model. The solution of this CG optimization provides an harmonic approximation of the true potential energy surface around the native state. In the next step CG optimization guides the MD simulation by specifying the optimal target positions for the Cα atoms. In turn, MD simulation provides an all-atom conformation whose Cα positions match closely the reference target positions determined by CG optimization. This is accomplished by Targeted Molecular Dynamics (TMD) which uses a bias potential or harmonic restraint in addition to the usual MD potential. Folding is a dynamical process and as such residues make different contacts during the course of folding. Therefore CG optimization has to be reinitialized and repeated over time to accomodate these important changes. At each sampled folding time, the active contacts among the residues are recalculated based on the all-atom conformation obtained from MD. Using the new set of contacts, the CG potential is updated and the CG optimal trajectory for the Cα atoms is recomputed. This is followed by MD. Implementation of this repetitive CG optimization-MD simulation cycle generates the folding trajectory. Simulations on a model protein Villin demonstrate the utility of the method. Since the method is founded on the general tools of optimal control theory and MD without any restrictions, it is widely applicable to other systems. It can be easily implemented with available MD software packages.  相似文献   

14.
Parallel temperature molecular dynamics simulations are used to explore the folding of a signal peptide, a short but functionally independent domain at the N-terminus of proteins. The peptide has been analyzed previously by NMR, and thus a solid reference state is provided with the experimental structure. Particular attention is paid to the role of water considered in full atomic detail. Different partial aspects in the folding process are quantified. The major group of obtained structures matches the NMR structure very closely. An important biological consequence is that in vivo folding of signal peptides seems to be possible within aqueous environments.  相似文献   

15.
Molecular dynamics simulation was carried out on xyloglucan with explicit water molecules to investigate the folding mechanism of side chains onto a main chain in aqueous solution. The model xyloglucan was composed of 12 beta-D-glucopyranoses as a main chain substituted with six galactoses and three xyloses as side chains. Two conditions were set for the ribbon-like main chain; one is restricted to be 'flat' and the other is without restriction. The free main chain of xyloglucan has a 'twisted' conformation as the major one. Conformational folding of side chains onto the main chain was analyzed with dihedral angles at each glycosidic linkage. In a 5-ns calculation, the xyloglucan has a tendency to contract in both the restricted and the free systems, but the mode of contraction is different. Side chains tend to stick onto the flat surface of the main chain in the restricted system, while they do not tightly do so in the free one; instead the main chain takes a twisted and sometimes embowed conformation. This result indicates that the main chain has greater attractive forces to bind side chains when it is flat, while it loses the ability as it is twisted.  相似文献   

16.
All atom molecular dynamics simulations have become a standard method for mapping equilibrium protein dynamics and non-equilibrium events like folding and unfolding. Here, we present detailed methods for performing such simulations. Generic protocols for minimization, solvation, simulation, and analysis derived from previous studies are also presented. As a measure of validation, our water model is compared with experiment. An example of current applications of these methods, simulations of the ultrafast folding protein Engrailed Homeodomain are presented including the experimental evidence used to verify their results. Ultrafast folders are an invaluable tool for studying protein behavior as folding and unfolding events measured by experiment occur on timescales accessible with the high-resolution molecular dynamics methods we describe. Finally, to demonstrate the prospect of these methods for folding proteins, a temperature quench simulation of a thermal unfolding intermediate of the Engrailed Homeodomain is described.  相似文献   

17.
The thermostability of protein thermostable cathechol 2,3-dixoygenase (TC23O) has been studied by the parallel molecular dynamics simulations. By analysis of the exponent beta, which is related to the scattering spectrum and constant-pressure heat capacity Cp, we reveal the respective contribution of a specific residue 228 proline; a specific salt bridge, Lys188N-Glu291OE1; four ions; and a different water environment to the thermostability of TC23O. The dynamic transition temperature of the mutants, Pro228Ser and Glu291Gly of the TC23O, was decreased about 10 degrees C and 19 degrees C respectively. The displacement of the four ions had no significant effect on the thermostability of TC23O. Water affects the thermostability by influencing the changes of accessible conformation to a certain extent. All these results agree with the known experimental results.  相似文献   

18.
The processes by which protein side chains reach equilibrium during a folding reaction are investigated using both lattice and all-atom simulations. We find that rates of side-chain relaxation exhibit a distribution over the protein structure, with the fastest relaxing side chains located in positions kinetically important for folding. Traversal of the major folding transition state corresponds to the freezing of a small number of side chains, belonging to the folding nucleus, whereas the rest of the protein proceeds toward equilibrium via backbone fluctuations around the native fold. The postnucleation processes by which side chains relax are characterized by very slow dynamics and many barrier crossings, and thus resemble the behavior of a glass.  相似文献   

19.
Two independent replica-exchange molecular dynamics (REMD) simulations with an explicit water model were performed of the Trp-cage mini-protein. In the first REMD simulation, the replicas started from the native conformation, while in the second they started from a nonnative conformation. Initially, the first simulation yielded results qualitatively similar to those of two previously published REMD simulations: the protein appeared to be over-stabilized, with the predicted melting temperature 50-150K higher than the experimental value of 315K. However, as the first REMD simulation progressed, the protein unfolded at all temperatures. In our second REMD simulation, which starts from a nonnative conformation, there was no evidence of significant folding. Transitions from the unfolded to the folded state did not occur on the timescale of these simulations, despite the expected improvement in sampling of REMD over conventional molecular dynamics (MD) simulations. The combined 1.42 micros of simulation time was insufficient for REMD simulations with different starting structures to converge. Conventional MD simulations at a range of temperatures were also performed. In contrast to REMD, the conventional MD simulations provide an estimate of Tm in good agreement with experiment. Furthermore, the conventional MD is a fraction of the cost of REMD and continuous, realistic pathways of the unfolding process at atomic resolution are obtained.  相似文献   

20.
A “key-residue” hypothesis that a few residues’ characteristics contain the essential dynamics of the whole protein is proposed for the study of side-chain relaxation near native states. Molecular dynamics simulation is performed on the folding of Trp-cage, and four key residues are discovered and shown to be highly sensitive to the change of state of the protein away from the native state. Order parameters that characterize the geometrical properties of key residues are shown to form valuable phase plane on which one distinguishes different reaction pathways. Furthermore, one of the key residues, Trp6, is observed to display two reconfiguration processes, in which one is induced by an unconstrained torsion of the side-chain of Trp6, with a rate faster by almost an order of magnitude than the other one described by Kussell’s model. The faster process seems to occur more frequently in our simulation and thus represent a significant mechanism in folding dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号