首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to study the relationship between insulin like growth factor-II (IGF-II) and interleukin-8 (IL-8) that are upregulated in psoriasis, we monitored IL-8 expression in IGF-II-treated human keratinocytes and explored the signaling pathways of IL-8 expression by IGF-II. IGF-II increased the IL-8 mRNA and protein levels in human keratinocytes. The upregulation of IL-8 expression by IGF-II was reduced by pretreatment with inhibitors of tyrosine kinase, Src, PI3-kinase, and ERK, but not by p38. Furthermore, IGF-II remarkably increased the DNA binding activities of NF-kappaB and AP-1, and the IL-8 promoter activity. However, cotransfection with IkappaB mutant blocked the IGF-II-induced IL-8 promoter activity. In addition, cotransfection with dominant negative MEK1 mutant, but not with dominant negative p38 mutant, blocked the IGF-II-induced IL-8 promoter activity. These results suggest that IGF-II is involved in the pathogenesis of psoriasis by inducing IL-8 gene expression through the tyrosine kinase-Src-ERK1/2-AP-1 pathway, and the PI3-kinase and NF-kappaB pathway.  相似文献   

2.
In this report we sought to elucidate the mechanism by which the follicle-stimulating hormone (FSH) receptor signals to promote activation of the p42/p44 extracellular signal-regulated protein kinases (ERKs) in granulosa cells. Results show that the ERK kinase MEK and upstream intermediates Raf-1, Ras, Src, and L-type Ca(2+) channels are already partially activated in vehicle-treated cells and that FSH does not further activate them. This tonic stimulatory pathway appears to be restrained at the level of ERK by a 100-kDa phosphotyrosine phosphatase that associates with ERK in vehicle-treated cells and promotes dephosphorylation of its regulatory Tyr residue, resulting in ERK inactivation. FSH promotes the phosphorylation of this phosphotyrosine phosphatase and its dissociation from ERK, relieving ERK from inhibition and resulting in its activation by the tonic stimulatory pathway and consequent translocation to the nucleus. Consistent with this premise, FSH-stimulated ERK activation is inhibited by the cell-permeable protein kinase A-specific inhibitor peptide Myr-PKI as well as by inhibitors of MEK, Src, a Ca(2+) channel blocker, and chelation of extracellular Ca(2+). These results suggest that FSH stimulates ERK activity in immature granulosa cells by relieving an inhibition imposed by a 100-kDa phosphotyrosine phosphatase.  相似文献   

3.
The amount of pericentriolar matrix at the centrosome is tightly linked to both microtubule nucleation and centriole duplication, although the exact mechanism by which pericentriolar matrix levels are regulated is unclear. Here we show that Centrobin, a centrosomal protein, is involved in regulating these levels. Interphase microtubule arrays in Centrobin-depleted cells are more focused around the centrosome and are less stable than the arrays in control cells. Centrobin-depleted cells initiate microtubule nucleation more rapidly than control cells and exhibit an increase in the number of growing microtubule ends emanating from the centrosome, while the parameters of microtubule plus end dynamics around the centrosome are not significantly altered. Finally, we show that Centrobin depletion results in the increased recruitment of pericentriolar matrix proteins to the centrosome, including γ-tubulin, AKAP450, Kendrin and PCM-1. We propose that Centrobin might regulate microtubule nucleation and organization by controlling the amount of pericentriolar matrix.  相似文献   

4.
As part of a multi-subunit ring complex, γ-tubulin has been shown to promote microtubule nucleation both in vitro and in vivo, and the structural properties of the complex suggest that it also seals the minus ends of the polymers with a conical cap. Cells depleted of γ-tubulin, however, still display many microtubules that participate in mitotic spindle assembly, suggesting that γ-tubulin is not absolutely required for microtubule nucleation in vivo, and raising questions about the function of the minus end cap. Here, we assessed the role of γ-tubulin in centrosomal microtubule organisation using three-dimensional reconstructions of γ-tubulin-depleted C. elegans embryos. We found that microtubule minus-end capping and the PCM component SPD-5 are both essential for the proper placement of microtubules in the centrosome. Our results further suggest that γ-tubulin and SPD-5 limit microtubule polymerization within the centrosome core, and we propose a model for how abnormal microtubule organization at the centrosome could indirectly affect centriole structure and daughter centriole replication.  相似文献   

5.
Early growth response gene (Egr-1) is a stress response gene activated by various forms of stress and growth factor signaling. We report that supraphysiologic concentrations of O(2) (hyperoxia) induced Egr-1 mRNA and protein expression in cultured alveolar epithelial cells, as well as in mouse lung in vivo. The contribution of the mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK), p38 MAPK and PI3-kinase pathways to the activation of Egr-1 in response to hyperoxia was examined. Exposure to hyperoxia resulted in a rapid phosphorylation of ERK 1/2 kinases in mouse alveolar epithelial cells LA4. MEK inhibitor PD98059, but not inhibitors of p38 MAPK or PI3-kinase pathway, prevented Egr-1 induction by hyperoxia. The signaling cascade preceding Egr-1 activation was traced to epidermal growth factor receptor (EGFR) signaling. Hyperoxia is used as supplemental therapy in some diseases and typically results in elevated levels of reactive oxygen intermediates (ROI) in many lung cell types, the organ that receives highest O(2) exposure. Our results support a pathway for the hyperoxia response that involves EGF receptor, MEK/ERK pathway, and other unknown signaling components leading to Egr-1 induction. This forms a foundation for analysis of detailed mechanisms underlying Egr-1 activation during hyperoxia and understanding its consequences for regulating cell response to oxygen toxicity.  相似文献   

6.
MEK/ERK signaling plays a crucial role in a diverse set of cellular functions including cell proliferation, differentiation and survival, and recently has been reported to negatively regulate mouse embryonic stem cell (mESC) self-renewal by antagonizing STAT3 activity. However, its role in human ESCs (hESCs) remains unclear. Here we investigated the functions of MEK/ERK in controlling hESC activity. We demonstrated that MEK/ERK kinases were targets of fibroblast growth factor (FGF) pathway in hESCs. Surprisingly, we found that, in contrast to mESCs, high basal MEK/ERK activity was required for maintaining hESCs in an undifferentiated state. Inhibition of MEK/ERK activity by specific MEK inhibitors PD98059 and U0126, or by RNA interference, rapidly caused the loss of self-renewal capacity. We also showed that MEK/ERK signaling cooperated with phosphoinositide 3-kinase (PI3K)/AKT signaling in maintaining hESC pluripotency. However, MEK/ERK signaling had little or no effect on regulating hESC proliferation and survival, in contrast to PI3K/AKT signaling. Taken together, these findings reveal the unique and crucial role of MEK/ERK signaling in the determination of hESC cell fate and expand our understanding of the molecular mechanisms behind the FGF pathway maintenance of hESC pluripotency. Importantly, these data make evident the striking differences in the control of self-renewal between hESCs and mESCs.  相似文献   

7.
The molecular determinants which dictate survival and apoptosis/anoikis in human intestinal crypt cells remain to be fully understood. To this effect, the roles of β1 integrin/Fak/Src signaling to the PI3-K/Akt-1, MEK/Erk, and p38 pathways, were investigated. The regulation of six Bcl-2 homologs (Bcl-2, Mcl-1, Bcl-XL, Bax, Bak, Bad) was likewise analyzed. We report that: (1) Anoikis causes a down-activation of Fak, Src, Akt-1 and Erk1/2, a loss of Fak–Src association, and a sustained/enhanced activation of p38β, which is required as apoptosis/anoikis driver; (2) PI3-K/Akt-1 up-regulates the expression of Bcl-XL and Mcl-1, down-regulates Bax and Bak, drives Bad phosphorylation (both serine112/136 residues) and antagonizes p38β activation; (3) MEK/Erk up-regulates Bcl-2, drives Bad phosphorylation (serine112 residue), but does not antagonize p38β activation; (4) PI3-K/Akt-1 is required for survival, whereas MEK/Erk is not; (5) Src acts as a cornerstone in the engagement of both pathways by β1 integrins/Fak, and is crucial for survival; and (6) β1 integrins/Fak and/or Src regulate Bcl-2 homologs as both PI3-K/Atk-1 and MEK/Erk combined. Hence, β1 integrin/Fak/Src signaling translates into integrated mediating functions of p38β activation and regulation of Bcl-2 homologs by PI3-K/Akt-1 and MEK/Erk, consequently determining their requirement (or not) for survival.  相似文献   

8.
DNA damage is a critical event that requires an appropriate cellular response. This is mediated by checkpoint proteins such as Cdk1 that controls S/G2 and G2/M transition. Cdk1 is required for BRCA1 transport to DNA damage sites inside the nucleus where BRCA1 functions as a scaffold to initiate a signaling cascade. BRCA1 is a multifunctional protein that also ubiquitinates γ-tubulin and, consequently, inhibits microtubule nucleation at the centrosome. Here, we report that γ-tubulin also localizes at confined areas in the microtubule network. Nocodazole-mediated microtubule depolymeration results in disappearance of this γ-tubulin fraction, while microtubule stabilization by taxol preserves this structure. Surprisingly, overexpression of Cdk1 or BRCA1 greatly expands the γ-tubulin coating of microtubules, suggesting that the microtubule-bound γ-tubulin is involved in DNA damage response. This is in accordance with numerous reports of microtubule-associated DNA damage proteins, such as p53, that are transported to the nucleus when DNA damage occurs. γ-Tubulin itself has been reported to form complexes with DNA repair proteins in the nucleus.  相似文献   

9.
Cell adhesion and spreading depend on activation of mitogen-activated kinase, which in turn is regulated both by growth factor and integrin signaling. Growth factors, such as epidermal growth factor, are capable of activating Ras and Raf, but integrin signaling is required to couple Raf to MEK and MEK to extracellular signal-regulated protein kinase (ERK). It was previously shown that Rac-p21-activated kinase (PAK) signaling regulated the physical association of MEK1 with ERK2 through phosphorylation sites in the proline-rich sequence (PRS) of MEK1. It was also shown that activation of MEK1 and ERK by integrins depends on PAK phosphorylation of S298 in the PRS. Here we report a novel MEK1-specific regulatory feedback mechanism that provides a means by which activated ERK can terminate continued PAK phosphorylation of MEK1. Activated ERK can phosphorylate T292 in the PRS, and this blocks the ability of PAK to phosphorylate S298 and of Rac-PAK signaling to enhance MEK1-ERK complex formation. Preventing ERK feedback phosphorylation on T292 during cellular adhesion prolonged phosphorylation of S298 by PAK and phosphorylation of S218 and S222, the MEK1 activating sites. We propose that activation of ERK during adhesion creates a feedback system in which ERK phosphorylates MEK1 on T292, and this in turn blocks additional S298 phosphorylation in response to integrin signaling.  相似文献   

10.
Upregulated ERK1/2 activity is correlated with androgen receptor (AR) downregulation in certain prostate cancer (PCa) that exhibits androgen deprivation-induced neuroendocrine differentiation, but its functional relevance requires elucidation. We found that sustained ERK1/2 activation using active Raf or MEK1/2 mutants is sufficient to induce AR downregulation at mRNA and protein levels in LNCaP. Downregulation of AR protein, but not mRNA, was blocked by proteasome inhibitors, MG132 and bortezomib, indicating that the pathway regulation is mediated at multiple points. Ectopic expression of a constitutively active AR inhibited Raf/MEK/ERK-mediated regulation of the differentiation markers, neuron-specific enolase and neutral endopeptidase, and the cyclin-dependent kinase inhibitors, p16INK4A and p21CIP1, but not Rb phosphorylation and E2F1 expression, indicating that AR has a specific role in the pathway-mediated differentiation and growth inhibitory signaling. However, despite the sufficient role of Raf/MEK/ERK, its inhibition using U0126 or ERK1/2 knockdown could not block androgen deprivation-induced AR downregulation in an LNCaP neuroendocrine differentiation model, suggesting that additional signaling pathways are involved in the regulation. We additionally report that sustained Raf/MEK/ERK activity can downregulate full length as well as hormone binding domain-deficient AR isoforms in androgen-refractory C4-2 and CWR22Rv1, but not in LAPC4 and MDA-PCa-2b. Our study demonstrates a novel role of the Raf/MEK/ERK pathway in regulating AR expression in certain PCa types and provides an insight into PCa responses to its aberrant activation.  相似文献   

11.
Thyroid carcinomas that harbor RET/PTC oncogenes are well differentiated, relatively benign neoplasms compared with those expressing oncogenic RAS or BRAF mutations despite signaling through shared transforming pathways. A distinction, however, is that RET/PTCs induce immunostimulatory programs, suggesting that, in the case of this tumor type, the additional pro-inflammatory pathway reduces aggressiveness. Here, we demonstrate that pro-inflammatory programs are selectively activated by TRAF2 and TRAF6 association with RET/PTC oncoproteins. Eliminating this mechanism reduces pro-inflammatory cytokine production without decreasing transformation efficiency. Conversely, ablating MEK/ERK or PI3K/AKT signaling eliminates transformation but not pro-inflammatory cytokine secretion. Functional uncoupling of the two pathways demonstrates that intrinsic pro-inflammatory pathways are not required for cellular transformation and suggests a need for further investigation into the role inflammation plays in thyroid tumor progression.  相似文献   

12.
Podosomes are adhesive structures on the ventral surface of cells that invade and degrade the extracellular matrix. Recently, we reported that phorbol 12,13‐dibutyrate (PDBu), a protein kinase C (PKC) activator, induced podosome formation in normal human bronchial epithelial (NHBE) cells, and atypical PKCζ regulated MMP‐9 recruitment to podosomes for its release and activation. The objective of this study was to explore signaling pathways that are involved in PKC activation‐induced podosome formation and matrix degradation. Herein, we found that PDBu increased phosphorylation of PI3K p85, Akt, Src, ERK1/2, and JNK. Inhibitors for PI3K, Akt, and Src suppressed PDBu‐induced podosome formation and matrix degradation. In contrast, blockers for MEK/ERK or JNK did not inhibit podosome formation but reduced proteolytic activity of podosomes. Inhibition of PKCζ activity with its pseudosubstrate peptide (PS)‐inhibited PDBu‐induced phosphorylation of MEK/ERK and JNK. On the other hand, inhibition of MEK/ERK or JNK pathway did not affect PKCζ phosphorylation, but reduced the recruitment of PKCζ and MMP‐9 to podosomes. We conclude that PKCζ may regulate MEK/ERK and JNK phosphorylation and in turn activated MEK/ERK and JNK may regulate the proteolytic activity of PDBu‐induced podosomes by influencing the recruitment of PKCζ and MMP‐9 to podosomes. J. Cell. Physiol. 228: 416–427, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
14.
Cartducin, a paralog of Acrp30/adiponectin, is a secretory protein produced by both chondrogenic precursors and proliferating chondrocytes, and belongs to a novel C1q family of proteins. We have recently shown that cartducin promotes the growth of both mesenchymal chondroprogenitor cells and chondrosarcoma-derived chondrocytic cells in vitro. However, the cartducin-signaling pathways responsible for the regulation of cell proliferation have not been documented. In this study, we examined whether cartducin exists in serum and further investigated the intracellular signaling pathways stimulated by cartducin in mesenchymal chondroprogenitor cells. Western blot analysis showed that, unlike Acrp30/adiponectin, cartducin was undetectable in mouse serum. Next, mesenchymal chondroprogenitor N1511 cells were stimulated with cartducin, and three major groups of mitogen-activated protein kinase (MAPK) pathways and the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway were examined. Cartducin activated extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt, but not c-jun N-terminal kinase (JNK) nor p38 MAPK. The MEK1/2 inhibitor, U0126, blocked cartducin-stimulated ERK1/2 phosphorylation and suppressed the DNA synthesis induced by cartducin in N1511 cells. The PI3K inhibitor, LY294002, blocked cartducin-stimulated Akt phosphorylation and a decrease in cartducin-induced DNA synthesis in N1511 cells was also observed. These data suggest that cartducin is a peripheral skeletal growth factor, and that the proliferation of mesenchymal chondroprogenitor cells stimulated by cartducin is associated with activations of the ERK1/2 and PI3K/Akt signaling pathways.  相似文献   

15.
12(S)-Hydroxyeicosatetraenoic acid (12(S)-HETE), a 12-lipoxygenase metabolite of arachidonic acid, has multiple effects on tumor and endothelial cells, including stimulation of invasion and angiogenesis. However, the signaling mechanisms controlling these physiological processes are poorly understood. In a human epidermoid carcinoma cell line (i.e. A431), 12(S)-HETE activates extracellular signal-regulated kinases 1/2 (ERK1/2), which is mediated by upstream kinases MEK and Raf. 12(S)-HETE stimulates phosphorylation of phospholipase Cgamma1 and activity of protein kinase Calpha (PKCalpha). In addition, independent of PKC 12(S)-HETE increases tyrosine phosphorylation of Shc, and Grb2, stimulates association between Shc and Src, and increases the activity of Ras, via Src family kinases. Furthermore, at low (10-100 nm) concentrations 12(S)-HETE counteracts epidermal growth factor-stimulated activation of ERK1/2 via stimulating protein tyrosine phosphatases. We also present evidence that 12(S)-HETE stimulates ERK1/2 via G proteins and that A431 cells have multiple binding sites for 12(S)-HETE. Finally, inhibition of 12-lipoxygenase induced apoptosis of A431 cells, which was reversed by addition of exogenous 12(S)-HETE. Collectively we demonstrate that the activation of ERK1/2 by 12(S)-HETE may be regulated by multiple receptors triggering PKC-dependent and PKC-independent pathways in A431 cells.  相似文献   

16.
We have previously shown that hepatocyte growth factor (HGF) selectively increases the expression of integrin alpha(2) in Madin-Darby canine kidney (MDCK) cells. In this study, we have further investigated the signal transduction pathways responsible for the event and its role in HGF-induced cell scattering. We found that the level of integrin alpha(2)beta(1) expression induced by HGF correlated with the extent of cell scattering and that a functional blocking antibody against integrin alpha(2) at the concentration of 25 microg/ml partially (40%) inhibited the HGF-induced cell scattering. However, in the presence of the specific phosphatidylinositol 3-kinase inhibitor LY294002 or the selective Src family kinase inhibitor PP1, although cells retained their response to HGF for increasing integrin alpha(2) expression, they failed to scatter, indicating that increased expression of integrin alpha(2) alone is not sufficient for cell scattering. Moreover, epidermal growth factor, which induced a transient (1 h) activation of extracellular signal-regulated kinase (ERK) in MDCK cells, only slightly increased integrin alpha(2) expression and failed to trigger cell scattering. Conversely, HGF induced a sustained (at least 12 h) activation of ERK in the cells. Expression of constitutively active ERK kinase (MEK) in MDCK cells led to increased expression of integrin alpha(2) even in the absence of HGF stimulation. In contrast, expression of ERK phosphatase or dominant negative MEK inhibited HGF-induced integrin alpha(2) expression. Taken together, our results suggest that the increased expression of integrin alpha(2)beta(1) by HGF is at least partially required for cell scattering and that the duration of MEK/ERK activation is likely to be a crucial determinant for cells to activate integrin alpha(2) expression and cell scattering.  相似文献   

17.
18.
We have investigated the involvement of the MAPK signaling pathway in increased androgen biosynthesis and CYP17 gene expression in women with polycystic ovary syndrome (PCOS). A comparison of MAPK kinase (MEK1/2) and ERK1/2 phosphorylation in propagated normal and PCOS theca cells, revealed that MEK1/2 phosphorylation was decreased more than 70%, and ERK1/2 phosphorylation was reduced 50% in PCOS cells as compared with normal cells. Infection with dominant-negative MEK1 increased CYP17 mRNA and dehydroepiandrosterone (DHEA) abundance, whereas constitutively active MEK1 reduced DHEA production and CYP17 mRNA abundance. Similarly, the MEK inhibitor, PD98059, increased CYP17 mRNA accumulation and CYP17 promoter activity to levels observed in PCOS cells. Remarkably, in theca cells maintained in the complete absence of insulin, ERK1/2 phosphorylation was decreased in PCOS theca cells as compared with normal theca cells, and CYP17 mRNA and DHEA synthesis were increased in PCOS theca cells. These studies demonstrate that in PCOS cells reduced levels of activated MEK1/2 and ERK1/2 are correlated with increased androgen production, irrespective of the insulin concentration. These findings implicate alterations in the MAPK pathway in the pathogenesis of excessive ovarian androgen production in PCOS.  相似文献   

19.
PACSINs are intracellular adapter proteins involved in vesicle transport, membrane dynamics and actin reorganisation. In this study, we report a novel role for PACSIN proteins as components of the centrosome involved in microtubule dynamics. Glutathione S-transferase (GST)-tagged PACSIN proteins interacted with protein complexes containing α- and γ-tubulin in brain homogenate. Analysis of cell lysates showed that all three endogenous PACSINs co-immunoprecipitated dynamin, α-tubulin and γ-tubulin. Furthermore, PACSINs bound only to unpolymerised tubulin, not to microtubules purified from brain. In agreement, the cellular localisation of endogenous PACSIN 2 was not affected by the microtubule depolymerising reagent nocodazole. By light microscopy, endogenous PACSIN 2 localised next to γ-tubulin at purified centrosomes from NIH 3T3 cells. Finally, reduction of PACSIN 2 protein levels with small-interfering RNA (siRNA) resulted in impaired microtubule nucleation from centrosomes, whereas microtubule centrosome splitting was not affected, suggesting a role for PACSIN 2 in the regulation of tubulin polymerisation. These findings suggest a novel function for PACSIN proteins in dynamic microtubuli nucleation.  相似文献   

20.
Lad is an SH2 domain-containing adaptor protein that binds MEK kinase 2 (MEKK2), a mitogen-activated protein kinase (MAPK) kinase kinase for the extracellular signal-regulated kinase 5 (ERK5) and JNK pathways. Lad and MEKK2 are in a complex in resting cells. Antisense knockdown of Lad expression and targeted gene disruption of MEKK2 expression results in loss of epidermal growth factor (EGF) and stress stimuli-induced activation of ERK5. Activation of MEKK2 and the ERK5 pathway by EGF and stress stimuli is dependent on Src kinase activity. The Lad-binding motif is encoded within amino acids 228 to 282 in the N terminus of MEKK2, and expression of this motif blocks Lad-MEKK2 interaction, resulting in inhibition of Src-dependent activation of MEKK2 and ERK5. JNK activation by EGF is similarly inhibited by loss of Lad or MEKK2 expression and by blocking the interaction of MEKK2 and Lad. Our studies demonstrate that Src kinase activity is required for ERK5 activation in response to EGF, MEKK2 expression is required for ERK5 activation by Src, Lad and MEKK2 association is required for Src activation of ERK5, and EGF and Src stimulation of ERK5-regulated MEF2-dependent promoter activity requires a functional Lad-MEKK2 signaling complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号